dc.contributorCalderón Villanueva, Sergio Alejandro
dc.contributorSeries de Tiempo
dc.creatorIbáñez Forero, Luis Eduardo
dc.date.accessioned2020-07-17T15:58:31Z
dc.date.available2020-07-17T15:58:31Z
dc.date.created2020-07-17T15:58:31Z
dc.date.issued2020-05-07
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77786
dc.description.abstractSometimes it is necessary to work with multivariate time series that have heavy tails and in particular multivariate Student t-noise. Unfortunately, there is no Bayesian methodology in the literature known to the author that allows estimating the structural parameters of a multivariate TAR model. In this sense, the analysis of the autoregressive multivariate models of thresholds and multivariate t-Student noise is carried out via the Bayesian approach and the proposed methodology is examined through simulations and an application in the stock market field.
dc.description.abstractEn algunas ocasiones es necesario trabajar con series de tiempo multivariadas que tienen colas pesadas y en particular ruido t-Student multivariado. Desafortunadamente no existe en la literatura, conocida por el autor, alguna metodología Bayesiana que permita estimar los parámetros estructurales de un modelo TAR multivariado. En ese sentido el análisis de los modelos multivariados autoregresivos de umbrales y ruido t-Student multivariado es llevado a cabo vía el enfoque Bayesiano y la metodología propuesta es examinada a través de simulaciones y una aplicación en el campo bursátil.
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisherDepartamento de Estadística
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationCalderón, S. & Nieto, F. (2017), ‘Bayesian analysis of multivariate threshold autoregressive models with missing data’, Communications in Statistics - Theory and Methods 46(1), 296–318.
dc.relationCarlin, B. & Chib, S. (1995), ‘Bayesian model choice via markov chain monte carlo methods’, Journal of the Royal Statistical Society. Series B (Methodological) 57(13), 473–484.
dc.relationChen, C. (1999), ‘Subset selection of autoregressive time series models’, Journal of Forecasting 18(7), 505–516.
dc.relationChen, C., Liu, F.-C. & So, M. (2011), ‘A review of threshold time series models in finance’, Statistics and its Interface 4(2), 167–181.
dc.relationChen, C. & So, M. (2003), ‘Subset threshold autoregression’, Journal of Forecasting 22, 49– 66.
dc.relationDellaportas, P., Forster, J. & Ntzoufras, I. (2002), ‘On bayesian model and variable selection using mcmc’, Statistics and Computing 12(1), 27–36.
dc.relationGelman, A. & Rubin, D. (1992), ‘Inference from iterative simulation using multiple sequences’, Statistical Science 7(4), 457–472.
dc.relationGelman, A., Stern, H., Carlin, J., Dunson, D., Vehtari, A. & Rubin, D. (2013), Bayesian data analysis, Chapman and Hall/CRC.
dc.relationGeweke, J. (1992), ‘Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments’, Bayesian Statistics, Clarendon Press, Oxford. 4, 169–193.
dc.relationGreen, P. (1995), ‘Reversible jump markov chain monte carlo computation and bayesian model determination’, Biometrika 82(4), 711–732.
dc.relationHansen, B. (1999), ‘Testing for linearity’, Journal of Economic Surveys 13(5), 551–76.
dc.relationHansen, B. (2011), ‘Threshold autoregression in economics’, Statistics and its Interface 4(2), 123–127.
dc.relationKotz, S. & Nadarajah, S. (2004), Multivariate T-Distributions and Their Applications, Cambridge University Press.
dc.relationKuo, L. & Mallick, B. (1998), ‘Variable selection for regression models’, The Indian Journal of Statistics, Series B 60(1), 65–81.
dc.relationLin, P.-E. (1972), ‘Some characterizations of the multivariate t distribution’, Journal of Multivariate Analysis 2(3), 339–344.
dc.relationLiu, J. (1996), ‘Peskun’s theorem and a modified discrete-state gibbs sampler’, Biometrika 83(3), 681–682.
dc.relationLo, M. & Zivot, E. (2001), ‘Threshold cointegration and nonlinear adjustment to the law of one price’, Macroeconomic Dynamics 5(4), 533–576.
dc.relationMillan, C. & Calderón, S. (2017), Estimación Bayesiana de los parámetros de umbrales y de retardo en un modelo autorregresivo de umbrales multivariado (mtar) con ruido t-student multivariado, Master’s thesis.
dc.relationNieto, F. (2005), ‘Modeling bivariate threshold autoregressive processes in the presence of missing data’, Communications in Statistics - Theory and Methods 34(4), 905–930.
dc.relationRobert, C. & Casella, G. (2005), Monte Carlo Statistical Methods (Springer Texts in Statistics), Springer-Verlag New York, Inc.
dc.relationRobert, C. & Casella, G. (2009), Introducing Monte Carlo Methods with R (Use R), 1st edn, Springer-Verlag.
dc.relationRomero, L. (2017), Estimación Bayesiana de un modelo tar multivariado cuando el proceso de ruido sigue una distribución t-student, Master’s thesis.
dc.relationSchäfer, C. (2012), Monte Carlo methods for sampling high-dimensional binary vectors, PhD thesis, Universit´e Paris Dauphine-Paris IX.
dc.relationSchäfer, C. & Chopin, N. (2011), ‘Sequential monte carlo on large binary sampling spaces’, Statistics and Computing 23, 163–184.
dc.relationStenseth, N., Chan, K., Tong, H., Boonstra, R., Boutin, S., Krebs, C., Post, E., O’Donoghue, M., Yoccoz, N., Forchhammer, M. & Hurrell, J. (1999), ‘Common dynamic structure of canada lynx populations within three climatic regions’, Science 285(5430), 1071–1073.
dc.relationTong, H. (1978), ‘On a threshold model’, In Pattern Recognition and Signal Processing (C. H. Chen, ed.) 29, 575–586.
dc.relationTong, H. (1983), Threshold models in non-linear time series analysis, Springer-Verlag.
dc.relationTsay, R. (1998), ‘Testing and modelingmultivariate threshold models’, Journal of the American Statistical Association 93(443), 1188–1202.
dc.relationZhang, H. & Nieto, F. H. (2015), ‘Tar modeling with missing data when the white noise process follows a student’s t-distribution’, Revista Colombiana de Estad´ıstica 38(1), 239– 266.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEstimación Bayesiana de los parámetros estructurales de los modelos Multivariados Autoregresivos de Umbrales con ruido t-Student multivariado
dc.typeOtro


Este ítem pertenece a la siguiente institución