dc.contributorLyons Barrera, Liliana Lucía
dc.contributorGrupo de Investigación en Logística para el Transporte Sostenible y la Seguridad - TRANSLOGYT
dc.creatorBulla Cruz, Lenin Alexander
dc.date.accessioned2021-02-08T15:24:13Z
dc.date.available2021-02-08T15:24:13Z
dc.date.created2021-02-08T15:24:13Z
dc.date.issued2020
dc.identifierBulla-Cruz, L. A. (2021). Methodology for event-based traffic risk assessment of Bus Rapid Transit systems and its simulation. Universidad Nacional de Colombia.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79122
dc.description.abstractLas metodologías para la evaluación del riesgo vial, bajo un enfoque preventivo o reactivo, presentan sesgos referentes a la información usada, ya sea por incompleta, inexistente o por valoraciones subjetivas del comportamiento de los usuarios viales. El riesgo vial se define como la relación probabilística entre los eventos indeseables y la exposición. Los indicadores típicos de exposición son kilómetros-vehículo recorridos y tránsito promedio diario anual, que son indicadores agregados de actividad, por lo que se requiere una exposición por eventos para una evaluación de riesgo consistente. Para superar tales sesgos, esta investigación usa conflictos de tráfico, como sustitutos de los choques, así como de una definición de exposición mediante encuentros. La investigación comprende la identificación de estos eventos, en video, por medio de la herramienta T-Analyst, la Técnica Sueca de Conflictos de Tráfico, así como de las herramientas VISSIM y SSAM, para la valoración de la severidad de los conflictos, la exposición y el riesgo, con enfoque preventivo. El estudio se realizó en tres intersecciones semaforizadas del sistema de Buses de Tránsito Rápido, de Bogotá, debido al número de pasajeros, su masificación en el mundo y la interacción entre usuarios. Como resultado, se validó un indicador preventivo de riesgo basado en la relación conflictos/encuentros, en un periodo dado. Seguidamente, se validó un índice compuesto de severidad de los conflictos, que involucra la proximidad espaciotemporal entre dos usuarios, la desaceleración ejercida para evitar la colisión y el cambio de velocidad ante un choque inelástico hipotético. Finalmente, se validaron modelos de microsimulación en los que se simuló, con alta precisión, el número y severidad de los conflictos observados. Se concluye que el indicador de riesgo captura el desempeño de la seguridad microscópicamente. Además, el índice de severidad es práctico para diferenciar la severidad de conflictos entre distintos usuarios viales, complementando las técnicas de conflictos existentes. Los modelos de microsimulación permiten proponer valores calibrados de parámetros de VISSIM que mejoran la simulación de tránsito y seguridad.
dc.description.abstractCurrent methodologies for traffic risk evaluation, under a preventive or reactive approach, present biases regarding the information used, either because it is incomplete, non-existent or because of subjective assessments of the road users’ behavior. Traffic risk is defined as the relationship between undesirable events (crashes, injuries and/or fatalities) and exposure, with a probabilistic approach. Typical exposure indicators are vehicle kilometers traveled and annual average daily traffic, which are aggregate and activity-based indicators, so event-based exposure is required for a consistent risk assessment. To overcome such biases, this research is based on traffic conflicts, as surrogates for crashes, and surrogate safety measures, as well as an event-based exposure definition of encounters. The research identified these events, on video, using the T-Analyst road user tracking tool, by means of the Swedish Traffic Conflict Technique, as well as the VISSIM and SSAM computational simulation tools, for the assessment of the severity of conflicts, exposure and risk, with a preventive approach. The study was carried out at three signalized intersections of the Bus Rapid Transit system in Bogotá, due to the number of passengers, its increasing massification in the world, and the interaction between road users. As a result, I validated a preventive risk indicator based on the relationship between conflicts and encounters, in a certain period. Subsequently, I formulated and validated a composite conflict severity index, which involves the spatiotemporal proximity between two road users, the initial deceleration rate to avoid the collision, and the change in speed in the event of a hypothetical inelastic collision. Finally, I built and validated traffic microsimulation models using VISSIM and SSAM, in which the number and severity of the video-observed conflicts were simulated with high precision. In conclusion, the risk indicator manages to capture the performance of road safety, microscopically. Furthermore, the composite severity index is practical to differentiate the severity of conflicts between different road users, complementing existing conflict techniques. The validated microsimulation models allow proposing calibrated values of VISSIM parameters that notoriously improve traffic and road safety simulation.
dc.languageeng
dc.publisherBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civil
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAASHTO (2010) Highway Safety Manual. 1st edn. Washington, D.C.: American Association of State Highway and Transportation Officials. Available at: https://store.transportation.org/Item/PublicationDetail?ID=2360.
dc.relationAbdul Majeed, R. Z. and Ewadh, H. A. (2019) ‘A Conflict Index to Assess Traffic Safety at Intersections’, IOP Conference Series: Materials Science and Engineering, 584(1), p. 012018. doi: 10.1088/1757-899X/584/1/012018.
dc.relationAidoo, E. N. et al. (2019) ‘A bivariate probit analysis of child passenger’s sitting behaviour and restraint use in motor vehicle’, Accident Analysis and Prevention, 129, pp. 225–229. doi: 10.1016/j.aap.2019.05.022.
dc.relationAlcaldía Mayor de Bogotá (2005) Manual de planeación y diseño para la administración del tránsito y el transporte. Bogotá: Alcaldía Mayor and Cal & Mayor y Asociados. Available at: http://cittus.com/aym_images/files/Manuales_de_Planeacion_Tomo_III.pdf.
dc.relationAlhajyaseen, W. K. M. (2014) ‘The development of conflict index for the safety assessment of intersections considering crash probability and severity’, in Procedia Computer Science. doi: 10.1016/j.procs.2014.05.436.
dc.relationAllen, B. L. and Shin, B. T. (1978) ‘Analysis of Traffic Conflicts and Collisions’, Transportation Research Record.
dc.relationAlmqvist, S. and Hyden, C. (1994) ‘Methods for Assessing Traffic Safety in Developing Countries’, Building Issues (LCHS).
dc.relationArcher, J. (2001) ‘Traffic Conflict Technique: Historical to current State-of-the-Art’. Stockholm: Royal Inst of Technology Publication, CTR2001:05, p. 5. Available at: http://www.ctr.kth.se/publications/ctr2001_05.pdf.
dc.relationArcher, J. (2004) Methods for the Assessment and Prediction of Traffic Safety at Urban Intersections and their Application in Micro-simulation Modelling. Royal institute of technology. Available at: http://www.ctr.kth.se/publications/ctr2004_15.pdf.
dc.relationArcher, J. (2005) Indicators for traffic safety assessment and prediction and their application in micro-simulation modelling: A study of urban and suburban intersections. Royal Institute of Technology. Available at: http://www.diva-portal.org/smash/get/diva2:7295/FULLTEXT01?gathStatIcon=true.
dc.relationArcher, J. and Kosonen, I. (2000) ‘The potential of Micro-Simulation Modelling in Relation to Traffic Safety Assessment’, in ESS Conference Proceedings. Hamburg: Centre for Traffic Simulation Research (CTR), p. 6. Available at: https://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.577.9626.
dc.relationAsmussen, E. (1984) International Calibration Study of Traffic Conflict Techniques, International Calibration Study of Traffic Conflict Techniques. Berlin: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-82109-7.
dc.relationAustroads (2019a) Guide to Road Safety Part 6: Managing Road Safety Audits. 1st edn. Sydney, New South Wales: Austroads. Available at: https://austroads.com.au/publications/road-safety/agrs06A (Accessed: 25 March 2020).
dc.relationAustroads (2019b) Guide to Road Safety Part 6A: Implementing Road Safety Audits. 1.2. Sydney, New South Wales: Austroads. Available at: https://austroads.com.au/publications/road-safety/agrs06A (Accessed: 25 March 2020).
dc.relationBabulal, G. M. et al. (2019) ‘A Naturalistic Study of Driving Behavior in Older Adults and Preclinical Alzheimer Disease: A Pilot Study.’, Journal of applied gerontology : the official journal of the Southern Gerontological Society, 38(2), pp. 277–289. doi: 10.1177/0733464817690679.
dc.relationBagdadi, O. (2013) ‘Estimation of the severity of safety critical events’, Accident Analysis and Prevention, 50, pp. 167–174. doi: 10.1016/j.aap.2012.04.007.
dc.relationBaguley, C. J. (1984) ‘The British Traffic Conflict Technique’, in International Calibration Study of Traffic Conflict Techniques. Springer Berlin Heidelberg, pp. 59–73. doi: 10.1007/978-3-642-82109-7_7.
dc.relationBehbahani, H. and Nadimi, N. (2015) ‘A framework for applying surrogate safety measures for sideswipe conflicts’, International Journal for Traffic and Transport Engineering, 5(4), pp. 371–383. doi: 10.7708/ijtte.2015.5(4).03.
dc.relationBezerra, B. (2016) ‘Road safety audit for Nigadi-Dapodi BRTS road’, International Journal of Advance Research and Innovative Ideas in Education, 2(4), pp. 1009–1014. doi: (O)-2395-4396.
dc.relationBhagavathula, R., Williams, B. and Gibbons, R. (no date) Pedestrian Visibility in Roundabouts: Naturalistic Study of Driver Eye-Glance Behavior.
dc.relationBjørnskau, T. et al. (2016) Evaluering av «Shared space»-områder i Norge. Oslo. Available at: https://www.toi.no/getfile.php/1344676/Publikasjoner/TØI rapporter/2016/1511-2016/1511-2016-elektronisk.pdf.
dc.relationBocarejo, J. P. et al. (2012) ‘Impact of Bus Rapid Transit Systems on Road Safety Lessons from Bogota, Colombia’, Transportation Research Record, pp. 1–7. doi: 10.3141/2317-01.
dc.relationBoenisch, C. and Kretz, T. (2018) ‘Simulation of Pedestrians Crossing a Street’, arXiv, pp. 1–9. doi: 10.13140/RG.2.1.1843.7842.
dc.relationBonneson, J., Pratt, M. and Songchitruksa, P. (2012) Development of guidelines for pedestrian safety treatments at signalized intersections. Austin, Texas. doi: Report 0-6402-1.
dc.relationBowman, A. W., D’Agostino, R. B. and Stephens, M. A. (1988) ‘Goodness-of-Fit Techniques.’, Journal of the Royal Statistical Society. Series A (Statistics in Society). doi: 10.2307/2982198.
dc.relationBrown, G. et al. (1984) Traffic conflict procedure and validation for road safety program. On behalf of the Insurance Corporation of the Province of British Columbia, Land transport safety series. Edited by University of British Columbia. Vancouver: Department of Civil Engineering, Transport Safety Research Group. Available at: https://library.swov.nl/action/front/cardweb?id=39893.
dc.relationBrüde, U. and Larsson, J. (1993) ‘Models for predicting accidents at junctions where pedestrians and cyclists are involved. How well do they fit?’, Accident Analysis & Prevention, 25(5), pp. 499–509. doi: 10.1016/0001-4575(93)90001-D.
dc.relationBulla-Cruz, L. A., Laureshyn, A. and Lyons, L. (2020) ‘Event-based road safety assessment: A novel approach towards risk microsimulation in roundabouts’, Measurement, 165, pp. 1–13. doi: https://doi.org/10.1016/j.measurement.2020.108192.
dc.relationBulla-Cruz, L. A. and Lyons, L. (2020) ‘Estado del arte en la evaluación de la seguridad vial por medio de conflictos de tráfico: aplicación al estudio de caso de una glorieta en Bogotá’, in Dirección Nacional Simit (ed.) Transitemos 2018. 5th edn. Bogotá: Federación Colombiana de Municipios, pp. 10–26. Available at: https://www.simit.org.co/estadisticas.
dc.relationBulla-Cruz, L. A., Lyons, L. and Darghan, E. (2021) ‘Complete-linkage clustering analysis of surrogate measures for road safety assessment in roundabouts’, Revista Colombiana de Estadística, 44(1), pp. 91–121. doi: 10.15446/rce.v44n1.81937.
dc.relationBurns, A. C. (1996) ‘ Review of Statgraphics ® Plus ’, Marketing Education Review, 6(3), pp. 104–105. doi: 10.1080/10528008.1996.11488567.
dc.relationCafiso, S. et al. (2018) ‘Safety assessment of passing relief lanes using microsimulation-based conflicts analysis’, Accident Analysis and Prevention. doi: 10.1016/j.aap.2017.07.001.
dc.relationCampbell, R. E. and Ellis King, L. (1970) ‘The traffic conflicts technique applied to rural intersections’, Accident Analysis & Prevention, 2(3), pp. 209–221. doi: 10.1016/0001-4575(70)90043-6.
dc.relationCampisi, T., Tesoriere, G. and Canale, A. (2018) ‘The variability of Level Of Service and Surrogate Safety Assessment of urban turbo - roundabout with BRT system’, Journal of Multidisciplinary Engineering Science and Technology, 5(10), pp. 8861–8869. Available at: http://www.jmest.org/wp-content/uploads/JMESTN42352690.pdf.
dc.relationDe Ceunynck, T. et al. (2017) ‘Sharing is (s)caring? Interactions between buses and bicyclists on bus lanes shared with bicyclists’, Transportation Research Part F: Traffic Psychology and Behaviour, pp. 301–315. doi: 10.1016/j.trf.2016.09.028.
dc.relationChang, A., Saunier, N. and Laureshyn, A. (2017) Proactive methods for road safety analysis. doi: 10.4271/WP-0005.
dc.relationChao, Y. S. and Wu, C. J. (2017) ‘Principal component-based weighted indices and a framework to evaluate indices: Results from the Medical Expenditure Panel Survey 1996 to 2011’, PLoS ONE. doi: 10.1371/journal.pone.0183997.
dc.relationChen, D., Zhang, Y. and Xia, L. (2013) ‘Sensitivity simulation analysis of urban expressway under speed guidance control’, Journal of Theoretical and Applied Information Technology.
dc.relationChen, S. et al. (2007) ‘A crash risk assessment model for road curves’, Proceedings 20th International Technical Conference on the Enhanced Safety of Vehicles, pp. 1–8. Available at: https://eprints.qut.edu.au/10899/1/10899.pdf.
dc.relationChen, X. M. et al. (2015) ‘Investigations of interactions between bus rapid transit and general traffic flows’, Journal of Advanced Transportation, 49(3), pp. 326–340. doi: 10.1002/atr.1268.
dc.relationChoi, S. and Oh, C. (2016) ‘Proactive strategy for variable speed limit operations on freeways under foggy weather conditions’, Transportation Research Record. doi: 10.3141/2551-04.
dc.relationCISA Ingeniería LTDA (2005) Auditoría de seguridad vial de la conectante occidente – norte de la intersección de la Avenida Calle 80 con Avenida Caracas. Bogotá. Available at: http://transito.worldtrainingcolombia.com/pdf/ASV _LOS_heroes.pdf.
dc.relationClaros, B. et al. (2017) ‘Design Guidance for J-Turns on Rural High-Speed Expressways’, Transportation Research Record: Journal of the Transportation Research Board. doi: 10.3141/2618-07.
dc.relationClaros, B., Sun, C. and Edara, P. (2018) ‘HSM calibration factor, calibration function, or jurisdiction-specific safety model – A comparative analysis’, Journal of Transportation Safety and Security, pp. 1–20. doi: 10.1080/19439962.2018.1477896.
dc.relationCunto, F. and Saccomanno, F. F. (2008) ‘Calibration and validation of simulated vehicle safety performance at signalized intersections’, Accident Analysis and Prevention, 40(3), pp. 1171–1179. doi: 10.1016/j.aap.2008.01.003.
dc.relationDaamen, W., Buisson, C. and Hoogendoorn, S. P. (2014) Traffic simulation and data: Validation methods and applications, Traffic Simulation and Data: Validation Methods and Applications. doi: 10.1201/b17440.
dc.relationDiCiccio, T. J. and Efron, B. (1996) ‘Bootstrap confidence intervals’, Statistical Science, 11(3), pp. 189–228. Available at: https://projecteuclid.org/download/pdf_1/euclid.ss/1032280214 (Accessed: 11 May 2020).
dc.relationDuduta, N. et al. (2012) ‘Understanding Road Safety Impact of High-Performance Bus Rapid Transit and Busway Design Features’, Transportation Research Record, pp. 8–14. doi: 10.3141/2317-02.
dc.relationDuduta, N. et al. (2014) ‘Traffic Safety on Bus Priority Systems’, Embarq, p. 116.
dc.relationDuduta, N. et al. (no date) ‘Using empirical Bayes to estimate the safety impact of transit improvements in Latin America’.
dc.relationElvik, R. (2015) ‘Some implications of an event-based definition of exposure to the risk of road accident’, Accident Analysis and Prevention, 76, pp. 15–24. doi: 10.1016/j.aap.2014.12.011.
dc.relationElvik, R., Erke, A. and Christensen, P. (2009) ‘Elementary Units of Exposure’, Transportation Research Record: Journal of the Transportation Research Board, 2103, pp. 25–31. doi: 10.3141/2103-04.
dc.relationErke, H. (1984) ‘The Traffic Conflict Technique of The Federal Republic of Germany’, in International Calibration Study of Traffic Conflict Techniques. Springer Berlin Heidelberg, pp. 107–120. doi: 10.1007/978-3-642-82109-7_10.
dc.relationEsmaeili, A. and Shokoohi, Z. (2011) ‘Assessing the effect of oil price on world food prices: Application of principal component analysis’, Energy Policy. doi: 10.1016/j.enpol.2010.11.004.
dc.relationEssa, M. and Sayed, T. (2015a) ‘Simulated traffic conflicts: Do they accurately represent field-measured conflicts?’, Transportation Research Record, 2514(1), pp. 48–57. doi: 10.3141/2514-06.
dc.relationEssa, M. and Sayed, T. (2015b) ‘Transferability of calibrated microsimulation model parameters for safety assessment using simulated conflicts’, Accident Analysis and Prevention, 84. doi: 10.1016/j.aap.2015.08.005.
dc.relationEU/JRC (2008) Handbook on Constructing Composite Indicators: Methodology and User Guide, Methodology. Paris: OECD Publishing. doi: 10.1787/9789264043466-en.
dc.relationExploring Road Safety Deficiencies in Malaysia (no date). Available at: https://lup.lub.lu.se/search/publication/ea0e539d-c1d1-44f3-b363-ff7a0945018a (Accessed: 2 April 2020).
dc.relationFan, R. et al. (2013) ‘Using VISSIM simulation model and Surrogate Safety Assessment Model for estimating field measured traffic conflicts at freeway merge areas’, IET Intelligent Transport Systems, 7, pp. 68–77. doi: 10.1049/iet-its.2011.0232.
dc.relationFay, M. P. and Proschan, M. A. (2010) ‘Wilcoxon-Mann-Whitney or T-test? on assumptions for hypothesis tests and multiple interpretations of decision rules’, Statistics Surveys, 4, pp. 1–39. doi: 10.1214/09-SS051.
dc.relationFebres, J. D. et al. (2019) ‘The Role of Journey Purpose in Road Traffic Injuries: A Bayesian Network Approach’. doi: 10.1155/2019/6031482.
dc.relationFederal Highway Administration (2006) Road Safety Audit Guidelines Publication No. FHWA-SA-06-06. Available at: https://safety.fhwa.dot.gov/rsa/guidelines/documents/FHWA_SA_06_06.pdf.
dc.relationFellendorf, M. and Vortisch, P. (2010) ‘Microscopic traffic flow simulator VISSIM’, in International Series in Operations Research and Management Science. doi: 10.1007/978-1-4419-6142-6_2.
dc.relationFlórez, C. F. and Rodríguez, C. E. (2020) Determinación de la relación entre eventos potencialmente riesgosos en el tráfico, y la ocurrencia de siniestros viales en un corredor urbano de Bogotá. Pontificia Universidad Javeriana. Available at: https://repository.javeriana.edu.co/handle/10554/44932.
dc.relationForbes, T. W. (1957) ‘Analysis of “near accident” reports’, Highway Research Board bulletin, 152, pp. 23–37. Available at: http://dx.doi.org/.
dc.relationFyhri, A. et al. (2017) ‘Safety in numbers for cyclists—conclusions from a multidisciplinary study of seasonal change in interplay and conflicts’, Accident Analysis and Prevention. doi: 10.1016/j.aap.2016.04.039.
dc.relationGallelli, V. et al. (2019) ‘Effects of calibration process on the simulation of rear-end conflicts at roundabouts’, Journal of Traffic and Transportation Engineering (English Edition). doi: 10.1016/j.jtte.2018.03.006.
dc.relationGårder, P. (1989) ‘Pedestrian safety at traffic signals: A study carried out with the help of a traffic conflicts technique’, Accident Analysis and Prevention, 21, pp. 435–444. doi: 10.1016/0001-4575(89)90004-3.
dc.relationGastwirth, J. L., Gel, Y. R. and Miao, W. (2009) ‘The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice’, Statistical Science. Institute of Mathematical Statistics, pp. 343–360. doi: 10.2307/25681315.
dc.relationGettman, D. et al. (2008) Surrogate Safety Assessment Model and Validation: Final Report. McLean, VA: U.S. Department of Transportation. Available at: http://www.fhwa.dot.gov/publications/research/safety/08051/08051.pdf.
dc.relationGettman, D. and Head, L. (2003) ‘Surrogate safety measures from traffic simulation models’, in Statistical Methods and Modeling and Safety Data, Analysis, and Evaluation: Safety and Human Performance. U. S. Department of Transportation. Federal Highway Administration (Transportation Research Record), pp. 104–115. Available at: http://www.fhwa.dot.gov/publications/research/safety/03050/03050.pdf.
dc.relationGlauz, W. D. and Migletz, D. J. (1980) Application of traffic conflict analysis at intersections. Washington, D.C. Available at: https://trid.trb.org/view/153539 (Accessed: 10 February 2020).
dc.relationGoh, K. C. K. et al. (2013) ‘Road Safety Benefits from Bus Priority: An Empirical Study’, Transportation Research Record, pp. 41–49. doi: 10.3141/2352-05.
dc.relationGoh, K. C. K. et al. (2014) ‘Experimental microsimulation modeling of road safety impacts of bus priority’, Transportation Research Record, (2402), pp. 9–18. doi: 10.3141/2402-02.
dc.relationGómez-Ortiz, V. et al. (2018) ‘Relationships of working conditions, health problems and vehicle accidents in bus rapid transit (BRT) drivers’, American Journal of Industrial Medicine, 61(4), pp. 336–343. doi: 10.1002/ajim.22821.
dc.relationGómez, F. and Bocarejo, J. P. (2015) ‘Accident prediction models for bus rapid transit systems: Generalized linear models compared with a neural network’, Transportation Research Record, 2512(1), pp. 38–45. doi: 10.3141/2512-05.
dc.relationGonzález, R. A., Carlos Fabián, V. and Carlos Eduardo, R. (2019) Determinación del nivel de seguridad en función de eventos potencialmente conflictivos en los corredores de mayor accidentalidad vial en Bogotá. Pontificia Universidad Javeriana. Available at: https://repository.javeriana.edu.co/bitstream/handle/10554/47303/Documento.pdf?sequence=1&isAllowed=y.
dc.relationGross, F. (2013) ‘Case-control analysis in highway safety: Accounting for sites with multiple crashes’, Accident Analysis and Prevention, 61, pp. 87–96. doi: 10.1016/j.aap.2012.05.013.
dc.relationGuo, Y. et al. (2019) ‘A comparison between simulated and field-measured conflicts for safety assessment of signalized intersections in Australia’, Transportation Research Part C: Emerging Technologies. doi: 10.1016/j.trc.2019.02.009.
dc.relationHabtemichael, F. G. and De Picado Santos, L. (2014) ‘Crash risk evaluation of aggressive driving on motorways: Microscopic traffic simulation approach’, Transportation Research Part F: Traffic Psychology and Behaviour. doi: https://doi.org/10.1016/j.trf.2013.12.022.
dc.relationHabtemichael, F. G. and Santos, L. de P. (2013) ‘Safety and Operational Benefits of Variable Speed Limits Under Different Traffic Conditions and Driver Compliance Levels’, Transportation Research Record, pp. 7–15. doi: 10.3141/2386-02.
dc.relationHabtemichael, F. G. and Santos, L. de P. (2014) ‘Crash risk evaluation of aggressive driving on motorways: Microscopic traffic simulation approach’, Transportation Research Part F-Traffic Psychology and Behaviour, 23, pp. 101–112. doi: 10.1016/j.trf.2013.12.022.
dc.relationHaddon, W. (1980) ‘Advances in the epidemiology of injuries as a basis for public policy.’, Public health reports, 95, pp. 411–421.
dc.relationHamed, M. M. and Al-Eideh, B. M. (2020) ‘An exploratory analysis of traffic accidents and vehicle ownership decisions using a random parameters logit model with heterogeneity in means’, Analytic Methods in Accident Research, 25, p. 100116. doi: 10.1016/j.amar.2020.100116.
dc.relationvan Haperen, W. et al. (2018) ‘Yielding behavior and traffic conflicts at cyclist crossing facilities on channelized right-turn lanes’, Transportation Research Part F: Traffic Psychology and Behaviour. doi: 10.1016/j.trf.2018.03.012.
dc.relationHauer, E. (1982) ‘Traffic conflicts and exposure’, Accident Analysis & Prevention, 14(5), pp. 359–364. doi: 10.1016/0001-4575(82)90014-8.
dc.relationHauer, E. (2007) Observational Before-After Studies in Road Safety, Pergamon.
dc.relationHayward, J. C. (1972) ‘Near-miss determination through use of a scale of danger’, Highway Research Record, 1(384), pp. 24–34. Available at: http://onlinepubs.trb.org/Onlinepubs/hrr/1972/384/384-004.pdf.
dc.relationHernández Sampieri, R., Fernández-Collado, C. and Baptista Lucio, P. (2006) Metodología de la investigación, México Trillas. Available at: http://www.univo.edu.sv:8081/tesis/020090/020090_Cap1.pdf.
dc.relationHidalgo, D. (2004) ‘Bogota and its transportation system’, in Urban Public Transportation Systems: Ensuring Sustainability Through Mass Transit - Proceedings of the Second International Conference, pp. 19–25. doi: 10.1061/40717(148)2.
dc.relationHothorn, T., Seibold, H. and Zeileis, A. (2020) Package ‘ partykit ’. Available at: https://cran.r-project.org/web/packages/partykit/partykit.pdf.
dc.relationHøye, A. and Laureshyn, A. (2019) ‘SeeMe at the crosswalk: Before-after study of a pedestrian crosswalk warning system’, Transportation Research Part F: Traffic Psychology and Behaviour. doi: 10.1016/j.trf.2018.11.003.
dc.relationHuang, F. et al. (2013) ‘Identifying if VISSIM simulation model and SSAM provide reasonable estimates for field measured traffic conflicts at signalized intersections’, Accident Analysis and Prevention, 50, pp. 1014–1024. doi: 10.1016/j.aap.2012.08.018.
dc.relationHydén, C. (1976) A Traffic-conflicts Technique for determining risk, Bulletin. Lund, Sweden. Available at: https://lup.lub.lu.se/search/publication/1260964.
dc.relationHydén, C. (1987) ‘The development of a method for traffic safety evaluation: the Swedish traffic conflict technique’, Bulletin Lund Institute of Technology, (70), p. 229.
dc.relationICONTEC (2016) ‘NTC 4901-1: Vehículos para el transporte urbano masivo de pasajeros. parte 1: buses articulados’, p. 60. Available at: https://tienda.icontec.org/gp-vehiculos-para-el-transporte-urbano-masivo-de-pasajeros-parte-1-buses-articulados-ntc4901-1-2016.html (Accessed: 3 May 2020).
dc.relationIDECA (2018) Infraestructura de Datos Espaciales para el Distrito Capital. Available at: www.ideca.gov.co.
dc.relationIndian Institute of Technology Bombay (2014) Road Safety Audit of Pilot BRTS Corridor at Pune. Pune. Available at: https://pmc.gov.in/informpdf/BRTS/Safety_Audit_Report.pdf.
dc.relationInstitute for Transportation and Development Policy (2014) Bus Rapid Transit ( BRT ) Systems Eligibility Criteria and Guidelines, The BRT Standard 2014. New York. Available at: https://www.climatebonds.net/files/uploads/2014/05/Climate-Bonds-BRT-2014-BRT-Standard_Proposal.pdf.
dc.relationInstituto Nacional de Medicina Legal y ciencias Forenses (2018) Datos para la vida, Forensis.
dc.relationIslam, T. et al. (2018) ‘A linear bus rapid transit with transit signal priority formulation’, Transportation Research Part E: Logistics and Transportation Review, 114, pp. 163–184. doi: 10.1016/j.tre.2018.03.009.
dc.relationIsmail, K., Sayed, T. and Saunier, N. (2011) ‘Methodologies for Aggregating Indicators of Traffic Conflict’, Transportation Research Record, pp. 10–19. doi: 10.3141/2237-02.
dc.relationJacobsen, P. L. (2003) ‘Safety in numbers: More walkers and bicyclists, safer walking and bicycling’, Injury Prevention, 9(3), pp. 205–209. doi: 10.1136/ip.9.3.205.
dc.relationJin, P. J. et al. (2017) ‘Gap metering for active traffic control at freeway merging sections’, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations. doi: 10.1080/15472450.2016.1157021.
dc.relationJobanputra, R. (2011) ‘Micro-Simulation Modelling of the Impact of Infrastructure Provision and Vehicle and Pedestrian Behaviour on Road Crash Risk .’, in Road Safety and Simulation.
dc.relationJohnson, R. A. and Wichern, D. W. (2007) Applied Multivariate Statistical Analysis. 6th edn, New York. 6th edn. New Jersey: Pearson Prentice Hall. doi: 10.1198/tech.2005.s319.
dc.relationJohnsson, C. and Laureshyn, A. (2019) ‘Can encounters help to explain the Safety-in-Numbers phenomenon?’, Safety Science, submitted.
dc.relationJohnsson, C., Laureshyn, A. and De Ceunynck, T. (2018) ‘In search of surrogate safety indicators for vulnerable road users: a review of surrogate safety indicators’, Transport Reviews, pp. 1–21. doi: https://doi.org/10.1080/01441647.2018.1442888.
dc.relationJohnsson, C., Laureshyn, A. and Nóren, H. (2018) ‘T-Analyst - semi-automated tool for traffic conflict analysis’, InDeV, Horizon 2020 project.
dc.relationKaparias, I. et al. (2010) ‘Development and implementation of a vehicle-pedestrian conflict analysis method: Adaptation of a vehicle-vehicle technique’, Transportation Research Record, 2198(2198), pp. 75–82. doi: 10.3141/2198-09.
dc.relationKaygisiz, Ö., Yildiz, A. and Düzgün, Ş. (2015) ‘Spatio-Temporal Pedestrian Accident Analysis to Improve Urban Pedestrian Safety : The case of the Eski ş ehir Motorway’, Gazi University Journal of Science, 28(4), pp. 623–630.
dc.relationKazemzadeh, K. et al. (2020) ‘Electric bike navigation behaviour in pedestrian crowds’, Travel Behaviour and Society. doi: 10.1016/j.tbs.2020.03.006.
dc.relationKhazraeian, S., Hadi, M. and Xiao, Y. (2017) ‘Safety impacts of queue warning in a connected vehicle environment’, Transportation Research Record. doi: 10.3141/2621-04.
dc.relationKhondaker, B. and Kattan, L. (2015) ‘Variable speed limit: A microscopic analysis in a connected vehicle environment’, Transportation Research Part C: Emerging Technologies. doi: 10.1016/j.trc.2015.07.014.
dc.relationKim, H.-Y. (2014) ‘Analysis of variance (ANOVA) comparing means of more than two groups’, Restorative Dentistry & Endodontics, 39(1), p. 74. doi: 10.5395/rde.2014.39.1.74.
dc.relationKim, J. et al. (2020) ‘Drivers’ Interaction with, and Perception Toward Semi-autonomous Vehicles in Naturalistic Settings’, in. Springer, Cham, pp. 20–26. doi: 10.1007/978-3-030-39512-4_4.
dc.relationKočárková, D. (2012) ‘Traffic Conflict Techniques in Czech Republic’, Procedia - Social and Behavioral Sciences, 53, pp. 1028–1033. doi: 10.1016/j.sbspro.2012.09.952.
dc.relationKretz, T., Lohmiller, J. and Sukennik, P. (2018) ‘Some indications on how to calibrate the social force model of pedestrian dynamics’, Transportation Research Record. doi: 10.1177/0361198118786641.
dc.relationKrzywinski, M. and Altman, N. (2013) ‘Significance, P values and t -tests’, Nature Methods 2013 10:11.
dc.relationKuehl, R. O. (2000) Design of Experiments: Statistical Principles of Research Design and Analysis. Duxbury/Thomson Learning. Available at: https://books.google.com.co/books/about/Design_of_Experiments.html?id=mIV2QgAACAAJ&pgis=1 (Accessed: 19 May 2015).
dc.relationKulmala, R. (1984) ‘The Finnish Traffic Conflict Technique’, in International Calibration Study of Traffic Conflict Techniques. Springer Berlin Heidelberg, pp. 97–105. doi: 10.1007/978-3-642-82109-7_9.
dc.relationKumar, A., Paul, M. and Ghosh, I. (2019) ‘Analysis of Pedestrian Conflict with Right-Turning Vehicles at Signalized Intersections in India’, Journal of Transportation Engineering Part A: Systems. doi: 10.1061/JTEPBS.0000239.
dc.relationLaureshyn, A., Goede, M. de, et al. (2017) ‘Cross-comparison of three surrogate safety methods to diagnose cyclist safety problems at intersections in Norway’, Accident Analysis and Prevention, 105, pp. 11–20. doi: 10.1016/j.aap.2016.04.035.
dc.relationLaureshyn, A., De Ceunynck, T., et al. (2017) ‘In search of the severity dimension of traffic events: Extended Delta-V as a traffic conflict indicator’, Accident Analysis and Prevention, 98, pp. 46–56. doi: 10.1016/j.aap.2016.09.026.
dc.relationLaureshyn, A. and Varhelyi, A. (2018) The Swedish Traffic Conflict technique: observer’s manual. Lund. Available at: http://www.tft.lth.se/fileadmin/tft/images/Update_2018/ Swedish_TCT_Manual.pdf.
dc.relationLaza Vásquez, C. (2006) ‘La causalidad en epidemiología’. Fundación Universitaria del Área Andina-Pereira. Available at: http://localhost:8080/bdfu/handle/123456789/146 (Accessed: 26 April 2015).
dc.relationLeden, L., Gårder, P. and Pulkkinen, U. (2000) ‘An expert judgment model applied to estimating the safety effect of a bicycle facility’, Accident Analysis & Prevention, 32(4), pp. 589–599. doi: 10.1016/S0001-4575(99)00090-1.
dc.relationLevinson, H. et al. (2003) Bus Rapid Transit, Volume 2: Implementation Guidelines, Bus Rapid Transit, Volume 2: Implementation Guidelines. Transportation Research Board. doi: 10.17226/21947.
dc.relationLightburn, A. D. C. (1984) The development of the Traffic Conflicts Technique: an approach to the study of road accidents. University of Nottingham. Available at: http://eprints.nottingham.ac.uk/14174/1/OCR_-_THE_DEVELOPMENT_OF_THE_TRAFFIC_CONFLICTS_TECHNIQUE.pdf (Accessed: 9 April 2015).
dc.relationLizarazo, C. and Valencia, V. (2018) ‘Macroscopic Spatial Analysis of Pedestrian Crashes in Medellin, Colombia’, Transportation Research Record: Journal of the Transportation Research Board, 2672(31), pp. 54–62. doi: 10.1177/0361198118758639.
dc.relationLoh, W.-Y. (2014) ‘Classification and Regression Tree Methods’, in Wiley StatsRef: Statistics Reference Online. Chichester, UK: John Wiley & Sons, Ltd. doi: 10.1002/9781118445112.stat03886.
dc.relationMa, J. et al. (2019) ‘Quantitative study and analysis of the mechanism of the road traffic accidents based on traffic accidents big data in Suzhou’, in CICTP 2019: Transportation in China - Connecting the World - Proceedings of the 19th COTA International Conference of Transportation Professionals. American Society of Civil Engineers (ASCE), pp. 4493–4503. doi: 10.1061/9780784482292.388.
dc.relationMadsen, T. K. O. and Lahrmann, H. (2017) ‘Comparison of five bicycle facility designs in signalized intersections using traffic conflict studies’, Transportation Research Part F: Traffic Psychology and Behaviour. doi: 10.1016/j.trf.2016.05.008.
dc.relationMahmud, S. M. S. et al. (2018) ‘Micro-simulation modelling for traffic safety: A review and potential application to heterogeneous traffic environment’, IATSS Research. doi: 10.1016/j.iatssr.2018.07.002.
dc.relationMann, C. J. (2003) ‘Observational research methods. Research design II: cohort, cross sectional, and case-control studies’, Emergency Medicine Journal, 20(1), pp. 54–60. doi: 10.1136/emj.20.1.54.
dc.relationMassey, F. J. (1951) ‘The Kolmogorov-Smirnov Test for Goodness of Fit’, Journal of the American Statistical Association, 46(253), pp. 68–78. doi: 10.1080/01621459.1951.10500769.
dc.relationMcDowell, M. R. C. et al. (1983) Gap acceptance and traffic conflict simulation as a measure of risk, Special Report 776. Berkshire, England: TRRL. Available at: https://trid.trb.org/view.aspx?id=198501.
dc.relationMichael, S. and Mosslemi, M. (2009) Subjective and Objective Safety, TØI report 1009/2009. Oslo. Available at: https://www.toi.no/getfile.php/1311745/Publikasjoner/TØI rapporter/2009/1009-2009/1009-2009-Sum.pdf.
dc.relationMohan, D. et al. (2008) Road traffic injury prevention: training manual. Washington, D.C.: World Health Organization. Available at: http://whqlibdoc.who.int/publications/2008/9789275316306_spa.pdf.
dc.relationMortelmans, J. et al. (1986) Analyse van de verkeersveiligheid met behulp van de Bijna-Ongevallen methode (in Dutch) Analysis of road safety by means of the near-accident method. Leuven.
dc.relationMuhlrad, N. and Dupre, G. (1984) ‘The French Conflict Technique’, in International Calibration Study of Traffic Conflict Techniques. Springer Berlin Heidelberg, pp. 121–132. doi: 10.1007/978-3-642-82109-7_11.
dc.relationMunoz, J. C. and Paget-Seekins, L. (2016) Restructuring public transport through bus rapid transit: An international and interdisciplinary perspective, Restructuring Public Transport through Bus Rapid Transit: An International and Interdisciplinary Perspective. doi: 10.1080/01441647.2018.1467981.
dc.relationNadimi, N., Behbahani, H. and Shahbazi, H. R. (2016) ‘Calibration and validation of a new time-based surrogate safety measure using fuzzy inference system’, Journal of Traffic and Transportation Engineering (English Edition). doi: 10.1016/j.jtte.2015.09.004.
dc.relationNagelkerke, N. J. D. (1991) ‘A Note on a General Definition of the Coefficient of Determination’, Biometrika, 78(3), p. 691. doi: 10.2307/2337038.
dc.relationNardo, M. et al. (2005) Tools for Composite Indicators Building. Available at: http://farmweb.jrc.cec.eu.int/ci/bibliography.htm.
dc.relationNeale, V. L. et al. (2005) ‘An overview of the 100-car naturalistic study and findings’, Traffic Safety, pp. 1–10. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.2366&rep=rep1&type=pdf.
dc.relationNZ Transport Agency (2014) Transport model development guidelines.
dc.relationOECD (1997) Road Safety Principles and Models: Review of Descriptive, Predictive, Risk and Accident Consequence Models. París. Available at: http://www.oecd.org/sti/transport/roadtransportresearch/2103285.pdf.
dc.relationOlszewski, P. et al. (2019) ‘Investigation of traffic conflicts at signalised intersections in Warsaw’, MATEC Web of Conferences. doi: 10.1051/matecconf/201926205009.
dc.relationOMS (2015) Health topics: Epidemiology. Available at: http://www.who.int/topics/epidemiology/en/.
dc.relationOrganização Mundial da Saúde (2018) Global Status Report on Road Safety 2018: Summary, World Health Organization.
dc.relationOtero Niño, J. D. et al. (2019) ‘Road safety assessment in preferential bus lanes through field analysis and microsimulation of traffic conflicts’, Revista de Ingeniería Universidad de Antioquia. doi: https://doi.org/10.17533/udea.redin.n90a10.
dc.relationOviedo-Trespalacios, O. and Scott-Parker, B. (2017) ‘Transcultural validation and reliability of the Spanish version of the behaviour of young novice drivers scale (BYNDS) in a Colombian young driver population’, Transportation Research Part F: Traffic Psychology and Behaviour, 49, pp. 188–204. doi: 10.1016/j.trf.2017.06.011.
dc.relationOviedo-Trespalacios, O. and Scott-Parker, B. (2018) ‘The sex disparity in risky driving: A survey of Colombian young drivers’, Traffic Injury Prevention. doi: 10.1080/15389588.2017.1333606.
dc.relationPareto, A. (2015) ‘Composite Index Construction by PCA? No, thanks’, in Italian National Institute of Statistics.
dc.relationPark, B. and Qi, H. (2006) ‘Microscopic simulation model calibration and validation for freeway work zone network - A case study of VISSIM’, in IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. doi: 10.1109/itsc.2006.1707431.
dc.relationPark, H., Bhamidipati, C. S. and Smith, B. L. (2011) ‘Development and evaluation of enhanced intellidrive-enabled lane changing advisory algorithm to address freeway merge conflict’, Transportation Research Record. doi: 10.3141/2243-17.
dc.relationParker, M. R. and Zegeer, C. V. (1989) Traffic conflict techniques for safety and operation. McLean, Virginia. Publication No. FHWA-IP-88-027. Available at: https://www.fhwa.dot.gov/publications/research/safety/88027/88027.pdf.
dc.relationPatankar, V. M., Kumar, R. and Tiwari, G. (2007) ‘Impacts of bus rapid transit lanes on traffic and commuter mobility’, Journal of Urban Planning and Development. doi: 10.1061/(ASCE)0733-9488(2007)133:2(99).
dc.relationPerkins, S. R. and Harris, J. L. (1967) Traffic Conflict Characteristics: Accident Potential atIntersections. Warren, MI.
dc.relationPerkins, S. R. and Harris, J. L. (1968) ‘Traffic conflict characteristics-accident potential at intersections’, Highway Research Record, (225), pp. 35–43. Available at: http://pubsindex.trb.org/view/1968/C/1310479 (Accessed: 9 April 2015).
dc.relationPeters, T. J. (2008) ‘Multifarious terminology: multivariable or multivariate? univariable or univariate?’, Paediatric and perinatal epidemiology, 22(6), p. 506. doi: 10.1111/j.1365-3016.2008.00966.x.
dc.relationPolders, E. et al. (2015) ‘Drivers’ behavioral responses to combined speed and red light cameras’, Accident Analysis and Prevention. doi: 10.1016/j.aap.2015.05.006.
dc.relationPolders, E. and Brijs, T. (2018) How to analyse accident causation? A handbook with focus on vulnerable road users. Deliverabl. Edited by H. University. Hasselt, Belgium.
dc.relationPorta, M. (2014) A Dictionary of Epidemiology. Sixth. New York: Oxford University Press.
dc.relationPTV AG (2012) VISSIM 5.40 User Manual. Edited by P. P. T. V. AG. Karlsruhe: PTV Planung Transport Verkehr AG.
dc.relationPTV AG (2018) PTV VISSIM 11 User Manual. Karlsruhe, Germany.
dc.relationPu, L. and Joshi, R. (2008) Surrogate Safety Assessment Model (SSAM): Software User Manual. McLean, VA: FHWA. Available at: https://www.fhwa.dot.gov/publications/research/safety/08050/.
dc.relationQGIS Development Team (2020) ‘QGIS Geographic Information System’. QGIS Geographic Information System. Available at: https://qgis.org/.
dc.relationRahman, M. H. et al. (2019) ‘Enhancing traffic safety at school zones by operation and engineering countermeasures: A microscopic simulation approach’, Simulation Modelling Practice and Theory. doi: 10.1016/j.simpat.2019.04.001.
dc.relationRahman, M. S. and Abdel-Aty, M. (2018) ‘Longitudinal safety evaluation of connected vehicles’ platooning on expressways’, Accident Analysis and Prevention. doi: 10.1016/j.aap.2017.12.012.
dc.relationRao, C. R. (1973) Linear Statistical Inference and its Applications. Edited by C. R. Rao. Hoboken, NJ, USA: John Wiley & Sons, Inc. (Wiley Series in Probability and Statistics). doi: 10.1002/9780470316436.
dc.relationRevell, K. M. A. et al. (2020) ‘Breaking the cycle of frustration: Applying Neisser’s Perceptual Cycle Model to drivers of semi-autonomous vehicles’, Applied Ergonomics, 85, p. 103037. doi: 10.1016/j.apergo.2019.103037.
dc.relationRevelle, W. (2020) Package ‘psych’. Evanston, IL, US. Available at: https://cran.r-project.org/package=psych.
dc.relationRisk, A. and Shaoul, J. E. (1982) ‘Exposure to risk and the risk of exposure’, Accident Analysis and Prevention, 14(5), pp. 353–357. doi: 10.1016/0001-4575(82)90013-6.
dc.relationRisser, R. and Schützenhöfer, A. (1984) ‘Application of Traffic-Conflict Technique in Austria’, in International Calibration Study of Traffic Conflict Techniques. Springer Berlin Heidelberg, pp. 141–151. doi: 10.1007/978-3-642-82109-7_13.
dc.relationRumar, K. (1999) ‘Road safety and benchmarking’, in ECMT (ed.) Proceedings of the Paris Conference on Transport Benchmarking. París: (OECD), The Organization for Economic Co-operation and Development, pp. 95–109. Available at: http://library.certh.gr/libfiles/PDF/GEN-EKETA-1997-TRANSPORT-BENCHMARKING-by-OECD-in-BK-PP-208-Y-2000.pdf.
dc.relationSakshaug, L. et al. (2010) ‘Cyclists in roundabouts - Different design solutions’, Accident Analysis and Prevention. doi: 10.1016/j.aap.2010.02.015.
dc.relationSaleem, T. et al. (2014) ‘Can Microsimulation be used to Estimate Intersection Safety?’, Transportation Research Record: Journal of the Transportation Research Board, 2432(1), pp. 142–148. doi: 10.3141/2432-17.
dc.relationSalkind, N. (2012) Encyclopedia of Measurement and Statistics, Encyclopedia of Measurement and Statistics. doi: 10.4135/9781412952644.
dc.relationSandoval, F. (2020) Diagnóstico y evaluación de la severidad y de la cobertura hospitalaria en la siniestralidad vial en Bogotá. Universidad Nacional de Colombia.
dc.relationSantos-Reyes, J., Ávalos-Bravo, V. and Padilla-Pérez, D. (2017) ‘Bus Rapid Transit Systems Road Safety: A Case Study of Mexico City’, in Urban Transport Systems. doi: 10.5772/65583.
dc.relationSayed, T., Zaki, M. H. and Autey, J. (2013) ‘Automated safety diagnosis of vehicle-bicycle interactions using computer vision analysis’, Safety Science. doi: 10.1016/j.ssci.2013.05.009.
dc.relationSayed, T. and Zein, S. (1999) ‘Traffic conflict standards for intersections’, Transportation Planning and Technology, 22, pp. 309–323. doi: 10.1080/03081069908717634.
dc.relationSchlögl, M. (2020) ‘A multivariate analysis of environmental effects on road accident occurrence using a balanced bagging approach’, Accident Analysis and Prevention, 136, p. 105398. doi: 10.1016/j.aap.2019.105398.
dc.relationSchulze, M. et al. (2006) ‘Accidentology as a basis for requirements and system architecture of preventive safety applications’, in Advanced Microsystems for Automotive Applications 2006. Springer, Berlin, Heidelberg, pp. 407–425. doi: 10.1007/3-540-33410-6_29.
dc.relationSecretaría Distrital de Movilidad (2018) Anuario de siniestralidad vial. Bogotá.
dc.relationSecretaría Distrital de Movilidad (2019) Guía de Auditorías de Seguridad Vial en Vías Urbanas. Bogotá: Alcaldía Mayor de Bogotá. Available at: https://www.movilidadbogota.gov.co/web/direccion-seguridad-vial.
dc.relationde Senna, L. D., Maia, A. G. and de Medeiros, J. D. F. (2019) ‘The use of principal component analysis for the construction of the Water Poverty Index’, Revista Brasileira de Recursos Hidricos. doi: 10.1590/2318-0331.241920180084.
dc.relationShah, S. et al. (2018) ‘Road Safety Risk Assessment: An Analysis of Transport Policy and Management for Low-, Middle-, and High-Income Asian Countries’, Sustainability, 10(2), p. 389. doi: 10.3390/su10020389.
dc.relationShahdah, U., Saccomanno, F. and Persaud, B. (2015) ‘Application of traffic microsimulation for evaluating safety performance of urban signalized intersections’, Transportation Research Part C: Emerging Technologies. doi: 10.1016/j.trc.2015.06.010.
dc.relationSharma, H. K., Swami, M. and Swami, B. L. (2012) ‘Optimizing Performance of at-grade Intersection with Bus Rapid Transit Corridor and Heterogeneous Traffic’, International Journal of Transportation Science and Technology, 1(2), pp. 131–145. doi: 10.1260/2046-0430.1.2.131.
dc.relationShelby, S. G. (2011) ‘Delta-V as a Measure of Traffic Conflict Severity’, Transportation Research Record, pp. 1–19.
dc.relationSIMUR (2018) Sistema Integrado de Información sobre Movilidad Urbano Regional. Available at: http://www.simur.gov.co/.
dc.relationSIMUR (2019) Sistema Integrado de Información.
dc.relationSohel Mahmud, S. M. et al. (2018) ‘Reviewing traffic conflict techniques for potential application to developing countries’, Journal of Engineering Science and Technology.
dc.relationStatpoint Technologies, I. (2007) Clasificador de Redes Neurales, Statgraphics. New York. Available at: https://www.statgraphics.net/wp-content/uploads/2011/12/tutoriales/Clasificador de Redes Neurales.pdf.
dc.relationStatpoint Technologies, I. (2014) ‘STATGRAPHICS® Centurion XVII’, User Manual, pp. 1–13. Available at: www.STATGRAPHICS.com (Accessed: 11 May 2020).
dc.relationStevanovic, A., Stevanovic, J. and Kergaye, C. (2013) ‘Optimization of traffic signal timings based on surrogate measures of safety’, Transportation Research Part C-Emerging Technologies, 32, pp. 159–178. doi: 10.1016/j.trc.2013.02.009.
dc.relationSuwarto, F. and Basuki, K. H. (2016) ‘The Application of Traffic Conflict Technique as a Road Safety Evaluation Method: A Case Study of Hasselt Intersection’, Applied Mechanics and Materials. doi: 10.4028/www.scientific.net/amm.845.394.
dc.relationSvensson, Å. (1992) Further development and validation of the Swedish traffic conflict technique. Lund University, Institute of Technology.
dc.relationT-Analyst (2018) T-Analyst. Semi-automated video processing. Available at: https://bitbucket.org/TrafficAndRoads/tanalyst/wiki/Manual (Accessed: 11 May 2019).
dc.relationTageldin, A. and Sayed, T. (2016) ‘Developing evasive action-based indicators for identifying pedestrian conflicts in less organized traffic environments’, Journal of Advanced Transportation. doi: 10.1002/atr.1397.
dc.relationTajalli, M., Hajbabaie, A. and Board, T. R. (2018) ‘Collision Mitigation at Signalized Intersection Using Connected Vehicles Data and Technologies’, Transportation Research Record: Journal of the Transportation Research Board.
dc.relationTarko, A. et al. (2009) Surrogate measures of safety, white paper. Washington, D.C. Available at: https://www.researchgate.net/publication/245584894_ Surrogate_Measures_of_Safety.
dc.relationTey, L.-S., Kim, I. and Ferreira, L. (2012) ‘Evaluating Safety at Railway Level Crossings with Microsimulation Modeling’, Transportation Research Record, pp. 70–77. doi: 10.3141/2298-08.
dc.relationThe 100-Car Naturalistic Driving Study Phase II-Results of the 100-Car Field Experiment (2006).
dc.relationTiwari, G., Mohan, D. and Muhlrad, N. (2005) The way forward: transportation planning and road safety. Nueva Delhi: Macmillan India Ltd.
dc.relationTorres-Sandoval, F. A. (2017) ‘Determination of unsafe behavior in bus drivers and its relationship to traffic accidents. Case study of a company of public transport in Colombia’, DYNA (Colombia). doi: 10.15446/dyna.v84n203.67544.
dc.relationTorres, A., Torres, F. and Pardillo, J. M. (2010) ‘Risk classification model in rural T-form intersections and time to evasion evaluation as surrogate safety measure’, Revista ingeniería de construcción, 25(3), pp. 353–370. doi: http://dx.doi.org/10.4067/S0718-50732010000300002.
dc.relationTransMilenio S.A. (2019) Estadísticas de oferta y demanda del Sistema Integrado de Transporte Público - SITP. Bogota. Available at: https://www.transmilenio.gov.co/loader.php?lServicio=Tools2&lTipo=descargas&lFuncion=descargar&idFile=4958.
dc.relationTransMilenio S.A. (2020) www.transmilenio.gov.co. Available at: https://www.transmilenio.gov.co/.
dc.relationTransport Systems SAS (2018) Deodata. Available at: www.deodata.co.
dc.relationTsai, R. Y. (1987) ‘A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses’, IEEE Journal on Robotics and Automation. doi: 10.1109/JRA.1987.1087109.
dc.relationTse, L. Y., Hung, W. T. and Sumalee, A. (2014) ‘Bus lane safety implications: A case study in Hong Kong’, Transportmetrica A: Transport Science, 10(2), pp. 140–159. doi: 10.1080/18128602.2012.724470.
dc.relationUniversidad de Los Andes (2004) Determinación del peso por eje de los buses articulados y buses alimentadores del sistema TransMilenio - Informe preliminar. Bogotá. Available at: https://www.idu.gov.co/web/content/7454/determinacion_peso_eje_buses_25nov14.pdf.
dc.relationUseche, S. (2011) ‘Errors analysis and traffic violations in Bogota City drivers measured by DBQ (Driving Behaviour Questionnaire)’, Revista de psicología jurídica, 1, pp. 29–37. Available at: http://www.humanas.unal.edu.co/psicologia_juridica/files/3913/6604/8909/RevistaPsicoJur.pdf.
dc.relationUseche, S. et al. (2017) ‘Comparing Job Stress, Burnout, Health and Traffic Crashes of Urban Bus and BRT Drivers’, American Journal of Applied Psychology.
dc.relationUseche, S. A. et al. (2019) ‘Trait driving anger and driving styles among Colombian professional drivers’, Heliyon. doi: 10.1016/j.heliyon.2019.e02259.
dc.relationUseche, S. A., Ortiz, V. G. and Cendales, B. E. (2017) ‘Stress-related psychosocial factors at work, fatigue, and risky driving behavior in bus rapid transport (BRT) drivers’, Accident Analysis and Prevention. doi: 10.1016/j.aap.2017.04.023.
dc.relationUseche, S., Cendales, B. and Gómez, V. (2017) ‘Work stress, fatigue and risk behaviors at the wheel: Data to assess the association between psychosocial work factors and risky driving on Bus Rapid Transit drivers’, Data in Brief. doi: 10.1016/j.dib.2017.09.032.
dc.relationUzondu, C., Jamson, S. and Lai, F. (2018) ‘Exploratory study involving observation of traffic behaviour and conflicts in Nigeria using the Traffic Conflict Technique’, Safety Science. doi: 10.1016/j.ssci.2018.08.029.
dc.relationVarhelyi, A. et al. (2018) ‘Surrogate measures of safety and traffic conflict observations’, in How to analyse accident causation?. First edit. Hasselt, Belgium: Hasselt University, p. 233.
dc.relationVecino-Ortiz, A. I. and Hyder, A. A. (2015) ‘Road Safety Effects of Bus Rapid Transit (BRT) Systems: a Call for Evidence’, Journal of Urban Health, 92(5), pp. 940–946. doi: 10.1007/s11524-015-9975-y.
dc.relationVences R., J. (2014) ‘Construcción de un índice compuesto y aproximación para medir los cambios en el tiempo’, Realidad, datos y espacio - Revista internacional de estadística y geografía, 5(2), pp. 104–115. Available at: https://www.inegi.org.mx/rde/2014/05/05/construccion-de-un-indice-compuesto-y-aproximacion-para-medir-los-cambios-en-el-tiempo/ (Accessed: 6 March 2020).
dc.relationVergel-Tovar, E. et al. (2018) ‘The Political Economy of Road Safety: Case Study of Bogotá’.
dc.relationVergel-Tovar, E., Hidalgo, D. and Bray, A. (2018) Paving the pathways to change: the politics of road safety in Bogotá. Washington, D.C. Available at: https://www.odi.org/publications/11075-paving-pathways-change-politics-road-safety-bogot (Accessed: 18 March 2020).
dc.relationVerma, P. D., Valderrama, J. S. L. and Pardo, C. (2015) Bogotá 2014 Bicycle Account, Despacio. Available at: https://despacio.org/wp-content/uploads/2015/01/Bicycle-Account-BOG-2014-20150109-LR.pdf.
dc.relationVTATransit (2007) Bus Rapid Transit Service Guidelines. New York. Available at: https://nacto.org/wp-content/uploads/2015/04/service_design_guidelines_vta.pdf.
dc.relationVyas, S. and Kumaranayake, L. (2006) ‘Constructing socio-economic status indices: How to use principal components analysis’, Health Policy and Planning. doi: 10.1093/heapol/czl029.
dc.relationWei, Z. et al. (2011) ‘Assessment of soil heavy metal pollution with Principal component analysis and Geoaccumulation index’, in Procedia Environmental Sciences. doi: 10.1016/j.proenv.2011.09.305.
dc.relationWeiner, M. M. (2005) Adaptive antennas and receivers, Adaptive Antennas and Receivers. doi: 10.1201/9781315221151.
dc.relationWickham, H. (2011) ‘ggplot2’, Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), pp. 180–185. doi: 10.1002/wics.147.
dc.relationWłodarek, P. and Olszewski, P. (2020) ‘Traffic safety on cycle track crossings–traffic conflict technique’, Journal of Transportation Safety and Security. doi: 10.1080/19439962.2019.1622615.
dc.relationWSDOT (2014) Protocol for VISSIM simulation. Olympia. Available at: http://www.wsdot.wa.gov/NR/rdonlyres/378BEAC9-FE26-4EDA-AA1F-B3A55F9C532F/0/VissimProtocol.pdf.
dc.relationWu, J., Radwan, E. and Abou-Senna, H. (2018) ‘Determination if VISSIM and SSAM could estimate pedestrian-vehicle conflicts at signalized intersections’, Journal of Transportation Safety and Security. doi: 10.1080/19439962.2017.1333181.
dc.relationYan, J. et al. (2013) ‘An evaluation of highway work zone impact factors on driving safety using complicated indexes based on traffic simulation system’, in Advanced Materials Research. doi: 10.4028/www.scientific.net/AMR.723.943.
dc.relationYasmin, S. et al. (2014) ‘Examining driver injury severity in two vehicle crashes - A copula based approach’, Accident Analysis and Prevention, 66, pp. 120–135. doi: 10.1016/j.aap.2014.01.018.
dc.relationZeileis, A. and Hothorn, T. (2015) ‘Partykit: A Toolkit for Recursive Partytioning’, Journal of Machine Learning Research, 16(Hothorn), pp. 3905–3909. Available at: http://jmlr.org/papers/v16/hothorn15a.html.
dc.relationZheng, L., Ismail, K. and Meng, X. (2014) ‘Traffic conflict techniques for road safety analysis: Open questions and some insights’, Canadian Journal of Civil Engineering, 41, pp. 633–641. doi: 10.1139/cjce-2013-0558.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleMethodology for event-based traffic risk assessment of Bus Rapid Transit systems and its simulation
dc.typeOtro


Este ítem pertenece a la siguiente institución