dc.contributorMancera Pineda, José Ernesto
dc.contributorModelacion de Ecosistemas Costeros
dc.creatorPerdomo Trujillo, Laura Victoria
dc.date.accessioned2020-08-19T15:19:47Z
dc.date.accessioned2022-09-21T14:15:46Z
dc.date.available2020-08-19T15:19:47Z
dc.date.available2022-09-21T14:15:46Z
dc.date.created2020-08-19T15:19:47Z
dc.date.issued2020-04-14
dc.identifierPerdomo Trujillo, L.V. 2020. Biomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribución a las reservas de carbono en el ecosistema. Tesis Doctorado en Ciencias-Biología Marina. Universidad Nacional de Colombia.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78085
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3362952
dc.description.abstractAdemás de los múltiples servicios provistos por los manglares, en la última década ha cobrado importancia su facultad de capturar carbono (C), ya que se ha demostrado que su capacidad de almacenamiento puede ser hasta cinco veces la de otros bosques terrestres tropicales. A pesar de la importancia de este servicio ambiental, existen todavía áreas con vacíos de información sobre el tamaño y la variación de los depósitos de C; aún más, en aquellos manglares donde han ocurrido mortalidades o degradación del bosque. En Colombia algunos autores han estimado las reservas en la biomasa aérea, sin embargo, son pocos los reportes que han considerado mediciones in situ de las raíces y el suelo, este último, considerado el mayor reservorio de C del ecosistema. El objetivo de este estudio fue evaluar y comparar (i) el aporte de las raíces a la biomasa total, (ii) las principales condiciones ambientales que influyen en la biomasa y producción de raíces, (iii) el contenido de C en el suelo y (iv) las reservas de C en sitios con diferente estado de conservación. Los muestreos se realizaron en el mayor parche de manglar del Caribe colombiano, donde ocurrió mortalidad masiva del bosque debido a altas salinidades entre 1956 y 1995, año en que se implementó un proyecto de rehabilitación basado en el restablecimiento del balance hídrico. Sitios conservados se compararon con aquellos que sufrieron mortalidad y recuperaron el bosque, y con otros que no han logrado recuperarlo. La biomasa de raíces representó entre el 6 y el 20 % de la biomasa total de los árboles y fue mayor en los rodales conservados en comparación con los restaurados. Los principales factores ambientales que determinaron la biomasa y producción del sistema radicular fueron la salinidad, el tiempo de inundación y el potencial redox. Más del 57 % de las reservas de C de los sitios de estudio se encontró en el suelo (medido hasta 1 m de profundidad). Contrario a lo reportado por otros estudios, los manglares restaurados presentaron mayores depósitos de C (390 y 394 Mg C ha-1), en comparación con rodales naturales (271 Mg C ha-1) y con aquellos degradados que no han recuperado el manglar (258 Mg C ha-1). Este resultado se explicó por la gran cantidad de materia orgánica aportada por la mortalidad masiva del bosque y otros tipos de vegetación, ocurrida antes de la restauración y revegetación de estos sitios. Ambientes anóxicos (<-100 mV) y salinidades por encima de 40 han limitado la descomposición de gran cantidad de este material orgánico. La biomasa aérea representó entre el 12 y 37 % del total del C en los sitios de estudio, con depósitos de 42 a 73,5 Mg C ha-1 en los sitios restaurados y 102 Mg C ha-1 en el conservado. Los resultados obtenidos en este estudio sirven de base para tomar decisiones en programas de manejo y en la elaboración de propuestas de reducción de emisiones de C de ecosistemas de manglar degradados o con procesos de recuperación.
dc.description.abstractIn addition to the multiple services provided by mangroves, in the last decade its ability to capture carbon (C) has gained importance, as it has been shown that its storage capacity can be up to five times than in other tropical terrestrial forests. Despite the importance of this environmental service, there is still a lack of information in some areas about the size and variation of ecosystem C stocks; even more, in those mangroves forests where mortalities or degradation have occurred. In Colombia, some authors have estimated reserves in aboveground biomass, however, there are no reports that consider belowground biomass and soil, the latter, considered the largest C reservoir of the ecosystem. The objective of this study was to evaluate and compare (i) the contribution of roots to total biomass, (ii) the main environmental conditions that influence root biomass and production, (iii) the soil C stock, and (iv) ecosystem C stock (trees, roots and soil). Sampling was performed in the largest mangrove stand of the Colombian Caribbean, where massive forest mortality occurred due to high salinities between 1956 and 1995, the last, the year in which a rehabilitation project was implemented based on the water balance reestablishment. Preserved sites were compared with those who suffered mortality and then recovery of the forest cover, and with others that were not able to recover it. Root biomass represented between 6 and 20% of total biomass, and was higher in preserved stands compared to restored. The main environmental factors that determined the root biomass and production were salinity, flood time and redox potential. More than 57 % of the sites ecosystem C stock were found in the soil (measured up to 1 m deep). Contrary to what was reported by other studies, restored mangroves showed higher ecosystem c stocks (390 and 394 Mg C ha-1), compared with natural stands (271 Mg C ha-1) and with those degraded that had not mangrove recovery (258 Mg C ha-1). This result was explained by the large amount of organic matter contributed by the massive mortality of the forest and other types of vegetation, which occurred before and during the rehabilitation project. Anoxic environments (<-100 mV) and salinities above 40 have limited the decomposition of a large amount of this organic material. The aboveground biomass represented between 12 and 37% of the total ecosystem C stock, with deposits of 42 to 73,5 Mg C ha-1 in the restored sites and 102 Mg C ha-1 in those conserved. The results obtained in the present study serve as the basis for decisions making in management programs and in the elaboration of proposals to reduce C emissions from degraded mangrove ecosystems or in recovery processes.
dc.languagespa
dc.publisherCaribe - Caribe - Doctorado en Ciencias - Biología
dc.publisherCentro de estudios en Ciencias del mar-CECIMAR
dc.publisherFacultad Caribe
dc.publisherUniversidad Nacional de Colombia - Sede Caribe
dc.relationAdame, M.F., Cherian, S., Reef, R., Stewart-Koster, B., 2017. Mangrove root biomass and the uncertainty of belowground carbon estimations. For. Ecol. Manage. 403, 52–60. https://doi.org/10.1016/j.foreco.2017.08.016
dc.relationAdame, M.F., Kauffman, J.B., Medina, I., Gamboa, J.N., Torres, O., Caamal, J.P., Reza, M., Herrera-Silveira, J.A., 2013. Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS One 8, 1–13. https://doi.org/10.1371/journal.pone.0056569
dc.relationAdame, M.F., Santini, N.S., Tovilla, C., Vázquez-Lule, A., Castro, L., Guevara, M., 2015. Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 12, 3805–3818. https://doi.org/10.5194/bg-12-3805-2015
dc.relationAdame, M.F., Teutli, C., Santini, N.S., Caamal, J.P., Zaldívar-Jiménez, A., Herńndez, R., Herrera-Silveira, J.A., 2014. Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Wetlands 34, 479–488. https://doi.org/10.1007/s13157-014-0514-5
dc.relationAdame, M.F., Zacaria, R.M., Fry, B., Chong, V.C., Then, Y.H.A., Brown, C.J., Lee, S.Y., 2018. Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean Coast. Manag. 161, 117–126. https://doi.org/10.1016/j.ocecoaman.2018.04.019
dc.relationAlongi, D.M., 2002. Present state and future of the world´s mangrove forest. Environmental Conservation 29 (3): 331-349. DOI:10.1017/S0376892902000231
dc.relationAlongi, D.M., Dixon, P., 2000. Mangrove primary production and above and below ground biomass in Sawi Bay, Southern Thailand. Phuket Mar. Biol. Cent. Spec. Publ. 22, 31–38.
dc.relationAlongi, D.M., Tirendi, F., Clough, B.F., 2000. Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquat. Bot. 68, 97–122. https://doi.org/10.1016/S0304-3770(00)00110-8
dc.relationÁlvarez-León, R., Casas-Monroy, O., Carbonó-De La Hoz, E., Reyes-Forero, S.P., Troncoso-Olivo, W., 2004. La vegetación terrestre, eurihalina y dulceacuícola de la ecorregión Ciénaga Grande de Santa Marta, in: Garay, J., Restrepo, J., Casas-Monroy, O., Solano, O.D., Newmark, F. (Eds.), Los Manglares de La Ecoregión Ciénaga Grandede Santa Marta: Pasado, Presente y Futuro. INVEMAR-Serie de publicaciones especiales No. 11, Santa Marta, pp. 75–96.
dc.relationAngeles, G., López–Portillo, J., Ortega-Escalona, F., 2002. Functional anatomy of the secondary xylem of roots of the mangrove Laguncularia racemosa (L.) Gaertn. (Combretaceae). Trees - Struct. Funct. 16, 338–345. https://doi.org/10.1007/s00468-002-0171-9
dc.relationAspila, K.I., Agemian, H., Chau, S.Y., 1976. A Semi-automated method for determination of inorganic, organic and total phosphate in sediments. Analyst 101, 187–197.
dc.relationAtwood, T.B., Connolly, R.M., Almahasheer, H., Carnell, P.E., Duarte, C.M., Lewis, C.J.E., Irigoien, X., Kelleway, J.J., Lavery, P.S., Macreadie, P.I., Serrano, O., Sanders, C.J., Santos, I., Steven, A.D.L., Lovelock, C.E., 2017. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528. https://doi.org/10.1038/nclimate3326
dc.relationBetancourt-Portela, J.M., Parra, J.P., Villamil, C., 2013. Emisión de metano y óxido nitroso de los sedimentos de manglar de la ciénaga grande de santa marta, Caribe Colombiano. Bol. Investig. Mar. y Costeras 42, 131–152. https://doi.org/10.25268/bimc.invemar.2013.42.1.64
dc.relationBindoff, N.L., Cheung, W.W.L., Kairo, J.G., Arístegui, J., Guinder, V.A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M.S., Levin, L., O’Donoghue, S., Purca Cuicapusa, S.R., Rinkevich, B., Suga, T., Tagliabue, A., Williamson, P. 2019: Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [(Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N.M. (eds.)].
dc.relationBhomia, R.K., Kauffman, J.B., McFadden, T.N., 2016. Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetl. Ecol. Manag. 24, 187–201. https://doi.org/10.1007/s11273-016-9483-1
dc.relationBlanco-Libreros, J.F., Álvarez-León, R., 2019. Mangroves of Colombia revisited in an era of open data, global changes, and socio-political transition: Homage to Heliodoro Sánchez-Páez. Rev. la Acad. Colomb. Ciencias Exactas, Fis. y Nat. 43, 84–97. https://doi.org/10.18257/raccefyn.780
dc.relationBlanco-Libreros, J.F., Ortiz-Acevedo, L.F., Urrego, L.E., 2015. Reservorios de biomasa aérea y de carbono en los manglares del golfo de Urabá (Caribe colombiano). Actual. Biológicas 37, 131–141. https://doi.org/10.17533/udea.acbi.v37n103a02
dc.relationBlanco, J.A., Viloria, E.A., Narváez, J.C., 2006. ENSO and salinity changes in the Ciénaga Grande de Santa Marta coastal lagoon system, Colombian Caribbean. Estuar. Coast. Shelf Sci. 66, 157–167. https://doi.org/10.1016/j.ecss.2005.08.001
dc.relationBotero, L., Mancera-Pineda, J.E., 1996. Síntesis de los cambios de origen antrópico ocurridos en los últimos 40 años en la Ciénaga de Santa Marta (Colombia). Rev. Acad. Colomb. Cienc. 20 (78), 465-474.
dc.relationBotero, L., Salzwedel, H., 1999. Rehabilitation of the Cienaga Grande de Santa Marta, a mangrove-estuarine system in the Caribbean coast of Colombia. Ocean Coast. Manag. 42, 243–256. https://doi.org/10.1016/S0964-5691(98)00056-8
dc.relationBouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Lee, S.Y., Marchand, C., Middelburg, J.J., Rivera-Monroy, V.H., Smith, T.J., Twilley, R.R., 2008. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochem. Cycles 22, 1–12. https://doi.org/10.1029/2007GB003052
dc.relationBulmer, R.H., Schwendenmann, L., Lundquist, C.J., 2016. Carbon and Nitrogen Stocks and Below-Ground Allometry in Temperate Mangroves. Front. Mar. Sci. 3, 1–11. https://doi.org/10.3389/fmars.2016.00150
dc.relationCahoon, D.R., Hensel, P., Rybczyk, J., Mckee, K.L., Proffitt, E., Pérez, B., 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105.
dc.relationCardona, P., 1991. Característica de los suelos del manglar del costado Noraccidental de la Ciénaga Grande de Santa Marta (Complejo de Pajares e Isla de Salamanca) y su relacióncon algunos atributos de la vegetación. Universidad de Antióquia. Tesis de Maestría en Biología.
dc.relationCardona, P., Botero, L., 1998. Soil Characteristics and Vegetation Structure in a Heavily Deteriorated Mangrove Forest in the Caribbean Coast of Colombia. Biotropica 30 (1), 24–34.
dc.relationCasas-Monroy, O., 1999. Patrones de regeneración natural del manglar de la region de la Ciénaga Grande de Santa Marta, Caribe Colombiano. Universidad Jorge Tadeo Lozano.Tesis Biología Marina.
dc.relationCastañeda-Moya, E., Twilley, R.R., Rivera-Monroy, V.H., Marx, B.D., Coronado-Molina, C., Ewe, S.M.L., 2011. Patterns of Root Dynamics in Mangrove Forests Along Environmental Gradients in the Florida Coastal Everglades, USA. Ecosystems 14, 1178–1195. https://doi.org/10.1007/s10021-011-9473-3
dc.relationChiu, C.-Y., Lee, S.-C., Chen, T.-H., Tian, G., 2004. Denitrification associated N loss in mangrove soil. Nutr. Cycl. Agroecosystems 69, 185–189. https://doi.org/10.1023/B
dc.relationChowdhury, R.R., Uchida, E., Chen, L., Osorio, V., Yoder, L., 2017. Anthropogenic drivers of mangrove loss: Geographic patterns and implications for livelihoods. Mangrove Ecosyst. A Glob. Biogeogr. Perspect. Struct. Funct. Serv. 275–300. https://doi.org/10.1007/978-3-319-62206-4_9
dc.relationCintrón, G., Schaeffer-Novelli, Y., 1983. Introducción a la Ecología del Manglar. UNESCO, Montevideo-Uruguay.
dc.relationConrad, S., Brown, D.R., Alvarez, P.G., Bates, B., Ibrahim, N., Reid, A., Monteiro, L.S., Silva, D.A., Mamo, L.T., Bowtell, J.R., Lin, H.A., Tolentino, N.L., Sanders, C.J., 2019. Does Regional Development Influence Sedimentary Blue Carbon Stocks? A Case Study From Three Australian Estuaries. Front. Mar. Sci. 5. https://doi.org/10.3389/fmars.2018.00518
dc.relationCormier, N., Twilley, R.R., Ewel, K.C., Krauss, K.W., 2015. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia 750, 69–87. https://doi.org/10.1007/s10750-015-2178-4
dc.relationDahdouh-Guebas, F., Kairo, J.G., De Bondt, R., Koedam, N., 2007. Pneumatophore height and density in relation to microtopography in the grey mangrove Avicennia marina. Belgian J. Bot. 140, 213–221.
dc.relationDavies, B.E., 1974. Published January, 1974 150. Soil Sci. Soc. Am. J. 38, 150–151. https://doi.org/10.2136/sssaj1974.03615995003800010046x
dc.relationDe la Peña, A., Rojas, C., De la Peña, M., 2010. Valoración Económica del Manglar por el Almacenamiento de Carbono, Ciénaga Grande de Santa Marta. CLIO América 4, 133–150. https://doi.org/10.21676/23897848.400
dc.relationDe Oliveira Marques, J.D., Luizão, F.J., Teixeira, W.G., Nogueira, E.M., Fearnside, P.M., Sarrazin, M., 2017. Soil Carbon Stocks under Amazonian Forest: Distribution in the Soil Fractions and Vulnerability to Emission. Open J. For. 07, 121–142. https://doi.org/10.4236/ojf.2017.72008
dc.relationDonato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., 2011. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123
dc.relationDoussan, C., Pagès, L., Pierret, A., 2003. Soil exploration and resource acquisition by plant roots: an architectural and modelling point of view. Agronomie 23, 419–431. https://doi.org/10.1051/agro
dc.relationElster, C., Perdomo, L., 1999. Rooting and vegetative propagation in Laguncularia racemosa. Aquat. Bot. 63, 83–93. https://doi.org/10.1016/S0304-3770(98)00122-3
dc.relationEstrada, G.C.D., Soares, M.L.G., 2017. Global patterns of aboveground carbon stock and sequestration in mangroves. An. Acad. Bras. Cienc. 89, 973–989. https://doi.org/10.1590/0001-3765201720160357
dc.relationFAO, 2007. The world’s mangrove forest 1980 -2005. (No. 153), FAO Forestry Paper. FAO, Rome.
dc.relationFriess, D.A., Krauss, K.W., Horstman, E.M., Balke, T., Bouma, T.J., Galli, D., Webb, E.L., 2012. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol. Rev. 87, 346–366. https://doi.org/10.1111/j.1469-185X.2011.00198.x
dc.relationGeißler, N., Schnetter, R., Schnetter, M.L., 2002. The pneumathodes of Laguncularia racemosa: Little known rootlets of surprising structure, and notes on a new fluorescent dye for lipophilic substances. Plant Biol. 4, 729–739. https://doi.org/10.1055/s-2002-37404
dc.relationGiraldo, B., 1995. Regeneración natural del manglar en el Sector occidental (Isla Salamnaca - Complejo Pajarales) de la Ciénega Grande de Santa Marta, Caribe Colobiano. Universidad del Valle. Tesis Biología (Biología Marina).
dc.relationGithaiga, M.N., 2013. Structure and Biomass Accumulation of Natural Mangrove Forest at Gazi Bay, Kenya. Kenyatta University.
dc.relationHamilton, S.E., Casey, D., 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738. https://doi.org/10.1111/geb.12449
dc.relationHargis, T.G., Twilley, R.R., 1994. Multi-depth probes for measuring Oxidation-Reduction (Redox) Potential in wetland soils. J. Sediment. Res. 64, 684–685.
dc.relationHaris, A.A., Chhabra, V., Biswas, S., 2013. Carbon sequestration for mitigation of climate change. Agric. Rev. 2, 129–236.
dc.relationHoward, J., Hoyt, S., Isensee, K., Pidgeon, E., Telszewski, M., 2014. Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Consevation international, Intergovermental Oceanographic Commission of UNESCO, International Union forn Conservation of Nature, Arlington, Virginia, USA.
dc.relationIacono, C.L., Mateo, M. A., Gràcia, L., Guasch, L., Carbonell, R., Serrano, L., Dañobeitia, J., 2008. Very high-resolution seismoacoustic imaging of seagrass meadows (Mediterranean Sea): Implications for carbon sink estimates, Geophys. Res. Lett., 35, L18601, doi:10.1029/2008GL034773.
dc.relationIbarra, K.P., Gómez, M.C., Viloria, E.A., Arteaga, E., Cuadrado, I., Martínez, M.F., Nieto, Y., Rodríguez, J.A., Licero, L.V., Perdomo, L.V., Chávez, S., Romero, J.A., Rueda, M., 2014. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Santa Marta, Colombia.
dc.relationIbarra, K.P., Villamil, C., Viloria, E.A., Vega, D., Bautista, P.A., Cadavid, B.C., Parra, J.P., Espinosa, L.F., Gómez, M.C., Agudelo, C.M., Perdomo, L. V, Mármol, D., Rueda, M., 2013. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2012. Santa Marta, Colombia.
dc.relationINVEMAR, 2018a. Cifras SIAM-Sistema de Información Ambiental Marina. Santa Marta, Colombia
dc.relationINVEMAR, 2018b. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2018. Volumen 17. Santa Marta, Colombia.
dc.relationINVEMAR, 2017. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2016. Volumen 15. Santa Marta, Colombia.
dc.relationINVEMAR, 2016. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2015. Volumen 14. Santa Marta, Colombia.
dc.relationINVEMAR. 2015a. Caracterización de la estructura y contenido de carbono de los bosques de manglar en el Distrito de Manejo Integrado Bahía Cispata-Tinajones-La Balsa. Proyecto GEF-SAMP, como parte del PDD Manglares para Plan Vivo. (Contratista: Carbono & Bosques).
dc.relationINVEMAR. 2015b. Caracterización de la estructura y contenido de carbono de los bosques de manglar en el área de jurisdicción del consejo comunitario la plata, bahía Málaga, Valle del Cauca. Proyecto GEF-SAMP (Contratistas: Monsalve, A., Ramírez, G., Carbono & Bosques). 80p
dc.relationKauffman, J.B., Bhomia, R.K., 2017. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLoS One 12, 1–17. https://doi.org/10.1371/journal.pone.0187749
dc.relationKauffman, J.B., Donato, D.C., 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. CIFOR. Working Paper (No. 86). Bogor, Indonesia. https://doi.org/10.17528/cifor/003749
dc.relationKauffman, J.B., Heider, C., Cole, T.G., Dwire, K.A., Donato, D.C., 2011. Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 31, 343–352. https://doi.org/10.1007/s13157-011-0148-9
dc.relationKauffman, J.B., Heider, C., Norfolk, J., Payton, F., 2014. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24, 518–527. https://doi.org/10.1890/13-0640.1
dc.relationKhan, M.N.I., Suwa, R., Hagihara, A., 2007. Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: Vertical distribution in the soil-vegetation system. Wetl. Ecol. Manag. 15, 141–153. https://doi.org/10.1007/s11273-006-9020-8
dc.relationKomiyama, A., Havanond, S., Srisawantt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Ishihara, S., Miyagi, T., 2000. Top / root biomass ratio of a secondary mangrove forest. For. Ecol. Manage. 139, 127–134.
dc.relationKomiyama, A., Ogino, K., Aksornkoae, S., Sabhasri, S., 1987. Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. J. Trop. Ecol. 3, 97–108. https://doi.org/10.1017/S0266467400001826
dc.relationKomiyama, A., Ong, J.E., Poungparn, S., 2008. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 89, 128–137. https://doi.org/10.1016/j.aquabot.2007.12.006
dc.relationKomiyama, A., Poungparn, S., Kato, S., 2005. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 21, 471–477. https://doi.org/10.1017/S0266467405002476
dc.relationKrauss, K.W., Mckee, K.L., Lovelock, C.E., Cahoon, D.R., Saintilan, N., Reef, R., Chen, L., 2014. How mangrove forests adjust to rising sea level. New Phytol. 202, 19–34.
dc.relationLacerda, L.D., Ittekkot, V., Patchineelam, S.R., 1995. Biogeochemistry of Mangrove Soil Organic Matter: a Comparison Between Rhizophora and Avicennia Soils in South - eastern Brazil. Estuar. Coast. Shelf Sci. 40, 713–720.
dc.relationLovelock, C.E., Duarte, C.M. 2019 Dimensions of Blue Carbon and emerging perspectives. Biol. Lett. 15: 20180781. http://dx.doi.org/10.1098/rsbl.2018.0781
dc.relationLovelock, C.E., Ruess, R.W., Feller, I.C., 2011. CO2 efflux from cleared mangrove peat. PLoS One 6, 1–4. https://doi.org/10.1201/b16845
dc.relationLovelock, C.E., Sorrell, B.K., Hancock, N., Hua, Q., Swales, A., 2010. Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems 13, 437–451. https://doi.org/10.1007/s10021-010-9329-2
dc.relationLukac, M., 2012. Fine Root Turnover, in: Mancuso, S. (Ed.), Measuring Roots: An Updated Approach. Berlin Heidelberg, pp. 363–373. https://doi.org/10.1007/978-3-642-22067-8
dc.relationMacreadie, P.I., Anton, A., Raven, J.A., Beaumont, N., Connolly, R.M., Friess, D.A., Kelleway, J.J., Kennedy, H., Kuwae, T., Lavery, P.S., Lovelock, C.E., Smale, D.A., Apostolaki, E.T., Atwood, T.B., Baldock, J., Bianchi, T.S., Chmura, G.L., Eyre, B.D., Fourqurean, J.W., Hall-Spencer, J.M., Huxham, M., Hendriks, I.E., Krause-Jensen, D., Laffoley, D., Luisetti, T., Marbà, N., Masque, P., McGlathery, K.J., Megonigal, J.P., Murdiyarso, D., Russell, B.D., Santos, R., Serrano, O., Silliman, B.R., Watanabe, K., Duarte, C.M., 2019. The future of Blue Carbon science. Nat. Commun. 10, 1–13. https://doi.org/10.1038/s41467-019-11693-w
dc.relationMcCormack, M.L., Adams, T.S., Smithwick, E.A.H., Eissenstat, D.M., 2012. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol. 195, 823–831. https://doi.org/10.1111/j.1469-8137.2012.04198.x
dc.relationMcKee, K.L., 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar. Coast. Shelf Sci. 91, 475–483. https://doi.org/10.1016/j.ecss.2010.05.001
dc.relationMckee, K.L., Cahoon, D.R., Feller, I.C., 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556. https://doi.org/10.1111/j.1466-8238.2007.00317.x
dc.relationMcKee, K.L., Faulkner, P.L., 2000. Restoration of biogeochemical function in mangrove forests. Restor. Ecol. 8, 247–259. https://doi.org/10.1046/j.1526-100X.2000.80036.x
dc.relationMcKee, K.L., Mendelssohn, I.A., Hester, M.W., 1988. Reexamination of Pore Water Sulfide Concentrations and Redox Potentials Near the Aerial Roots of Rhizophora mangle and Avicennia germinans. Am. J. Bot. 75, 1352–1359. https://doi.org/10.2307/2444458
dc.relationMcLeod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H., Silliman, B.R., 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560. https://doi.org/10.1890/110004
dc.relationMedina, J.H., 2016. Estructura, Asignación de Biomasa y Producción Primaria Neta en Bosques de Manglar de un Complejo Karstico de Origen Carbonatado en una Isla Oceánica. Universidad Nacional de colombia.
dc.relationMiddleton, B.A., Mckee, K.L., 2001. Degradation of Mangrove Tissues and Implications for Peat Formation in Belizean Island Forests. J. Ecol. 89, 818–828.
dc.relationNellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., Grimsditch, G. (Eds). 2009. Blue Carbon. A Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal, www.grida.no.
dc.relationOchoa-Bejarano, G., 1988. Algunas características Funcionales del Manglar de la Ciénaga Grande de Santa Marta, con énfasis en Rhizophora mangle y Avicennia germinans. Universidad del Valle.
dc.relationOtero, X.L., Méndez, A., Nóbrega, G.N., Ferreira, T.O., Santiso-Taboada, M.J., Meléndez, W., Macías, F., 2017. High fragility of the soil organic C pools in mangrove forests. Mar. Pollut. Bull. 119, 460–464. https://doi.org/10.1016/j.marpolbul.2017.03.074
dc.relationPalacios, M.L., Cantera, J.R., Peña, E.J., 2019. Carbon stocks in mangrove forests of the Colombian Pacific. Estuar. Coast. Shelf Sci. 227, 106299. https://doi.org/10.1016/j.ecss.2019.106299
dc.relationPendleton, L., Donato, D.C., Murray, B.C., Crooks, S., Jenkins, W.A., Sifleet, S., Craft, C., Fourqurean, J.W., Kauffman, J.B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., Baldera, A., 2012. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS One 7, 1–7. https://doi.org/10.1371/journal.pone.0043542
dc.relationRamos e Silva, C.A., Oliveira, S.R., Rêgo, R.D.P., Mozeto, A.A., 2007. Dynamics of phosphorus and nitrogen through litter fall and decomposition in tropical mangrove forest. Mar. Environ. Res. 64, 524–534. https://doi.org/10.1016/j.marenvres.2007.04.007
dc.relationReef, R., Feller, I.C., Lovelock, C.E., 2010. Nutrition of mangroves. Tree Physiol. 30, 1148–1160. https://doi.org/10.1093/treephys/tpq048
dc.relationRivera-Monroy, V.H., Mancera-Pineda, J.., Twilley, R., Casas-Monroy, O., Castañeda-Moya, E., Restrepo, J., Daza-Monroy, F., Perdomo, L., Reyes-Forero, S.P., Campos, E., Villamil, M., F, P.-N., 2001. Estructura y función de un ecosistema de manglar a lo largo de una trayectoria de restauración en diferentes niveles de perturbación. Informe Técnico Final. Contrato 429-97 INVEMAR-COLCIENCIAS. Código 2105-09-13080-97. Santa Marta.
dc.relationRobert, M., 2002. Captura de carbono en los suelos para un mejor manejo de la tierra. Informe sobre recursos mundiales de suelos No. 96, Fao.
dc.relationRöderstein, M., Perdomo, L., Villamil, C., Hauffe, T., Schnetter, M.L., 2014. Long-term vegetation changes in a tropical coastal lagoon system after interventions in the hydrological conditions. Aquat. Bot. 113, 19–31. https://doi.org/10.1016/j.aquabot.2013.10.008
dc.relationRodríguez-Rodríguez, J.A., Mancera-Pineda, J.E., Rodríguez-P., J.M., 2016. Validación y aplicación de un modelo de restauración de manglar basado en individuos para tres especies en la Ciénaga Grande de Santa Marta. Caldasia 38, 285–299. https://doi.org/10.15446/caldasia.v38n2.55360
dc.relationRodríguez-Rodríguez, J.A., Mancera, J.E., Perdomo Trujillo, L.V., Rueda, M., Ibarra-gutiérrez, K.P., 2018. Ciénaga Grande de Santa Marta: The Largest Lagoon-Delta Ecosystem in the Colombian Caribbean, in: Finlayson, C., Milton, G., Prentice, R., Davidson, N. (Eds.), The Wetland Book. Springer Netherlands, Dordrecht-Netherlands, pp. 1–16. https://doi.org/10.1007/978-94-007-6173-5
dc.relationRovai, A.S., Twilley, R.R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P.A., Simonassi, J.C., Fonseca, A.L., Pagliosa, P.R., 2018. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538. https://doi.org/10.1038/s41558-018-0162-5
dc.relationRuiz-Fernández, A.C., Carnero-Bravo, V., Sanchez-Cabeza, J.A., Pérez-Bernal, L.H., Amaya-Monterrosa, O.A., Bojórquez-Sánchez, S., López-Mendoza, P.G., Cardoso-Mohedano, J.G., Dunbar, R.B., Mucciarone, D.A., Marmolejo-Rodríguez, A.J., 2018. Carbon burial and storage in tropical salt marshes under the influence of sea level rise. Sci. Total Environ. 630, 1628–1640. https://doi.org/10.1016/j.scitotenv.2018.02.246
dc.relationSánchez-Paéz, H., Álvarez-León, R., Pinto-Nolla, F., Sánchez-Alférez, A.S., Pino-Renjifo, J.C., García-Hansen, I., Acosta-Peñaloza, M.T., 1997. Diagnóstico y Zonificación Preliminar de los Manglares del Caribe de colombia. Ministerio del Medio Ambiente, Bogotá, Colombia.
dc.relationSasmito, S.D., Taillardat, P., Clendenning, J.N., Cameron, C., Friess, D.A., Murdiyarso, D., Hutley, L.B., 2019. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Glob. Chang. Biol. 25, 4291–4302. https://doi.org/10.1111/gcb.14774
dc.relationSchnetter, M.L., 2002. El sistema radical del mangle blanco (Avicennia germinans), un ejemplo de adaptaciones morfológicas y anatómicas en espermatófitos a condiciones ecológicas adversas. Rev. la Acad. Colomb. Ciencias Exactas, Fis. y Nat. 26, 111–126.
dc.relationSerrano Díaz, L.A., Botero, L., Cardona, P., Mancera-Pineda, J.E., 1995. Estructura del manglar en el Delta Exterior del río Magdalena-Ciénaga Grande de Santa Marta, una zona tensionada por alteraciones del equilibrio hídrico. An.Inst.Invest.Mar.Punta Betín 24, 135–164.
dc.relationSimard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V.H., Castañeda-Moya, E., Thomas, N., Van der Stocken, T., 2019. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45. https://doi.org/10.1038/s41561-018-0279-1
dc.relationTamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J.G., Kirui, B., 2008. Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. For. Ecol. Manage. 256, 1290–1297. https://doi.org/10.1016/j.foreco.2008.06.026
dc.relationTomlinson, P.B., 1986. The botany of mangroves. Press Syndicate of the University of Cambridge, Cambridge.
dc.relationTwilley, R.R., Castañeda-Moya, E., Rivera-Monroy, V.H., Rovai, A., 2017. Productivity and Carbon Dynamics in Mangrove Wetlands, in: Mangrove Ecosystems: A Global Biogeographic Perspective. Structure, Funtion and Services. pp. 113–162. https://doi.org/10.1007/978-3-319-62206-4
dc.relationTwilley, R.R., Rivera-Monroy, V.H., 2005. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J. Coast. Res. 21, 79–93.
dc.relationTwilley, R.R., Rivera-monroy, V.H., Chen, R., Botero, L., 1998. Adapting an Ecological Mangrove Model to Simulate Trajectories in Restoration Ecology 37 (8–12), 404–419. https://doi.org/10.1016/S0025-326X(99)00137-X
dc.relationValiela, I., Cole, M.L., 2002. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5, 92–102. https://doi.org/10.1007/s10021-001-0058-4
dc.relationValiela, I., Collins, G., Kremer, J., Lajtha, K., Geist, M., Seely, B., Brawley, J., Sham, C.H., 1997. Nitrogen Loading From Coastal Watersheds to Receiving Estuaries: New Method and Application. Ecol. Appl. 7, 358–380.
dc.relationVogt, K.A., Vogt, D.J., Bloomfield, J., 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200, 71–89. https://doi.org/10.1023/A
dc.relationVölkel, H., Bolivar, J.M., Sierra, C.A., 2018. Stabilization of carbon in mineral soils from mangroves of the Sinú river delta, Colombia. Wetl. Ecol. Manag. 26, 931–942. https://doi.org/10.1007/s11273-018-9621-z
dc.relationVon Prahl, H., Cantera, J.R., Contreras, R., 1990. Manglares y Hombres del Pacífico colombiano, Primera. ed. Colombia.
dc.relationWorld Bank, 2019. State and Trends of Carbon Pricing 2019, State and Trends of Carbon Pricing 2019. Washington, DC. https://doi.org/10.1596/978-1-4648-1435-8
dc.relationWorthington, T., Spalding, M., 2018. Mangrove Restoration Potential A global map highlighting a critical opportunity. Geol. Surv. 36.
dc.relationYepes, A., Zapata, M., Bolivar, J.M., Monsalve, A., Espinosa, S.M., Sierra-Correa, P.C., Sierra, A., 2016. Ecuaciones alométricas de biomasa aérea para la estimación de los contenidos de carbono en manglares del Caribe Colombiano. Rev. Biol. Trop. 64, 913–926. https://doi.org/10.15517/rbt.v64i2.18141
dc.relationZhang, J.P., Shen, C.D., Ren, H., Wang, J., Han, W.D., 2012. Estimating Change in Sedimentary Organic Carbon Content During Mangrove Restoration in Southern China Using Carbon Isotopic Measurements. Pedosphere 22, 58–66. https://doi.org/10.1016/S1002-0160(11)60191-4
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleBiomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribución a las reservas de carbono en el ecosistema
dc.typeTesis


Este ítem pertenece a la siguiente institución