dc.contributorCabrera Orozco, Andrés
dc.contributorLaboratorio de Investigación en Combustibles y Energía
dc.creatorGutiérrez Alarcón, Jennifer Alejandra Patricia
dc.date.accessioned2020-12-14T17:23:39Z
dc.date.available2020-12-14T17:23:39Z
dc.date.created2020-12-14T17:23:39Z
dc.date.issued2020-12-19
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78709
dc.description.abstractDespite the dwindling of fossil energy sources and their environmental impacts, the participation of these sources represent an important percentage in the global energy matrix and the production of their derived chemicals is continuously growing. Therefore, modern society should develop alternative and renewable energy sources as well as bio-based chemicals. This document provides insights into the potential of lignocellulosic biomass as a suitable and viable alternative to fossil sources. It should be remarked that feasibility, viability and outbreak of renewable sources will not only depend on environmental benefits but also on current regulations and laws since some of them are currently in economic disadvantage. In this regard, pretreatment methods, used to separate the main plant polymers are reviewed, including a discussion on factors contributing to its inefficient conversion. Further, three semi-industrialized methods (steam explosion, ammonia fiber expansion, and reactive extrusion) were compared with a novel pretreatment process: mechanocatalysis. The analysis included economic, environmental, chemical and process safety indicators as well as severity of the different pretreatments. The literature review and later analysis suggested that steam explosion represents the most adequate alternative when the main objective is to preserve the cellulosic fraction of biomass to produce second generation biofuels. In addition, mechanocatalysis is more prone to render high water soluble products that preserve the cellulosic and hemicellulosic fractions of lignocellulosic biomass and a solid lignin-containing fraction in a one-pot process. However these advantages compensate only partially the high energetic barrier imposed by the mechanical technology with a reported energy consumption of approximately 1.16 times the energy content of the substrate in a one kilogram scale, which limits it use for biofuels production. Finally, rice husk pretreatment was studied, the material is a lignocellulosic low cost substrate in Colombia and its potentiality processing was also evaluated and proposed with mechanocatalysis and the other researched methods.
dc.description.abstractActualmente un porcentaje importante de la canasta energética global se encuentra atribuido al uso de fuentes fósiles, e incluso a pesar de su agotamiento, la producción de sus derivados se encuentra en continuo crecimiento. La sociedad moderna debe implementar energías alternativas y fuentes renovables. Dada la importancia de la biomasa lignocelulósica, al ser el material renovable más abundante en el planeta, este documento proporciona información sobre su uso potencial como alternativa a las fuentes fósiles. Es imperativo considerar que la factibilidad, viabilización y auge de la implementación de una fuente renovable sobre una fósil va a depender no solo de sus ventajas ambientales sino también de las regulaciones y normatividad vigentes toda vez que evidentemente algunas de estas se encuentran actualmente en desventaja económica. En este sentido, se presentan los métodos de pretratamiento utilizados actualmente en el procesamiento de biomasa lignocelulósica discutiendo aspectos como su recalcitrancia y los principales factores que contribuyen a su conversión ineficiente. Se realizó un análisis comparativo de tres métodos semi-industriales (explosión por vapor, expansión de fibra de amoníaco y extrusión reactiva) junto con un método en etapa de investigación llamado mecanocatálisis. En el análisis se incluyeron indicadores económicos, ambientales, de seguridad química y de proceso además de analizar la severidad de los diferentes pretratamientos. La revisión bibliográfica y el posterior análisis comparativo sugirió que la explosión por vapor representa la alternativa más adecuada cuando el objetivo principal es preservar la fracción celulósica de la biomasa para la producción de biocombustibles de segunda generación. Sin embargo, la mecanocatálisis es un método más propenso a producir directamente productos solubles en agua además de una fracción sólida que contiene lignina poco degradada, combinando pretratamiento e hidrólisis en una sola etapa. Lo anterior abre la posibilidad de producir fracciones de celulosa y hemicelulosa altamente sacarificables, y una fracción de lignina que puede ser modificada catalíticamente. Sin embargo, estas ventajas compensan solo parcialmente la alta barrera energética impuesta por el tratamiento mecánico, cuyo consumo de energía reportado a escala de un kilogramo es 1.16 veces el contenido energético del sustrato y que limita su uso para la producción de biocombustibles. Finalmente, se estudió específicamente el pretratamiento de la cascarilla de arroz, la cual es un sustrato lignocelulósico de bajo costo y disponible en el contexto colombiano a la luz de la mecanocatálisis y los demás métodos investigados.
dc.languageeng
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbbas, A., & Ansumali, S. (2010). Global Potential of Rice Husk as a Renewable Feedstock for Ethanol Biofuel Production. Bioenergy Research, 3(4), 328–334. https://doi.org/10.1007/s12155-010-9088-0
dc.relationAgbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment : Fundamentals toward application. Biotechnology Advances, 29(6), 675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005
dc.relationAgrawal, R., Bhadana, B., Mathur, A. S., Kumar, R., & Gupta, R. P. (2018). Improved Enzymatic Hydrolysis of Pilot Scale Pretreated Rice Straw at High Total Solids Loading. Frontiers in Energy Research, 6(November), 1–12. https://doi.org/10.3389/fenrg.2018.00115
dc.relationAgriculturayganaderia. (2020). Cascarilla de arroz, prometedora para sector de la construcción. Retrieved June 21, 2020, from https://www.agriculturayganaderia.com/website/cascarilla-de-arroz-prometedora-para-sector-de-la-construccion/
dc.relationAlienergy. (2020). Aprovechammiento cascarilla de arroz. Retrieved July 17, 2020, from http://www.alienergy.com.co/proyectos_3.html
dc.relationAlinia, R., Zabihi, S., Esmaeilzadeh, F., & Kalajahi, J. F. (2010). Pretreatment of wheat straw by supercritical CO 2 and its enzymatic hydrolysis for sugar production. Biosystems Engineering, 107(1), 61–66. https://doi.org/10.1016/j.biosystemseng.2010.07.002
dc.relationAmezcua-allieri, M. A., Durán, T. S., & Aburto, J. (2017). Study of Chemical and Enzymatic Hydrolysis of Cellulosic Material to Obtain Fermentable Sugars. Hindawi, 2017.
dc.relationAng, T. N., Ngoh, G. C., Seak, A., & Chua, M. (2012). Bioresource Technology Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk. BIORESOURCE TECHNOLOGY, 1–4. https://doi.org/10.1016/j.biortech.2012.09.045
dc.relationArce, P. F., Vieira, N. F., & Igarashi, E. M. S. (2018). Thermodynamic Modeling and Simulation of Biodiesel Systems at Supercritical Conditions. Industrial and Engineering Chemistry Research, 57(2), 751–767. https://doi.org/10.1021/acs.iecr.7b04195
dc.relationB.C. Saha, M. A. C. (2007). Enzymatic hydrolysis and fermentation of lime pretreated wheat straw to ethanol. J. Chem. Technol. Biotechnol, 82, 913–919.
dc.relationBajpai. (2016). Structure of Lignocellulosic Biomass. https://doi.org/10.1007/978-981-10-0687-6
dc.relationBajpaj, P. (2016). Lignocellulosic Biomass for Biofuel Production. https://doi.org/10.1007/978-981-10-0687-6
dc.relationBak, J. S., Ko, J. K., Choi, I. G., Park, Y. C., Seo, J. H., & Kim, K. H. (2009). Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 104(3), 471–482. https://doi.org/10.1002/bit.22423
dc.relationBalan, V., Sousa, C., Chundawat, S. P. S., Humpula, J., & Dale, B. E. (2012). Overview to Ammonia Pretreatments for Lignocellulosic Biorefineries.
dc.relationBanerjee, G., Scott-craig, J. S., & Walton, J. D. (2010). Improving Enzymes for Biomass Conversion : A Basic Research Perspective. 82–92. https://doi.org/10.1007/s12155-009-9067-5
dc.relationBarakat, A., de Vries, H., & Rouau, X. (2013). Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review. Bioresource Technology, 134, 362–373. https://doi.org/10.1016/j.biortech.2013.01.169
dc.relationBarakat, A., Mayer, C., Solhy, A., Arancon, R. A. D., Vries, H. De, Luque, R., … Vries, H. De. (2014). Mechanical pretreatments of lignocellulosic biomass : towards facile and environmentally sound technologies for biofuels production To cite this version : HAL Id : hal-01135766 RSC Advances Mechanical pretreatments of lignocellulosic biomass : towards facile and environmentally sound. RSC Advances, 4, 48109–48127. https://doi.org/10.1039/C4RA07568D
dc.relationBaruah, J., Nath, B. K., Sharma, R., & Kumar, S. (2018). Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Frontiers in Energy Research, 6(December), 1–19. https://doi.org/10.3389/fenrg.2018.00141
dc.relationBerg, L. R. (1997). Introductory Botany, Plants, People and the environment. Saunders College Publishing
dc.relationBon, E. P. S., & Lee, S. (2013). Continuous pretreatment of sugarcane bagasse at high loading in an ionic liquid using a twin-screw extruder. 1991–2001. https://doi.org/10.1039/c3gc40352a
dc.relationBranco, R., Serafim, L., & Xavier, A. (2018). Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock. Fermentation, 5(1), 4. https://doi.org/10.3390/fermentation5010004
dc.relationBrodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass : A Review. Hindawi, 2011. https://doi.org/10.4061/2011/787532
dc.relationBura, R. P. C. R., & Berlin, W. E. M. A. (2007). Substrate Pretreatment : The Key to Effective Enzymatic Hydrolysis of Lignocellulosics ? (May), 67–93.
dc.relationBussemaker, M. J., & Zhang, D. (2013). E ff ect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biore fi nery and Biofuel Applications. I&EC Research ACS.
dc.relationBuswell, J. A., Odier, E., & Kirk, T. K. (1987). Lignin Biodegradation. Critical Reviews in Biotechnology, 6(1), 1–60. https://doi.org/10.3109/07388558709086984
dc.relationCalvaruso, G., T.Clough, M., & Rinaldi, R. (2017). Biphasic extraction of mechanocatalytically-depolymerized lignin from water-soluble wood and its catalytic downstream processing. Green Chemistry. https://doi.org/10.1039/C6GC03191A
dc.relationCapolupo, L., & Faraco, V. (2016). Green methods of lignocellulose pretreatment for biorefinery development. Applied Microbiology and Biotechnology, 9451–9467. https://doi.org/10.1007/s00253-016-7884-y
dc.relationCastro, D., & Sanchez, M. (2013). PROPUESTAS DE MEJORA DEL MANEJO LOGÍSTICO Y TECNOLÓGICO DE SUSTRATOS CON CASCARILLA DE ARROZ USADOS EN LOS CULTIVOS DE CLAVEL EN LA SABANA DE BOGOTÁ, CON EL APOYO DE ASOCOLFLORES. Pontificia Universidad Javeriana.
dc.relationCatalysts & Enzymes. (2020). Enzymes Market Size, Share & Trends Analysis Report By Application (Industrial Enzymes, Specialty Enzymes), By Product (Carbohydrase, Proteases, Lipases), By Source, By Region, And Segment Forecasts, 2020 - 2027. Retrieved May 25, 2020, from https://www.grandviewresearch.com/industry-analysis/enzymes-industry#:~:text=The global enzymes market size was estimated at USD 9.9,USD 10.6 billion in 2020.&text=The global enzymes market is,USD 14.9 billion by 2027.
dc.relationChandel, A. K., Gonçalves, B. C. M., Strap, J. L., & Da Silva, S. S. (2015). Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Critical Reviews in Biotechnology, 35(3), 281–293. https://doi.org/10.3109/07388551.2013.841638
dc.relationChandel, A. K., & Silva, S. S. da. (2013). Sustainable degradation of lignocellulosic biomass - techniques and applications. https://doi.org/10.5772/1490
dc.relationChandra, T. S., Meena, S., Sukumaran, R. K., Shetty, N. P., & Mudliar, S. N. (2018). Thermal assisted alkaline pretreatment of rice husk for enhanced biomass de- construction and enzymatic saccharification: Physico-chemical and structural characterization. Bioresource Technology. https://doi.org/10.1016/j.biortech.2018.04.027
dc.relationChen, S., Mowery, R. A., Chambliss, C. K., & Walsum, G. P. Van. (2007). Pseudo Reaction Kinetics of Organic Degradation Products in Dilute-Acid-Catalyzed Corn Stover Pretreatment Hydrolysates. 98(6), 1135–1145. https://doi.org/10.1002/bit
dc.relationChen, W., Xu, Y., Hwang, W., & Wang, J. (2011). Bioresource Technology Pretreatment of rice straw using an extrusion / extraction process at bench-scale for producing cellulosic ethanol. Bioresource Technology, 102(22), 10451–10458. https://doi.org/10.1016/j.biortech.2011.08.118
dc.relationChundawat, S. P. S., & Balan, V. (2010). Thermochemical pretreatment of lignocellulosic biomass. https://doi.org/10.1533/9781845699611.1.24
dc.relationCiolacu, D. E. (2018). Biochemical Modification of Lignocellulosic Biomass. In Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value. https://doi.org/10.1016/B978-0-444-63774-1.00009-0
dc.relationCommunityfirst. (2015). Rice husk as a growing media. Retrieved July 2, 2020, from http://communityfirst-global.org/rice-husk-as-a-growing-media/
dc.relationContextoganadero. (2016). Conozca otros usos que se le pueden dar a la cáscara de arroz. Retrieved July 6, 2020, from https://www.contextoganadero.com/agricultura/conozca-otros-usos-que-se-le-pueden-dar-la-cascara-de-arroz
dc.relationda Silva, A. R. G., Torres Ortega, C. E., & Rong, B. G. (2016). Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresource Technology, 218, 561–570. https://doi.org/10.1016/j.biortech.2016.07.007
dc.relationDALE, Bruce, E., LYND, Lee, R., & LASER, M. (2007). Patent No. WO 2007/130337 A1. United States of America.
dc.relationDaza Serna, L. V., Orrego Alzate, C. E., & Cardona Alzate, C. A. (2016). Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresource Technology, 199, 113–120. https://doi.org/10.1016/j.biortech.2015.09.078
dc.relationDen, W., Sharma, V. K., Lee, M., & Nadadur, G. (2018). Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes : Access to Energy and Value-Added Chemicals. Frontiers in Chemistry, 6(April), 1–23. https://doi.org/10.3389/fchem.2018.00141
dc.relationDu, J., Cao, Y., Liu, G., Zhao, J., Li, X., & Qu, Y. (2017). Identifying and overcoming the effect of mass transfer limitation on concentrations. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.01.011
dc.relationDuque, A., Manzanares, P., & Ballesteros, M. (2017). Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. Renewable Energy, 114, 1427–1441. https://doi.org/10.1016/j.renene.2017.06.050
dc.relationDuque, A., Manzanares, P., Gonz, A., & Ballesteros, M. (2018). Study of the Application of Alkaline Extrusion to the Pretreatment of Eucalyptus Biomass as First Step in a Bioethanol Production Process. Energies. https://doi.org/10.3390/en11112961
dc.relationEijsink, V. G. H. (2011). Screening of steam explosion conditions for glucose production from non-impregnated wheat straw. Biomass & Bioenergy, 5, 3–10. https://doi.org/10.1016/j.biombioe.2011.10.013
dc.relationEsteban, L. S., & Carrasco, J. E. (2006). Evaluation of different strategies for pulverization of forest biomasses. 166, 139–151. https://doi.org/10.1016/j.powtec.2006.05.018
dc.relationFahn, A. (1978). Anatomía Vegetal. H. Blume.
dc.relationFang, W., Yang, S., Wang, X., Yuan, T., & Sun, R. (2018). Manufacture and aplication of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers. Royal Society of Chemistry, Green Chem. https://doi.org/10.1039/c6gc03206k
dc.relationFAO. (2014). Bioenergía y seguridad alimentaria evaluacion rapida (BEFS RA) Manual de Usuario Briquetas. Retrieved from http://www.fao.org/3/a-bp845s.pdf
dc.relationFAOSTAT. (2020). Production quantities of Rice, paddy by country. Retrieved July 12, 2020, from http://www.fao.org/faostat/en/#data/QC/visualize
dc.relationFedearroz. (2019). Producción de Arroz Paddy Seco en Colombia por Semestres Desde 2000 hasta 2019. Retrieved June 15, 2019, from http://www.fedearroz.com.co/new/apr_public.php
dc.relationFedearroz. (2020). Area, Producción y Rendimientos. Retrieved July 12, 2020, from http://www.fedearroz.com.co/new/apr_public.php#
dc.relationGao, Y., Xu, J., Yuan, Z., Zhang, Y., Liu, Y., & Liang, C. (2014). Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. BIORESOURCE TECHNOLOGY. https://doi.org/10.1016/j.biortech.2014.05.034
dc.relationGarcia, Paz, A., Caldara, Pereira, & Ferreira. (2012). Selecting the Most Adequate Bedding Material for Broiler Production in Brazil.
dc.relationGarlock, R. J., Balan, V., Dale, B. E., Pallapolu, V. R., Lee, Y. Y., Kim, Y., … Warner, R. E. (2011). Bioresource Technology Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars. Bioresource Technology, 102(24), 11063–11071. https://doi.org/10.1016/j.biortech.2011.04.002
dc.relationGeng, W., Jin, Y., Jameel, H., & Park, S. (2015). Bioresource Technology Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover. BIORESOURCE TECHNOLOGY, 187, 43–48. https://doi.org/10.1016/j.biortech.2015.03.067
dc.relationGillet, S., & Aguedo, M. (2017). Lignin Transformations for High Value Applications: Towards Targeted Modifications Using Green Chemistry. https://doi.org/10.1039/C7GC01479A
dc.relationGroote, R., Jakobs, R. T. M., & Sijbesma, R. P. (2013). Mechanocatalysis: Forcing latent catalysts into action. Polymer Chemistry, 4(18), 4846–4859. https://doi.org/10.1039/c3py00071k
dc.relationGroote, R., Jakobs, R. T. M., & Sijbesma, R. P. (2013). Mechanocatalysis: Forcing latent catalysts into action. Polymer Chemistry, 4(18), 4846–4859. https://doi.org/10.1039/c3py00071k
dc.relationGupta, K. M., & Jiang, J. (2014). Cellulose dissolution and regeneration in ionic liquids : A computational perspective. Chemical Engineering Science, 1–10. https://doi.org/10.1016/j.ces.2014.07.025
dc.relationHarun, S., Balan, V., Takriff, M. S., Hassan, O., Jahim, J., & Dale, B. E. (2013). Performance of AFEX TM pretreated rice straw as source of fermentable sugars : the influence of particle size. 1–17.
dc.relationHassan, S. S., Williams, G., & Jaiswal, A. (2018). Emerging Technologies for the Pretreatment of Lignocellulosic Biomass. https://doi.org/10.1016/j.biortech.2018.04.099
dc.relationHayes, D. J. (2009). An examination of biorefining processes, catalysts and challenges. Catalysis Today, 145(1–2), 138–151. https://doi.org/10.1016/j.cattod.2008.04.017
dc.relationHo, C., Seok, J., & Keun, K. (2013). Evaluation the efficacy of extrusion pretreatment via enzymatic digestibility and simultaneous saccharification & fermentation with rapeseed straw. Biomass and Bioenergy, 54, 211–218. https://doi.org/10.1016/j.biombioe.2013.04.005
dc.relationHodge, D. B., Karim, M. N., Schell, D. J., & Mcmillan, J. D. (2009). Model-Based Fed-Batch for High-Solids Enzymatic Cellulose Hydrolysis. Applied Biochemistry and Biotechnology, 88–107. https://doi.org/10.1007/s12010-008-8217-0
dc.relationIRENA. (2016). INNOVATION OUTLOOK ADVANCED LIQUID BIOFUELS. Innovation Outlook Advanced Liquid Biofuels International Renewable Energy Agency.
dc.relationIRENA. (2018). Global Energy Transformation: A Roadmap to 2050. In Global Energy Transformation. A Roadmap to 2050. https://doi.org/Doi 10.1002/(Sici)1097-0029(19990915)46:6<398::Aid-Jemt8>3.0.Co;2-H J.Tyson, G. (1998). Patent No. US005705216A.
dc.relationJenkins, B. M., Baxter, L. L., Jr, T. R. M., & Miles, T. R. (1998). Combustion properties of biomass.
dc.relationJin, T., Käldström, M., Benavides, A., Rechulski, M. D. K., & Jarboe, L. R. (2020). Utilization of mechanocatalytic oligosaccharides by ethanologenic Escherichia coli as a model microbial cell factory. AMB Express. https://doi.org/10.1186/s13568-020-0965-4
dc.relationJonathan J. Stickel, Richard T. Elander, and J. D. M. (2014). Enzymatic Hydrolysis of Lignocellulosic Biomass. National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA, 77–103.
dc.relationJönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112. https://doi.org/10.1016/j.biortech.2015.10.009
dc.relationJung, Y. H., Park, H. M., Kim, D. H., Yang, J., & Kim, K. H. (2017). Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-016-2385-0
dc.relationKabir, F., Fortman, J., & Anex, R. (2010). Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol. Contract, (June), 102. https://doi.org/NREL/TP-6A2-46588
dc.relationKarunanithy, C., & Muthukumarappan, K. (2011). Optimizing extrusion pretreatment and big bluestem parameters for enzymatic hydrolysis to produce biofuel using response surface methodology. 4(1), 61–74. https://doi.org/10.3965/j.ijabe.2011.04.01.061-074
dc.relationKaruppuchamy, V. (2009). Extrusion Pretreatment and Enzymatic Hydrolysis of Soybean Hulls Hyatt Regency. 0300(09).
dc.relationKaupp, G. (2011). Reactive milling with metals for environmentally benign sustainable production †‡. https://doi.org/10.1039/c1ce05085k
dc.relationKellock, M., Maaheimo, H., Marjamaa, K., Rahikainen, J., Holopainen-mantila, U., Ralph, J., … Kruus, K. (2019). Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. https://doi.org/10.1016/j.biortech.2019.02.051
dc.relationKim, S. B., Lee, S. J., Lee, J. H., Jung, Y. R., Thapa, L. P., Kim, J. S., … Kim, S. W. (2013). Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. 1–11.
dc.relationKnowledgebank. (2020). Rice husk. Retrieved July 10, 2020, from http://www.knowledgebank.irri.org/step-by-step-production/postharvest/rice-by-products/rice-husk
dc.relationKuan, C., & Yuen, K. (2012). Physical , chemical and physicochemical characterization of rice husk. https://doi.org/10.1108/00070701211234372
dc.relationKuila, A., & Sharma, V. (2018). Principles and applications of fermentation technology.
dc.relationKumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1), 7. https://doi.org/10.1186/s40643-017-0137-9
dc.relationLau, M. W., Gunawan, C., & Dale, B. E. (2009). The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotechnology for Biofuels, 11, 1–11. https://doi.org/10.1186/1754-6834-2-30
dc.relationLaureano, L., Teymouri, F., Alizadeh, H., & Dale, B. E. (2005). Understanding Factors that Limit Enzymatic Hydrolysis of Biomass Understanding Factors that Limit Enzymatic Hydrolysis of Biomass H ASAN A LIZADEH , AND B RUCE E . D ALE *. (January). https://doi.org/10.1007/978-1-59259-991-2
dc.relationLaw, K.-N., Daud, W. R. W., & Ghazali, A. (2007). MORPHOLOGICAL AND CHEMICAL NATURE OF FIBER STRANDS OF OIL PALM EMPTY-FRUIT-BUNCH (OPEFB). Bioresources, 2, 351–362.
dc.relationLee, H. V., Hamid, S. B. A., & Zain, S. K. (2014). Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. The Scientific World Journal, 2014, 97–122. https://doi.org/10.1155/2014/631013
dc.relationLischeske, J. J., Crawford, N. C., Kuhn, E., Nagle, N. J., Schell, D. J., Tucker, M. P., … Wolfrum, E. J. (2016). Assessing pretreatment reactor scaling through empirical analysis. 1–13. https://doi.org/10.1186/s13068-016-0620-0
dc.relationLiu, Z., & Chen, H. (2016). Bioresource Technology Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover. BIORESOURCE TECHNOLOGY, 205, 142–152. https://doi.org/10.1016/j.biortech.2016.01.037
dc.relationLiu, Z., Qin, L., Li, B., & Yuan, Y. (2015). Physical and Chemical Characterizations of Corn Stover from Leading Pretreatment Methods and E ff ects on Enzymatic Hydrolysis.
dc.relationLynd, L. R., Liang, X., Biddy, M. J., Allee, A., Cai, H., Foust, T., … Wyman, C. E. (2017). ScienceDirect Cellulosic ethanol : status and innovation. Current Opinion in Biotechnology, 45, 202–211. https://doi.org/10.1016/j.copbio.2017.03.008
dc.relationMartfnez, J., Granado, J., Montané, J., Salvad, J., & Farriol, X. (1995). FRACTIONATION OF RESIDUAL LIGNOCELLULOSICS BY DILUTE-ACID PREHYDROLYSIS AND ALKALINE EXTRACTION : APPLICATION TO ALMOND SHELLS. Bioresource Technology, 52, 59–67.
dc.relationMason, W. H. (1926). Patent No. US 157609. United States of America.
dc.relationMathew, A. K., Chaney, K., Crook, M., & Humphries, A. C. (2011). Bioresource Technology Alkaline pre-treatment of oilseed rape straw for bioethanol production : Evaluation of glucose yield and pre-treatment energy consumption. Bioresource Technology, 102(11), 6547–6553. https://doi.org/10.1016/j.biortech.2011.03.067
dc.relationMaurya, D. P., Singla, A., & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5(5), 597–609. https://doi.org/10.1007/s13205-015-0279-4
dc.relationMayer-laigle, C. (2018). Comminution of Dry Lignocellulosic Biomass : Part II . Technologies , Improvement of Milling Performances , and Security Issues. 1–17. https://doi.org/10.3390/bioengineering5030050
dc.relationMckendry, P. (2002). Energy production from biomass ( part 1 ): overview of biomass. 83(July 2001), 37–46.
dc.relationMeine, N., & Rinaldi, R. (2014). Deciphering ¨water-soluble lignocellulose¨ obtained by mechanocatalysis: new insights into the chemical processes leading to deep depolymerization. Royal Society of Chemistry, Green Chem, 3528–3538. https://doi.org/10.1039/c4gc00004h
dc.relationMeine, N., Rinaldi, R., & Schüth, F. (2012). Solvent-Free Catalytic Depolymerization of Cellulose to Water-Soluble Oligosaccharides. 1–7. https://doi.org/10.1002/cssc.201100770
dc.relationMichigan State University. (2017). Agricultural waste becomes food and fuel, thanks to MSU research. Retrieved March 3, 2020, from https://technologies.msu.edu/agricultural-waste-becomes-food-and-fuel-thanks-msu-research
dc.relationMing-Hsun Cheng, Z. W. (2019). Economic Analysis of Cellulosic Ethanol Production from Sugarcane Bagasse Using a Sequential Deacetylation, Hot Water and Disk-Refining Pretreatment.
dc.relationMoniruzzaman, M., & Goto, M. (2018). Ionic Liquid Pretreatment of Lignocellulosic Biomass for Enhanced Enzymatic Deligni fi cation. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10
dc.relationMukasekuru, M. R., Hu, J., Zhao, X., Sun, F., Pascal, K., Ren, H., & Zhang, J. (2018). Enhanced high-solids fed-batch enzymatic hydrolysis of sugarcane bagasse with accessory enzymes and additives at low cellulase loading. https://doi.org/10.1021/acssuschemeng.8b01972
dc.relationMuthukumarappan, K. (2016). Extrusion Processing : Opportunities and Challenges Toward Biofuel. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. https://doi.org/10.1016/B978-0-12-802323-5.00003-7
dc.relationNadir, N., Ismail, N. L., & Hussain, A. S. (2013). Fungal Pretreatment of Lignocellulosic Materials. 1–19.
dc.relationNarváez, P. (2014). Diseño conceptual de procesos químicos y bioquímicos Metodología con aplicaciones en esterificación (Direccion; U. N. de Colombia, Ed.). BOGOTA D.C.
dc.relationNikzad, M., Movagharnejad, K., Talebria, F., Aghaiy, Z., & Mighani, M. (2015). Modeling of Alkali Pretreatment of Rice Husk Using Response Surface Methodology and Artificial Neural Network. Chemical Engineering Comunications, (October 2014), 37–41. https://doi.org/10.1080/00986445.2013.871707
dc.relationNitsos, C., Rova, U., & Christakopoulos, P. (2018). Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies, 11(1). https://doi.org/10.3390/en11010050
dc.relationNoparat, P., Prasertsan, P., O-Thong, S., & Pan, X. (2017). Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose for Enzymatic Hydrolysis of Oil Palm trunk. Energy Procedia, 138, 1122–1127. https://doi.org/10.1016/j.egypro.2017.10.209
dc.relationNovozymes. (2020). Overcome obstacles in your lignocellulosic biorefinery with Cellic. Retrieved May 26, 2020, from https://www.novozymes.com/en/advance-your-business/bioenergy/cellic
dc.relationPan, X., Gilkes, N., & Saddler, J. N. (2006). Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung, 60, 398–401. https://doi.org/10.1515/HF.2006.062
dc.relationPedersen, M., & Meyer, A. S. (2010). Lignocellulose pretreatment severity – relating pH to biomatrix opening. New BIOTECHNOLOGY, 27(6), 739–750. https://doi.org/10.1016/j.nbt.2010.05.003
dc.relationPhyllis2. (2020). ECN Phyllis classification. Retrieved May 4, 2020, from https://phyllis.nl/Browse/Standard/ECN-Phyllis#rice husk
dc.relationPielhop, T., Amgarten, J., Von Rohr, P. R., & Studer, M. H. (2016). Steam explosion pretreatment of softwood: The effect of the explosive decompression on enzymatic digestibility. Biotechnology for Biofuels, 9(1), 1–13. https://doi.org/10.1186/s13068-016-0567-1
dc.relationPienkos, P. T., & Zhang, Æ. M. (2009). Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. 743–762. https://doi.org/10.1007/s10570-009-9309-x
dc.relationPode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews, 53, 1468–1485. https://doi.org/10.1016/j.rser.2015.09.051
dc.relationPodgorbunskikh, E. M., Bychkov, A. L., & Lomovskii, O. I. (2016). Pretreatment of Rice Husk in a Pilot Scale Mill for Further Enzymatic Hydrolysis. 8(3), 274–279. https://doi.org/10.1134/S2070050416030090
dc.relationPrado, R., Weigand, L., & Welton, T. (2018). Use of Ionic Liquids for the Biorefinery.
dc.relationRafferty, K. M. (2005). Patent No. US 2005/0173824 A1.
dc.relationRaj, K., & Krishnan, C. (2019). Industrial Crops & Products Improved high solid loading enzymatic hydrolysis of low-temperature aqueous ammonia soaked sugarcane bagasse using laccase-mediator system and high concentration ethanol production. Industrial Crops & Products, 131(January), 32–40. https://doi.org/10.1016/j.indcrop.2019.01.032
dc.relationRechulski, M. D. K., Ka, M., Richter, U., Schu, F., & Rinaldi, R. (2015). Mechanocatalytic Depolymerization of Lignocellulose Performed on Hectogram and Kilogram Scales. https://doi.org/10.1021/acs.iecr.5b00224
dc.relationRencoret, J., Nakanishi, S. C., Nascimento, V. M., Fernandes, V., Silva, N., Gutie, A., … Lorena, C. E. P. (2017). Alkaline Pretreatment Severity Leads to Di ff erent Lignin Applications in Sugar Cane Biore fi neries. https://doi.org/10.1021/acssuschemeng.7b00265
dc.relationRinaldi, R., & Schuth, F. (2009). Design of solid catalysts for the conversion of biomass. 610–626. https://doi.org/10.1039/b902668a
dc.relationRojas, L. (2011). Evaluación de pretratamientos biológicos y térmicos previos a la hidrólisis enzimática de fibra prensada de palma , para la producción de azúcares fermentables. 115
dc.relationRosgaard, L., Andric, P., Dam-johansen, K., Pedersen, S., & Meyer, A. S. (2007). Effects of Substrate Loading on Enzymatic Hydrolysis and Viscosity of Pretreated Barley Straw. 27–40. https://doi.org/10.1007/s12010-007-0028-1
dc.relationRubin, E. M. (2008). Genomics of cellulosic biofuels. Nature, 454(7206), 841–845. https://doi.org/10.1038/nature07190
dc.relationSant, A., Espinheira, R. P., Sposina, R., Teixeira, S., Souza, M. F. De, Leitão, V. F., & Bon, E. P. S. (2020). Biotechnology for Biofuels Constraints and advances in high ‑ solids enzymatic hydrolysis of lignocellulosic biomass : a critical review. Biotechnology for Biofuels, 1–28. https://doi.org/10.1186/s13068-020-01697-w
dc.relationSaxena, R. C. Ã., Adhikari, D. K., & Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes : A review. 13, 167–178. https://doi.org/10.1016/j.rser.2007.07.011
dc.relationSchüth, F., Rinaldi, R., Meine, N., Käldström, M., Hilgert, J., & Rechulski, M. D. K. (2014). Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catalysis Today. https://doi.org/10.1016/j.cattod.2014.02.019
dc.relationSeok, J., Lee, Y. Y., & Hyun, T. (2015). Bioresource Technology A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. BIORESOURCE TECHNOLOGY. https://doi.org/10.1016/j.biortech.2015.08.085
dc.relationShevchenko. (2001). Structure and properties of lignin in softwoods after SO2 Catalysed steam explosion and enzymatic hydrolysis.
dc.relationShi, W., Jia, J., Gao, Y., & Zhao, Y. (2013). Bioresource Technology Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water. BIORESOURCE TECHNOLOGY, 146, 355–362. https://doi.org/10.1016/j.biortech.2013.07.094
dc.relationSindhu, R., Binod, P., & Pandey, A. (2015). Bioresource Technology Biological pretreatment of lignocellulosic biomass – An overview. BIORESOURCE TECHNOLOGY. https://doi.org/10.1016/j.biortech.2015.08.030
dc.relationSindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). Bioresource Technology Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technology, 102(23), 10915–10921. https://doi.org/10.1016/j.biortech.2011.09.066
dc.relationSingh, A., Bishnoi, N. R., & Bajar, S. (2013). Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae , Scheffersomyces stipitis and their co-culture. FUEL, (September), 8–11. https://doi.org/10.1016/j.fuel.2013.08.072
dc.relationSingh, R., Shukla, A., Tiwari, S., & Srivastava, M. (2014). A review on deligni fi cation of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews, 32, 713–728. https://doi.org/10.1016/j.rser.2014.01.051
dc.relationSolarte, J. C., Romero, J. M., & Martínez, J. C. (2019). Acid pretreatment of lignocellulosic biomass for energy vectors production : A review focused on operational conditions and techno-economic assessment for bioethanol production. Renewable and Sustainable Energy Reviews, 107(February), 587–601. https://doi.org/10.1016/j.rser.2019.02.024
dc.relationSoltani, N., Bahrami, A., & González, L. A. (2014). Review on the physicochemical treatments of rice husk for productionof advanced materials. CHEMICAL ENGINEERING JOURNAL. https://doi.org/10.1016/j.cej.2014.11.056
dc.relationSreekumar, A., Shastri, Y., Wadekar, P., Patil, M., & Lali, A. (2019). Life cycle assessment of ethanol production in a rice ‑ straw ‑ based biorefinery in India. Clean Technologies and Environmental Policy, (0123456789). https://doi.org/10.1007/s10098-019-01791-0
dc.relationSubhedar, P. B., & Gogate, P. R. (2016). Use of Ultrasound for Pretreatment of Biomass and Subsequent Hydrolysis and Fermentation. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. https://doi.org/10.1016/B978-0-12-802323-5.00006-2
dc.relationSun, S., Sun, S., Cao, X., & Sun, R. (2016). Bioresource Technology The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49–58. https://doi.org/10.1016/j.biortech.2015.08.061
dc.relationSun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production : a review q. 83, 1–11.
dc.relationSuzana, M., Pratto, B., Jacob, L., Colli, A., Maria, R., Garcia, R., … Cruz, G. (2018). Industrial Crops & Products Assessment of different biomass feeding strategies for improving the enzymatic hydrolysis of sugarcane straw. Industrial Crops & Products, 125(June), 293–302. https://doi.org/10.1016/j.indcrop.2018.09.005
dc.relationTravaini, R., Martín-Juárez, J., Lorenzo-Hernando, A., & Bolado-Rodríguez, S. (2016). Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresource Technology, 199, 2–12. https://doi.org/10.1016/j.biortech.2015.08.143
dc.relationTumuluru, J. S. (2018). Biomass preprocessing and preteatments for production of biofuels.
dc.relationUddin, M. K. (2017). A study on the potential applications of rice husk derivatives as useful adsorptive material. https://doi.org/10.21741/9781945291357-4
dc.relationUmesh, P., & Sally, A. (2013). Enzymatic hydrolysis of loblolly pine : effects of cellulose crystallinity and delignification. 67(4), 371–377. https://doi.org/10.1515/hf-2012-0116
dc.relationUmesh, P., & Sally, A. (2013). Enzymatic hydrolysis of loblolly pine : effects of cellulose crystallinity and delignification. 67(4), 371–377. https://doi.org/10.1515/hf-2012-0116
dc.relationUnimedios. (2017). Briquetas de cascarilla de arroz y aserrin de pino, opcion ecológica. Retrieved June 19, 2020, from https://agenciadenoticias.unal.edu.co/detalle/article/briquetas-de-cascarilla-de-arroz-y-aserrin-de-pino-opcion-ecologica.html
dc.relationVandenbossche, V., Brault, J., Hernandez, O., Evon, P., Barzana, E., Vilarem, G., & Rigal, L. (2016). Suitability assessment of a continuous process combining thermo-mechano-chemical and bio-catalytic action in a single pilot-scale twin-screw extruder for six different biomass sources Virginie. 211, 146–153.
dc.relationVanessa, L., & Serna, D. (2015). ASSESSMENT OF NON- CONVENTIONAL PRETREATMENTS FOR AGRICULTURE WASTES UTILIZATION.
dc.relationVasco-Correa, J., & Shah, A. (2019). Techno-Economic Bottlenecks of the Fungal Pretreatment of Lignocellulosic Biomass. Fermentation, 5(2), 30. https://doi.org/10.3390/fermentation5020030
dc.relationVasco-Correa, J., & Shah, A. (2019). Techno-Economic Bottlenecks of the Fungal Pretreatment of Lignocellulosic Biomass. Fermentation, 5(2), 30. https://doi.org/10.3390/fermentation5020030
dc.relationVrije, T. De, Haas, G. G. De, Tan, G. B., Keijsers, E. R. P., & Claassen, P. A. M. (2002). Pretreatment of Miscanthus for hydrogen production by Thermotoga elÿi. 27, 1381–1390.
dc.relationWei, D., Chin, K., Lim, S., Pang, Y. L., Engineering, C., & Kong, L. (2020). Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing. 1–22. https://doi.org/10.1002/bbb.2096
dc.relationWilkinson, S., Smart, K. A., James, S., & Cook, D. J. (2016). Maximising high solid loading enzymatic saccharification yield from acid-catalysed hydrothermally-pretreated brewers spent grain. 10, 417–429. https://doi.org/10.18331/BRJ2016.3.2.7
dc.relationWood, I. P., Cao, H. G., Tran, L., Cook, N., Ryden, P., Wilson, D. R., … Waldron, K. W. (2016). Biotechnology for Biofuels Comparison of saccharification and fermentation of steam exploded rice straw and rice husk. Biotechnology for Biofuels, 1–9. https://doi.org/10.1186/s13068-016-0599-6
dc.relationWu, J., Elliston, A., Gall, G. Le, Colquhoun, I. J., Collins, S. R. A., Wood, I. P., … Waldron, K. W. (2018). Biotechnology for Biofuels Optimising conditions for bioethanol production from rice husk and rice straw : effects of pre ‑ treatment on liquor composition and fermentation inhibitors. Biotechnology for Biofuels, 1–13. https://doi.org/10.1186/s13068-018-1062-7
dc.relationWyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., Lee, Y. Y., … Saddler, J. N. (2009). Comparative Sugar Recovery and Fermentation Data Following Pretreatment of Poplar Wood by Leading Technologies. 333–339. https://doi.org/10.1021/bp.142
dc.relationXu, C., Zhang, J., Zhang, Y., Guo, Y., Xu, H., Xu, J., & Wang, Z. (2019). Bioresource Technology Enhancement of high-solids enzymatic hydrolysis e ffi ciency of alkali pretreated sugarcane bagasse at low cellulase dosage by fed-batch strategy based on optimized accessory enzymes and additives. Bioresource Technology, 292(August), 121993. https://doi.org/10.1016/j.biortech.2019.121993
dc.relationYang, M., Li, W., Liu, B., Li, Q., & Xing, J. (2010). Bioresource Technology High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresource Technology, 101(13), 4884–4888. https://doi.org/10.1016/j.biortech.2009.12.013
dc.relationYoo, C. G., Pu, Y., & Ragauskas, A. J. (2017). Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Current Opinion in Green and Sustainable Chemistry, 5, 5–11. https://doi.org/10.1016/j.cogsc.2017.03.003
dc.relationYoo, J., Alavi, S., Vadlani, P., & Amanor-boadu, V. (2011). Bioresource Technology Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresource Technology, 102(16), 7583–7590. https://doi.org/10.1016/j.biortech.2011.04.092
dc.relationYunus, R., Salleh, S. F., Abdullah, N., Radiah, D., & Biak, A. (2010). Bioresource Technology Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresource Technology, 101(24), 9792–9796. https://doi.org/10.1016/j.biortech.2010.07.074
dc.relationZhang, S., Keshwani, D. R., Xu, Y., & Hanna, M. A. (2012). Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Industrial Crops & Products, 37(1), 352–357. https://doi.org/10.1016/j.indcrop.2011.12.001
dc.relationZhang, Y., Huang, M., Su, J., Hu, H., Yang, M., Huang, Z., … Feng, Z. (2019). Biotechnology for Biofuels Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose. Biotechnology for Biofuels, 1–15. https://doi.org/10.1186/s13068-019-1354-6
dc.relationZhang, Z., Xie, Y., He, X., Li, X., Hu, J., Ruan, Z., … Liang, Y. (2016). Comparison of high-titer lactic acid fermentation from NaOH-and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation. Scientific Reports, 6(April), 1–10. https://doi.org/10.1038/srep37245
dc.relationZhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. 815–827. https://doi.org/10.1007/s00253-009-1883-1
dc.relationZhao, X., Dong, L., Chen, L., & Liu, D. (2012). Bioresource Technology Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers. BIORESOURCE TECHNOLOGY. https://doi.org/10.1016/j.biortech.2012.09.074
dc.relationZhao, X., Zhang, L., & Liu, D. (2012). Biomass recalcitrance . Part I : the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. https://doi.org/10.1002/bbb
dc.relationZheng, J., & Rehmann, L. (2014a). Extrusion Pretreatment of Lignocellulosic Biomass : A Review. 18967–18984. https://doi.org/10.3390/ijms151018967
dc.relationZheng, J., & Rehmann, L. (2014b). Extrusion Pretreatment of Lignocellulosic Biomass : A Review. 18967–18984. https://doi.org/10.3390/ijms151018967
dc.relationZhu, J. Y., & Pan, X. J. (2010). Bioresource Technology Woody biomass pretreatment for cellulosic ethanol production : Technology and energy consumption evaluation q. Bioresource Technology, 101(13), 4992–5002. https://doi.org/10.1016/j.biortech.2009.11.007
dc.relationZhuang, X., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X., … Yuan, Z. (2016). Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresource Technology, 199, 68–75. https://doi.org/10.1016/j.biortech.2015.08.051
dc.relationZoghlami, A., & Paës, G. (2019). Lignocellulosic Biomass : Understanding Recalcitrance and Predicting Hydrolysis. 7(December). https://doi.org/10.3389/fchem.2019.00874
dc.relationZou, Y., & Yang, T. (2019). Rice Husk , Rice Husk Ash and Their Applications. In Rice Bran and Rice Bran Oil. https://doi.org/10.1016/B978-0-12-812828-2.00009-3
dc.rightsReconocimiento 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleState-of-the-art evaluation of lignocellulosic biomass pretreatments. Case of study: mechanocatalytic processing of rice husk
dc.typeOtro


Este ítem pertenece a la siguiente institución