dc.contributorRodriguez Niño, Gerardo
dc.contributorGil Chaves, Iván Darío
dc.contributorGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.creatorPimentel Losada, Jeanpierre Andrés
dc.date.accessioned2020-01-31T13:55:10Z
dc.date.available2020-01-31T13:55:10Z
dc.date.created2020-01-31T13:55:10Z
dc.date.issued2020-01-30
dc.date.issued2020-01-30
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75545
dc.description.abstractThis work illustrates the implementation of P-graph methodology for process synthesis, to generate conceptual designs, aiming at the addition of value for the products of the sugar cane’s productive chain. Specifically, this methodology is employed to find algorithmically transformation processes which constitute alternatives to diversify the products generated from the lactic produced from sugar cane. A set of products with significant added value, and a set of alternatives for their production process were considered. Costs estimations were obtained from rigorous simulation in Aspen Plus®, and subsequently employed along with the algorithms of P-graph methodology, to generate the optimal process structure and several near-optimal alternatives for different cases of study in assorted circumstances. Among the evaluated products lactic acid esters such as methyl and ethyl lactate, were considered. Propylene glycol concentrated lactic acid and polylactic acid were also considered as alternatives of value for the lactic acid. Methyl lactate was found to be the most relevant product, whereas propylene glycol is the least desirable product under the evaluated economic scenario. Besides to continuous production process, the methodology was also evaluated for batch conditions, considering the generation of lactates for cosmetic and flavor industry. The scheduling of the plant and the equipment involved in the process are obtained as the output of the methodology. Furthermore, a set of non-dominated solutions presented as a Pareto diagram is generated, thus presenting alternatives of processing and illustrating the trade-offs between time span and profit.
dc.description.abstractEl presente trabajo ilustra la implementación de la metodología de síntesis y optimización de procesos basada en P-graphs, para la generación de diseños conceptuales con miras a la adición de valor a la cadena productiva de la caña de azúcar. Específicamente, se emplea la metodología para encontrar alternativas de diversificación del ácido láctico que puede producirse a partir de la caña, evaluando varios posibles productos en diferentes mercados, así como varias alternativas de producción de estos. Se realizan estimaciones de los costos de producción a través de la simulación rigurosa en Aspen plus, y se utilizan los algoritmos de la metodología P-graph para generar la alternativa de producción óptima y alternativas cercanas a la óptima para diferentes casos de estudio. Los productos evaluados fueron lactatos de metilo y lactato de etilo, propilenglicol, ácido láctico concentrado y ácido poliláctico, resultando el lactato de metilo como el más relevante. El propilenglicol, es el producto menos deseable dentro de la estructura bajo el escenario de costos y valores de venta evaluados. Además de un esquema de producción tradicional en operación en continuo, se evaluó la metodología para esquemas de producción por lotes, tomando como productos de estudio los dos ésteres, en este caso se obtiene adicionalmente la programación para la producción de la planta. En este caso se obtiene un diagrama de Pareto que muestra las diferentes alternativas evaluando simultáneamente la ganancia y el tiempo de producción.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] Asociación Nacional de Empresarios de Colombia –ANDI y www.andi.com.co, “Estrategia Para Una Nueva Industrialización II”, 2017. [2] F. Friedler, K. Tarján, Y. W. Huang, y L. T. Fan, “Graph-theoretic approach to process synthesis: Axioms and theorems”, Chem. Eng. Sci., vol. 47, núm. 8, pp. 1973–1988, jun. 1992. [3] Asociación de cultivadores de caña de azucar de Colombia (Asocaña), “Aspectos generales del sector agroindustrial de la caña 2017-2018. Informe anual”, Cali, 2018. [4] E. Manzano, “Caña de azúcar, el gran motor de la economía en el Valle del Cauca”, Noticias Caracol, 2017. [En línea]. Disponible en: https://noticias.caracoltv.com/cali/cana-de-azucar-el-gran-motor-de-la-economia-en-el-valle-del-cauca. [Consultado: 10-may-2019]. [5] Asociación Colombiana de productores y proveedores de caña de azucar (Procaña), “Presentación del sector agroindustral de la caña de azucar”, Cali, 2018. [6] Asociación de cultivadores de caña de azucar de Colombia (Asocaña), “Informe de Sostenibilidad 2017 - 2018”, Cali, 2018. [7] J. C. Mira, “Asociación de cultivadores de caña, Asocaña, Llamado de S.O.S.”, Cali, 2018. [8] I. D. Arroyave, “El colapso de la industria colombiana del etanol”, Portafolio, p. 15, 12-oct-2018. [9] A. Komesu et al., “Chemical Engineering and Processing : Process Intensi fi cation Lactic acid puri fi cation by reactive distillation system using design of experiments”, Chem. Eng. Process. Process Intensif., vol. 95, pp. 26–30, 2015. [10] P. Mäki-Arvela, I. l. I. L. Simakova, T. Salmi, y D. Y. D. Y. D. Y. Murzin, “Production of Lactic Acid / Lactates from Biomass and Their Catalytic Transformations to Commodities”, Chem. Rev., vol. 114, núm. 3, pp. 1909–1971, 2014. [11] R. Datta, “Hydroxycarboxylic Acids”, en Kirk-Othmer Encyclopedia of Chemical Technology, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. [12] H. Benninga, A history of lactic acid making : a chapter in the history of biotechnology. Dordrecht: Kluwer Academic Publishers, 1990. [13] J. N. Starr y G. Westhoff, “Lactic acid”, en Ullmann’s Encyclopedia of industrial chemistry, 1a ed., Weinheim: Wiley-VCH Verlag & Co, 2013. [14] R. Datta y M. Henry, “Lactic acid : recent advances in products , processes and technologies – a review”, J. Chem. Technol. Biotechnol., vol. 81, pp. 1119–1129, 2006. [15] J. Madden, “Lactic acid attracts attention in tough acidulants industry”, Passport, pp. 1–2, 2012. [16] International trade center, “Trade Map”, Estadísticas del comercio para el desarrollo internacional de las empresas, 2018. [En línea]. Disponible en: https://www.trademap.org/Index.aspx?lang=es. [Consultado: 11-may-2019]. [17] M. Intelligence, “Global Lactic Acid Market”, Global Lactic Acid Market, 2017. [En línea]. Disponible en: https://www.mordorintelligence.com/industry-reports/lactic-acid-market. [Consultado: 06-sep-2018]. [18] E. Castro-Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang, y R. Auras, “Poly(lactic acid)—Mass production, processing, industrial applications, and end of life”, Adv. Drug Deliv. Rev., vol. 107, pp. 333–366, 2016. [19] R. Datta, S. Tsai, P. Bonsignore, S. Moon, y J. R. Frank, “Technological and economic potential of poly(lactic acid) and lactic acid derivatives”, vol. 16, pp. 221–231, 1995. [20] L. Shen, J. Haufe, y M. K. Patel, “Product overview and market projection of emerging bio-based plastics”, Utrecht, 2009. [21] J. Lunt, “Large-scale production, properties and commercial applications of polylactic acid polymers”, Polym. Degrad. Stab., vol. 59, pp. 145–152, 1998. [22] P. Gruber y M. O’Brien, “Polylactides ‘Natureworks® PLA’,” en Biopolymers- polyesters III applications and commercial products. Vol 4., Y. Doi y A. Steinbüchel, Eds. Weinheim: Wiley-VCH Verlag & Co, 2002, pp. 235–249. [23] K. Weissermel y H. Arpe, Química orgánica industrial : productos de partida e intermedios más importantes, 1a ed. Barcelona: Reverté, 1981. [24] C. Sullivan, A. Kuenz, y K. D. Vorlop, “Propanediols”, en Ullmann’s Encyclopedia of industrial chemistry, Braunschweig: Wiley-VCH Verlag GmbH & Co., 2018. [25] Z. Zhang, D. J. Miller, y J. E. Jackson, “Condensed phase catalytic hydrogenation of lactic acid to propylene glycol”, Appl. Catal. A Gen., vol. 219, pp. 89–98, 2003. [26] M. N. Simonov, I. L. Simakova, y V. N. Parmon, “Hydrogenation of lactic acid to propylene glycol over copper-containing catalysts”, React. Kinet. Catal. Lett., vol. 97, núm. ., pp. 157–162, 2009. [27] Markets and markets, “Propylene Glycol Market worth 4.60 Billion USD by 2021”, Press Releases: Propylene Glycol Market, 2016. [En línea]. Disponible en: https://www.marketsandmarkets.com/PressReleases/propylene-glycol.asp. [Consultado: 11-may-2019]. [28] Market Research future, “Propylene Glycol Market Research Report –Global Forecast to 2023”, Propylene Glycol Market, 2019. [En línea]. Disponible en: https://www.marketresearchfuture.com/reports/propylene-glycol-market-5957. [Consultado: 11-may-2019]. [29] W. Bauer, “Acrylic Acid and Derivatives”, en Kirk‐Othmer Encyclopedia of Chemical Technology, I. John Wiley & Sons, Ed. Wiley, 2003. [30] T. Ohara et al., “Acrylic Acid and Derivatives”, en Ullmann’s Encyclopedia of industrial chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co., 2006. [31] T. Bonnotte, S. Paul, M. Araque, R. Wojcieszak, F. Dumeignil, y B. Katryniok, “Dehydration of Lactic Acid: The State of The Art”, ChemBioEng Rev., vol. 5, núm. 1, pp. 34–56, 2017. [32] J. Zhang, Y. Zhao, M. Pan, X. Feng, W. Ji, y C. Au, “Efficient Acrylic Acid Production through Bio Lactic Acid Dehydration over NaY Zeolite Modified by Alkali Phosphates”, ACS Catal., pp. 32–41, 2011. [33] C. T. Bowmer, R. N. Hooftman, A. O. Hanstveit, P. W. M. Venderbosch, y N. van der Hoeven, “The ecotoxicity and the biodegradability of lactic acid, alkyl lactate esters and lactate salts”, Chemosphere, vol. 37, núm. 7, pp. 1317–1333, 1998. [34] S. Aparicio, “Computational study on the properties and structure of methyl lactate”, J. Phys. Chem. A, vol. 111, pp. 4671–4683, 2007. [35] M. T. Sanz, R. Murga, S. Beltrán, J. L. Cabezas, y J. Coca, “Autocatalyzed and ion-exchange-resin-catalyzed esterification kinetics of lactic acid with methanol”, Ind. Eng. Chem. Res., vol. 41, núm. 3, pp. 512–517, 2002. [36] P. Delgado, M. T. Sanz, S. Beltrán, y L. A. Núñez, “Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation”, Chem. Eng. J., vol. 165, núm. 2, pp. 693–700, 2010. [37] C. S. M. Pereira, V. M. T. M. Silva, y A. E. Rodrigues, “Ethyl lactate as a solvent: Properties, applications and production processes – a review”, Green Chem., vol. 13, núm. 10, p. 2658, 2011. [38] C. Y. Su, C. C. Yu, I. Chien, y J. D. Ward, “Plant-wide economic comparison of lactic acid recovery processes by reactive distillation with different alcohols”, Ind. Eng. Chem. Res., vol. 52, núm. 32, pp. 11070–11083, 2013. [39] N. Nishida, G. Stephanopoulos, y A. W. Westerberg, “A review of process synthesis”, AIChE J., vol. 27, núm. 3, pp. 321–351, 1981. [40] A. K. Tula, M. R. Eden, y R. Gani, “Process synthesis, design and analysis using a process-group contribution method”, Comput. Chem. Eng., vol. 81, pp. 245–259, 2015. [41] A. W. Westerberg, “A review of process synthesis”, en Computer Applications to Chemical Engineering, vol. 124, R. Squired y A. Et, Eds. 1980, pp. 53–87. [42] R. M. Smith, Chemical Process: Design and Integration. Hoboken, USA: John Wiley & Sons., 2005. [43] J. Serna, E. N. D. Martinez, P. C. N. Rincón, M. Camargo, D. Gálvez, y Á. Orjuela, “Multi-criteria decision analysis for the selection of sustainable chemical process routes during early design stages”, Chem. Eng. Res. Des., vol. 113, pp. 28–49, 2016. [44] R. . Turton, J. A. Shaeiwitz, D. Bhattacharyya, y W. . Whiting, Analysis, Synthesis and Design of Chemical Processes, 5th, Turton, Richard et al | Buy Online at Pearson, 5a ed. Boston: Pearson Ed, 2018. [45] X. Li y A. Kraslawski, “Conceptual process synthesis: Past and current trends”, Chem. Eng. Process. Process Intensif., vol. 43, pp. 589–600, 2004. [46] L. T. Fan, F. Friedler, y B. Bertok, “Introduction to process graphs (P-graphs): Applications to Process-Network Synthesis and Related Areas”, en Lecture Note Spring 2010, Kansas State University, 2010, p. 282. [47] C. A. Henao y C. T. Maravelias, “Surrogate-Based Superstructure Optimization Framework”, AIChE J., vol. 57, núm. 5, pp. 1216–1232, 2011. [48] F. Friedler, L. T. Fan, y B. Imreh, “Process network synthesis: problem definition”, Networks, vol. 31, núm. 2, pp. 119–124, 1998. [49] F. Friedler, K. Tarján, Y. W. Huang, y L. T. Fan, “Graph-theoretic approach to process synthesis: axioms and theorems”, Chem. Eng. Sci., vol. 47, núm. 8, pp. 1973–1988, jun. 1992. [50] F. Friedler, K. Tarjan, Y. W. Huang, y L. T. Fan, “Graph-theoretic approach to process synthesis: Polynomial algorithm for maximal structure generation”, Comput. Chem. Eng., vol. 17, núm. 9, pp. 929–942, sep. 1993. [51] F. Friedler, K. Tarjan, Y. W. Huang, y L. T. Fan, “Combinatorial algorithms for process synthesis”, Chem. Eng. Sci., vol. 16, núm. Supplement 1, pp. 313–320, may 1992. [52] F. Friedler, J. B. Varga, E. Feher, y L. T. Fan, “Combinatorially Accelerated Branch-and-Bound Method for Solving the MIP Model of Process Network Synthesis”, en State of the Art in Global Optimization, Boston, MA.: Springer, 1996, pp. 609–626. [53] J. B. Varga, F. Friedler, y L. T. Fan, “Parallelization of the accelerated branch-and-bound algorithm of process synthesis: application in total flowsheet synthesis”, Acta Chim. Slov., vol. 42, p. 15, 1995. [54] P-graph community, “P-graph”, http//p-graph.org/, Accessed Novemb. 8, 2017, 2015. [55] J. Liu, L. T. Fan, P. Seib, F. Friedler, y B. Bertok, “Downstream process synthesis for biochemical production of butanol, ethanol, and acetone from grains: generation of optimal and near-optimal flowsheets with conventional operating units.”, Biotechnol. Prog., vol. 20, núm. 5, pp. 1518–27, ene. 2004. [56] H. Alvarez, R. Lamanna, P. Vega, y S. Revollar, “Metodología para la obtención de modelos semifísicos de base fenomenológica aplicada a una sulfitadora de jugo de caña de azúcar”, RIAI, vol. 6, pp. 10–20, 2009. [57] P. P. Upare, Y. K. Hwang, J. S. Chang, y D. W. Hwang, “Synthesis of lactide from alkyl lactate via a prepolymer route”, Ind. Eng. Chem. Res., vol. 51, núm. 13, pp. 4837–4842, 2012. [58] D. R. Witzke, R. Narayan, y J. J. Kolstad, “Reversible kinetics and thermodynamics of the homopolymerization of L-lactide with 2-ethylhexanoic acid Tin(II) salt”, Macromolecules, vol. 30, pp. 7075–7085, 1997. [59] D. K. Yoo, D. Kim, y D. S. Lee, “Synthesis of lactide from oligomeric PLA: Effects of temperature, pressure, and catalyst”, Macromol. Res., vol. 14, núm. 5, pp. 510–516, 2006. [60] Z. Zhang, J. E. Jackson, y D. J. Miller, “Kinetics of aqueous-phase hydrogenation of lactic acid to propylene glycol”, Ind. Eng. Chem. Res., vol. 41, núm. 4, pp. 691–696, 2002. [61] Y. Zhang, L. Ma, y J. Yang, “Kinetics of esterification of lactic acid with ethanol catalyzed by cation-exchange resins”, React. Funct. Polym., vol. 61, pp. 101–114, 2004. [62] Y. M. Harshe, G. Storti, M. Morbidelli, S. Gelosa, y D. Moscatelli, “Polycondensation Kinetics of Lactic Acid”, Macromol. React. Eng., vol. 1, núm. 6, pp. 611–621, 2007. [63] M. Noda y H. Okuyama, “Thermal catalytic depolimerization of poly (L-lactic acid) oligomer into LL-lactide: Effects of Al, Ti, Zn and Zr compounds as catalyst”, Chem. Pharm. Bull., vol. 47, núm. 4, pp. 467–471, 1999. [64] Y. Yu, G. Storti, y M. Morbidelli, “Ring-opening polymerization of L,L-lactide: Kinetic and modeling study”, Macromolecules, vol. 42, núm. 21, pp. 8187–8197, 2009. [65] E. Mastan y S. Zhu, “Method of moments: A versatile tool for deterministic modeling of polymerization kinetics”, Eur. Polym. J., vol. 68, pp. 139–160, 2015. [66] M. T. Sanz, S. Beltrán, B. Calvo, J. L. Cabezas, y J. Coca, “Vapor Liquid Equilibria of the Mixtures Involved in the Esterification of Lactic Acid with Methanol”, J. Chem. Eng. Data, vol. 48, núm. 6, pp. 1446–1452, 2003. [67] C. L. Yaws, The Yaws Handbook of Vapor Pressure : Antoine coefficients. Gulf Professional Publishing, 2015. [68] S. H. Chow, “Purfication of lactic acid”, Kansas State University, 1962. [69] A. C. C. Inc., “Catalog Handbook of Fine Chemicals”, p. 1, 1990. [70] FAO, “Food and Agriculture Organization of the United Nations”, Specifications for Flavourings, 2019. [En línea]. Disponible en: http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfa-flav/details/en/c/781/. [71] M. T. Sanz y J. Gmehling, “Isothermal vapor-liquid equilibrium, excess enthalpy data, and activity coefficients at infinite dilution for the binary system water + methyl lactate”, J. Chem. Eng. Data, vol. 50, núm. 1, pp. 85–88, ene. 2005. [72] D. T. Vu, C. T. Lira, N. S. Asthana, A. K. Kolah, y D. J. Miller, “Vapor - Liquid equilibria in the systems ethyl lactate + ethanol and ethyl lactate + water”, J. Chem. Eng. Data, vol. 51, núm. 4, pp. 1220–1225, jul. 2006. [73] C. E. Rehberg y M. B. Dixon, “n-Alkyl Lactates and their Acetates”, J. Am. Chem. Soc., vol. 72, pp. 1918–1922, 1950. [74] DDB, “Dortmund Data Bank (DDB)”, Online data base search, 2019. [En línea]. Disponible en: http://ddbonline.ddbst.com/DDBSearch/onlineddboverview.exe. [75] V. H. Álvarez, S. Mattedi, M. Iglesias, R. Gonzalez-Olmos, y J. M. Resa, “Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa”, Phys. Chem. Liq., vol. 49, núm. 1, pp. 52–71, ene. 2011. [76] M. T. Sanz, B. Calvo, S. Beltrán, y J. L. Cabezas, “Vapor−Liquid Equilibria at (33.33, 66.66, and 101.33) kPa and Densities at 298.15 K for the System Methanol + Methyl Lactate”, J. Chem. Eng. Data, vol. 47, núm. 4, pp. 1003–1006, jul. 2002. [77] A. Arce, J. Martinez-Ageitos, y A. Soto, “VLE for water + ethanol + 1-octanol mi xtures. Experimental measurements and correlations”, Fluid Phase Equilib., vol. 122, pp. 117–129, 1996. [78] P. Delgado, M. T. Sanz, y S. Beltrán, “Isobaric vapor-liquid equilibria for the quaternary reactive system: Ethanol + water + ethyl lactate + lactic acid at 101.33 kPa”, Fluid Phase Equilib., vol. 255, núm. 1, pp. 17–23, jul. 2007. [79] H. S. Lai, Y. F. Lin, y C. H. Tu, “Isobaric (vapor + liquid) equilibria for the ternary system of (ethanol + water + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa”, J. Chem. Thermodyn., vol. 68, pp. 13–19, 2014. [80] S. Jenkins, “Chemical Engineering Plant Cost Index: 2018 Annual Value - Chemical Engineering”, Chemical engineering, 2019. [En línea]. Disponible en: https://www.chemengonline.com/2019-cepci-updates-january-prelim-and-december-2018-final/. [Consultado: 05-sep-2019]. [81] F. Dorai, M. Rolland, A. Wachs, M. Marcoux, y E. Climent, “Packing fixed bed reactors with cylinders: Influence of particle length distribution”, en 20th International Congress of Chemical and Process Engineering - CHISA 2012, Aug 2012, 2012, vol. 42, pp. 1335–1345. [82] W. D. Seider, D. R. Lewin, y J. Seader, Product and process design principles : synthesis, analysis, and evaluation, Second Edi. John Wiley & Sons, 2003. [83] D. Q. Kern, Process heat transfer. Tokyo: Mc-Graw Hill, 1965. [84] J. R. Couper, W. R. Penney, J. R. Fair, y Walas S.M., Chemical process equipment : selection and design, 2a ed. Amsterdam: Elsevier, 2005. [85] T. Espinosa-Solares, E. Brito-De La Fuente, F. Thibault, y P. A. Tanguy, “Power consumption with anchor mixers effect of bottom clearance”, Chem. Eng. Commun., vol. 157, pp. 65–71, 1997. [86] N. S. Asthana, A. K. Kolah, D. T. Vu, C. T. Lira, y D. J. Miller, “A kinetic model for the esterification of lactic acid and its oligomers”, Ind. Eng. Chem. Res., vol. 45, núm. 15, pp. 5251–5257, 2006. [87] D. T. Vu, A. K. Kolah, N. S. Asthana, L. Peereboom, C. T. Lira, y D. J. Miller, “Oligomer distribution in concentrated lactic acid solutions”, Fluid Phase Equilib., vol. 236, núm. 1–2, pp. 125–135, 2005. [88] A. V. Da Rosa, Fundamentals of renewable energy processes. Oxford, UK: Elsevier, 2005. [89] W. Timbuntam, K. Sriroth, y Y. Tokiwa, “Lactic acid production from sugar-cane juice by a newly isolated Lactobacillus sp.”, Biotechnol. Lett., vol. 28, núm. 11, pp. 811–814, 2006. [90] Grand view researc Inc., “Bio Solvents Market by Product (Lactate Ester, Soy Methyl Ester Alcohol, Glycols) by Application (Paints & Coatings, Adhesives & Sealants, Printing Inks) is Expected to Reach USD 9.31 Billion by 2020: Grand View Research, Inc.”, Cision PR Newswire. [En línea]. Disponible en: https://www.prnewswire.com/news-releases/bio-solvents-market-by-product-lactate-ester-soy-methyl-ester-alcohol-glycols-by-application-paints--coatings-adhesives--sealants-printing-inks-is-expected-to-reach-usd-931-billion-by-2020-grand-view-research-inc-2. [Consultado: 17-sep-2019]. [91] R. T. Marler y J. S. Arora, “The weighted sum method for multi-objective optimization: New insights”, Struct. Multidiscip. Optim., vol. 41, núm. 6, pp. 853–862, 2010. [92] K. Kalauz, Z. Sule, B. Bertok, F. Friedler, y L. T. Fan, “Extending process-network synthesis algorithms with time bounds for supply network design”, Chem. Eng. Trans., vol. 29, pp. 259–264, 2012. [93] M. Frits y B. Bertok, “Process Scheduling by Synthesizing Time Constained Process-Networks”, en 24th European Symposium on Computer Aided Process Engineering- ESCAPE 24, 2014. [94] G. Towler y R. Sinnott, Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Amsterdam: Butterworth-Heinemann, 2008. [95] Z. Kovacs, A. Orosz, y F. Friedler, “Synthesis algorithms for the reliability analysis of processing systems”, Cent. Eur. J. Oper. Res., vol. 27, pp. 573–595, 2019.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleSíntesis de procesos para la adición de valor y la diversificación de los productos derivados del ácido láctico mediante la metodología P-graph.
dc.typeOtro


Este ítem pertenece a la siguiente institución