dc.contributor | Quintero Vélez, Alexander | |
dc.contributor | Vélez Caicedo, Juan Diego | |
dc.creator | Hoyos Restrepo, Paulina | |
dc.date.accessioned | 2021-02-18T16:53:47Z | |
dc.date.available | 2021-02-18T16:53:47Z | |
dc.date.created | 2021-02-18T16:53:47Z | |
dc.date.issued | 2020-04-30 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79272 | |
dc.description.abstract | In this thesis we study the heat equation on graphs from the perspective of information theory. To this end, we introduce the discrete heat equation using the probabilistic approach of random walks on graphs. Then we present a basic introduction to the subject of information theory, both from a probabilistic and an algorithmic viewpoint. Here we define the concepts of Shannon entropy, Kolmogorov complexity and mutual information; and we use codes to give an interpretation of them. As an application, we show how random walks on graphs allow us to gain information about different graph parameters. Moreover, we use the heat diffusion process on a graph as a computational mechanism to approximate the Fourier expansion of a function defined on a finite abelian group. | |
dc.description.abstract | En esta tesis estudiamos la ecuación del calor en grafos desde la perspectiva de la teoría de la información. Para ello, introducimos la ecuación del calor discreta utilizando el enfoque probabilístico de las caminatas aleatorias en grafos. Luego presentamos una introducción básica a la teoría de la información, tanto desde el punto de vista probabilístico como el algorítmico. Aquí definimos los conceptos de entropía de Shannon, complejidad de Kolmogorov e información mutua; y utilizamos códigos para dar una interpretación de los mismos. Como aplicación, mostramos cómo las caminatas aleatorias en grafos nos permiten obtener información sobre diferentes parámetros de ciertos grafos. Además, utilizamos el proceso de difusión de calor en un grafo como un mecanismo de cálculo para aproximar la expansión de Fourier de una función definida en un grupo abeliano finito. | |
dc.language | eng | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Matemáticas | |
dc.publisher | Escuela de matemáticas | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Jay Jorgenson and Serge Lang. The ubiquitous heat kernel. In Mathematics Unlimited — 2001 and Beyond, pages 655–683. Springer Berlin Heidelberg, 2001. | |
dc.relation | Anna Ben-Hamou, Roberto I. Oliveira, and Yuval Peres. Estimating graph parameters via random walks with restarts. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, pages 1702–1714, USA,2018. Society for Industrial and Applied Mathematics. | |
dc.relation | Peter Grunwald and Paul Vitanyi. Shannon Information and Kolmogorov Complexity. arXiv e-prints, page cs/0410002, Oct 2004 | |
dc.relation | Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. | |
dc.relation | Fan R. K. Chung. Spectral Graph Theory. Number n.o92 in CBMS Regional Conference Series. Conference Board of the Mathematical Sciences, 1997 | |
dc.relation | Daniel A. Spielman. Spectral graph theory, lecture notes. http://www.cs.yale.edu/homes/spielman/561/2015/index.html, 2015. | |
dc.relation | Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 5th edition, 2016. | |
dc.relation | Aleksandr Y. Khinchin. Mathematical foundations of information theory. Doverbooks on advanced mathematics. Dover, New York, NY, 2013. | |
dc.relation | Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Texts in Computer Science. Springer New York, 2009. | |
dc.relation | C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379–423, 1948. | |
dc.relation | Audrey Terras. Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts. Cambridge University Press, 1999. | |
dc.relation | David S. Dummit and Richard M. Foote. Abstract Algebra. Wiley, 2003. | |
dc.relation | David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907):553–558, 1992. | |
dc.relation | Daniel R. Simon. On the power of quantum computation. SIAM J. Comput., 26(5):1474–1483, October 1997. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | On the discrete heat equation and Kolmogorov's complexity theory | |
dc.type | Otro | |