dc.contributorde Brito Brandão, Pedro Filipe
dc.contributorVanegas Guerrero, Javier
dc.contributorUniversidad Nacional de Colombia
dc.contributorUniversidad Antonio Nariño
dc.contributorGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente - GERMINA
dc.creatorBoyacá Vásquez, Vivian Johanna
dc.date.accessioned2020-08-05T23:30:11Z
dc.date.available2020-08-05T23:30:11Z
dc.date.created2020-08-05T23:30:11Z
dc.date.issued2019-04-21
dc.identifierBoyacá-Vásquez V.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77948
dc.description.abstractLas rizobacterias entomopatógenas presentan factores de virulencia como la producción de compuestos antimicrobianos, enzimas degradadoras y toxinas que han sido poco explorados. Mediante genómica se han realizado acercamientos para entender la interacción entre rizobacterias e insectos plaga. El objetivo de este trabajo fue determinar los factores de virulencia de rizobacterias entomopatógenas de Tecia solanivora mediante un acercamiento genómico. Para esto, se caracterizó el genoma de dos rizobacterias entomopatógenas que causaron una mortalidad superior al 75% en T. solanivora, y se compararon los factores de virulencia con genomas reportados de rizobacterias entomopatógenas. Se realizó extracción de ADN genómico, secuenciación masiva utilizando HiSeq 4000 (Illumina), ensamblaje y anotación y se determinó el porcentaje de similitud. Las lecturas de Raoultella C47 y Enterobacter TN152 fueron ensambladas en 58 y 121 contigs, respectivamente, con un tamaño de genoma medio de 5,4 kb, sin presencia de plásmidos. Se encontró que las categorías más relevantes fueron metabolismo, procesamiento de proteínas y respuesta a estrés, defensa y virulencia. Raoultella C47 mostró alta diversidad de compuestos volátiles incluyendo el ácido cianhídrico y presentó un gen para ramnolípidos. Enterobacter TN152 presentó dos toxinas entomopatógenas homólogas a toxinas Tc. Se detectaron enzimas degradadoras en ambos genomas. Al comparar con otras 14 rizobacterias, se encontró un 55% de similitud, y el perfil entomopatógeno más cercano para Raoultella C47 y Enterobacter TN152 fue Yersinia entomophaga MH96. Este estudio contribuye a entender los mecanismos de patogenicidad de rizobacterias, extendiendo el limitado grupo de rizobacterias entomopatógenas que se conocen y su respectiva secuenciación.
dc.description.abstractEntomopathogenic rhizobacteria present virulence factors such as the production of antimicrobial compounds, degrading enzymes and toxins, which have been little explored. By genomic methods, approaches have been made to understand the interaction between rhizobacteria and pest insects. The objective of this work was to determine the virulence factors of entomopathogenic rhizobacteria of Tecia solanivora using a genomic approach. The genome of two entomopathogenic rhizobacteria causing a mortality greater than 75% on T. Solanivora was characterized and virulence factors were compared with reported genomes of entomopathogenic rhizobacteria. Genomic DNA was extracted and massive sequencing was performed using HiSeq 4000 (Illumina). Assembly and annotation and the percentage of similarity was determined. The Raoultella C47 and Enterobacter TN152 readings were assembled in 58 and 121 contigs, respectively, with an average genome size of 5.4 kb without the presence of plasmids. The most relevant categories were metabolism, protein processing and response to stress, defense and virulence. Raoultella C47 showed high diversity of volatile compounds including hydrocyanic acid; a gene for ramnolipids was also found. Enterobacter TN152 showed two entomopathogenic toxins homologous to Tc toxins. Degrading enzymes were detected in both genomes. When comparing against other 14 rhizobacteria, a similarity of 55% was found, and the closest entomopathogenic profile for Raoultella C47 and Enterobacter TN152 was Yersinia entomophaga MH96. This study helps to understand the mechanisms of pathogenicity of rhizobacteria, extending the limited group of entomopathogenic rhizobacteria that are known and their respective sequencing.
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisherDepartamento de Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbby, S. S., & Rocha, E. P. C. (2017). Identification of protein secretion systems in bacterial genomes using MacSyFinder. Methods in Molecular Biology, 1615(March), 1–21. https://doi.org/10.1007/978-1-4939-7033-9_1
dc.relationAbebe-Akele, F., Tisa, L. S., Cooper, V. S., Hatcher, P. J., Abebe, E., & Thomas, W. K. (2015). Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BMC Genomics, 16(1), 1–15. https://doi.org/10.1186/s12864-015-1697-8
dc.relationAbraham, J., & Silambarasan, S. (2015). Plant Growth Promoting Bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in Mineralization of Endosulfan. Applied Biochemistry and Biotechnology, 175(7), 3336–3348. https://doi.org/10.1007/s12010-015-1504-7
dc.relationAdnan, M., Patel, M., Reddy, M. N., Khan, S., Alshammari, E., Abdelkareem, A. M., & Hadi, S. (2016). ARPN Journal of Agricultural and Biological Science ISOLATION AND CHARACTERIZATION OF EFFECTIVE AND EFFICIENT PLANT GROWTH-PROMOTING RHIZOBACTERIA FROM RICE RHIZOSPHERE OF DIVERSE PADDY FIELDS OF INDIAN SOIL. 11(9), 373–379.
dc.relationAleti, G., Nikolić, B., Brader, G., Pandey, R. V., Antonielli, L., Pfeiffer, S., … Sessitsch, A. (2017). Secondary metabolite genes encoded by potato rhizosphere microbiomes in the Andean highlands are diverse and vary with sampling site and vegetation stage. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02314-x
dc.relationAssefa, S., Keane, T. M., Otto, T. D., Newbold, C., & Berriman, M. (2009). ABACAS: Algorithm-based automatic contiguation of assembled sequences. Bioinformatics, 25(15), 1968–1969. https://doi.org/10.1093/bioinformatics/btp347
dc.relationÁvila, E. (2015). MANUAL PAPA del Programa De Apoyo Agrícola Y Agroindustrial Vicepresidencia De Fortalecimiento Empresarial Cámara De Comercio De Bogotá. In Cámara de Comercio de Bogotá.
dc.relationAziz, R. K., Bartels, D., Best, A., DeJongh, M., Disz, T., Edwards, R. A., … Zagnitko, O. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, 9, 1–15. https://doi.org/10.1186/1471-2164-9-75
dc.relationBabalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32(11), 1559–1570. https://doi.org/10.1007/s10529-010-0347-0
dc.relationBankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., … Pevzner, P. A. (2012). and Its Applications to Single-Cell Sequencing. 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021
dc.relationBenson, D. A., Cavanaugh, M., Clark, K., Karsch-mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. 41(November 2012), 36–42. https://doi.org/10.1093/nar/gks1195
dc.relationBhattacharya, D., Nowotny, J., Cao, R., & Cheng, J. (2016). 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Research, 44(W1), W406–W409. https://doi.org/10.1093/nar/gkw336
dc.relationBiggs, M. B., & Papin, J. A. (2013). Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation. 8(10), 1–8. https://doi.org/10.1371/journal.pone.0078011
dc.relationBisch, G., Ogier, J. C., Médigue, C., Rouy, Z., Vincent, S., Tailliez, P., … Gaudriault, S. (2016). Comparative genomics between two xenorhabdus bovienii strains highlights differential evolutionary scenarios within an entomopathogenic bacterial species. Genome Biology and Evolution, 8(1), 148–160. https://doi.org/10.1093/gbe/evv248
dc.relationBlackburn, M., Golubeva, E., Bowen, D., & Ffrench-Constant, R. H. (1998). A novel insecticidal toxin from Photorhabdus luminescens, toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta. Applied and Environmental Microbiology, 64(8), 3036–3041.
dc.relationBode, H. B. (2009). Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biology, 13(2), 224–230. https://doi.org/10.1016/j.cbpa.2009.02.037
dc.relationBosa, C. F., & Cotes, A. M. (2004). Effect of culture conditions on the enzymatic activity of Serratia marcescens against Tecia solanivora (Lepidoptera: Gelechiidae). Revista Colombiana de Entomología, 30(1), 79–85. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882004000100012&lng=en&nrm=iso&tlng=es
dc.relationBrady, S., Kai, M., Daniel, R., Gottschalk, G., Weise, T., Th, A., & Piechulla, B. (2018). VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. (September), 45–53. https://doi.org/10.1111/1574-6968.12359
dc.relationBrettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., … Xia, F. (2015). RASTtk : A modular and extensible implementation of the RAST algorithm for annotating batches of genomes. https://doi.org/10.1038/srep08365
dc.relationBroderick, K. E., Chan, A., Balasubramanian, M., Feala, J., Reed, S. L., Panda, M., … Boss, G. R. (2008). Cyanide Produced by Human Isolates of Pseudomonas aeruginosa Contributes to Lethality in Drosophila melanogaster . The Journal of Infectious Diseases, 197(3), 457–464. https://doi.org/10.1086/525282
dc.relationBusby, J. N., Landsberg, M. J., Simpson, R. M., Jones, S. A., Hankamer, B., Hurst, M. R. H., & Lott, J. S. (2012). Structural Analysis of Chi1 Chitinase from Yen-Tc : The Multisubunit Insecticidal ABC Toxin Complex of Yersinia entomophaga. Journal of Molecular Biology, 415(2), 359–371. https://doi.org/10.1016/j.jmb.2011.11.018
dc.relationCabanás, C. G. L., Legarda, G., Ruano-Rosa, D., Pizarro-Tobías, P., Valverde-Corredor, A., Niqui, J. L., … Mercado-Blanco, J. (2018). Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae: From the host roots to the bacterial genomes. Frontiers in Microbiology, 9(FEB). https://doi.org/10.3389/fmicb.2018.00277
dc.relationCabral, C. M., Cherqui, A., Pereira, A., & Simões, N. (2004). Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Applied and Environmental Microbiology, 70(7), 3831–3838. https://doi.org/10.1128/AEM.70.7.3831-3838.2004
dc.relationCastagnola, A., & Stock, S. P. (2014). Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects, 5(1), 139–166. https://doi.org/10.3390/insects5010139
dc.relationChaston, J. M., Suen, G., Tucker, S. L., Andersen, A. W., Bhasin, A., Bode, E., … Goodrich-Blair, H. (2011). The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes. PLoS ONE, 6(11). https://doi.org/10.1371/journal.pone.0027909
dc.relationChen, W. J., Hsieh, F. C., Hsu, F. C., Tasy, Y. F., Liu, J. R., & Shih, M. C. (2014). Characterization of an Insecticidal Toxin and Pathogenicity of Pseudomonas taiwanensis against Insects. PLoS Pathogens, 10(8). https://doi.org/10.1371/journal.ppat.1004288
dc.relationChen, Y., Shen, X., Peng, H., Hu, H., Wang, W., & Zhang, X. (2015). Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genomics Data, 4, 33–42. https://doi.org/10.1016/j.gdata.2015.01.006
dc.relationCIP. (2017). Hechos y cifras sobre la papa. 2. Retrieved from www.cipotato.org
dc.relationCowles, K. N., & Goodrich-Blair, H. (2005). Expression and activity of a Xenorhabdus nematophila haemolysin required for full virulence towards Manduca sexta insects. Cellular Microbiology, 7(2), 209–219. https://doi.org/10.1111/j.1462-5822.2004.00448.x
dc.relationCriscuolo, A., & Brisse, S. (2013). AlienTrimmer: A tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics, 102(5–6), 500–506. https://doi.org/10.1016/j.ygeno.2013.07.011
dc.relationDANE. (2014). Polilla guatemalteca (Tecia solanivora), plaga de gran impacto económico en el cultivo de la papa. Retrieved from https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/insumos_factores_de_produccion_jul_2014.pdf
dc.relationDavis, J. J., Boisvert, S., Brettin, T., Kenyon, R. W., Mao, C., Olson, R., … Stevens, R. (2016). Antimicrobial Resistance Prediction in PATRIC and RAST. Scientific Reports, 6(May), 1–12. https://doi.org/10.1038/srep27930
dc.relationDereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., … Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(Web Server issue), 465–469. https://doi.org/10.1093/nar/gkn180
dc.relationDesjardins, P. R., & Conklin, D. S. (2011). Microvolume quantitation of nucleic acids. Current Protocols in Molecular Biology, (SUPPL.93), 1–5. https://doi.org/10.1002/0471142727.mba03js93
dc.relationDevi, K. K., & Kothamasi, D. (2009). Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiology Letters, 300(2), 195–200. https://doi.org/10.1111/j.1574-6968.2009.01782.x
dc.relationE. Özgül Inceoglu. (2012). Soil and Cultivar Type Shape the Bacterial Community in the Potato Rhizosphere. 63(2), 460–470.
dc.relationEasom, C. A., & Clarke, D. J. (2008). Motility is required for the competitive fitness of entomopathogenic Photorhabdus luminescens during insect infection. BMC Microbiology, 8, 1–11. https://doi.org/10.1186/1471-2180-8-168
dc.relationEgami, I., Iiyama, K., Zhang, P., Chieda, Y., Ino, N., Hasegawa, K., … Shimizu, S. (2009). Insecticidal bacterium isolated from an ant lion larva from Munakata, Japan. Journal of Applied Entomology, 133(2), 117–124. https://doi.org/10.1111/j.1439-0418.2008.01329.x
dc.relationEkblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107(1), 1–15. https://doi.org/10.1038/hdy.2010.152
dc.relationEkblom, Robert, & Wolf, J. B. W. (2014). A field guide to whole-genome sequencing, assembly and annotation. Evolutionary Applications, 7(9), 1026–1042. https://doi.org/10.1111/eva.12178
dc.relationEndrullat, C., Glökler, J., Franke, P., & Frohme, M. (2016). Applied & Translational Genomics Standardization and quality management in next-generation sequencing. ATG, 10, 2–9. https://doi.org/10.1016/j.atg.2016.06.001
dc.relationFAOSTAT. (2018). WORLD FOOD AND AGRICULTURE 2018: STATISTICAL POCKETBOOK. In Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/faostat/en/#home%0Ahttp://www.fao.org/faostat/en/#rankings
dc.relationFedhila, S., Buisson, C., Dussurget, O., Serror, P., Glomski, I. J., Liehl, P., … Nielsen-LeRoux, C. (2010). Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. Journal of Invertebrate Pathology, 103(1), 24–29. https://doi.org/10.1016/j.jip.2009.09.005
dc.relationFlury, P., Aellen, N., Ruffner, B., Péchy-Tarr, M., Fataar, S., Metla, Z., … Maurhofer, M. (2016). Insect pathogenicity in plant-beneficial pseudomonads: Phylogenetic distribution and comparative genomics. ISME Journal, 10(10). https://doi.org/10.1038/ismej.2016.5
dc.relationFlury, P., Vesga, P., Péchy-tarr, M., Aellen, N., & Dennert, F. (2017). Antimicrobial and Insecticidal : Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0 , CMR12a , and PCL1391 Contribute to Insect Killing. Frontiers in Microbiology, 8(February). https://doi.org/10.3389/fmicb.2017.00100
dc.relationGarcía Ventocilla, D., Gamarra, G. M., Cabello, N. R., Salas, L. S., Marín, A. C., & Jauregui, J. M. (2011). Efecto de la adición de materia orgánica sobre la dinámica poblacional bacteriana del suelo en cultivos de papa y maíz. Revista Peruana de Biologia, 18(3), 355–360. https://doi.org/10.15381/rpb.v18i3.452
dc.relationGarrido-Sanz, D., Meier-Kolthoff, J. P., Göker, M., Martín, M., Rivilla, R., & Redondo-Nieto, M. (2016). Genomic and genetic diversity within the Pseudomonas fluoresces complex. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0150183
dc.relationGillespie, J. J., Wattam, A. R., Cammer, S. A., Gabbard, J. L., Shukla, M. P., Dalay, O., … Sobral, B. W. (2011). Patric: The comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infection and Immunity, 79(11), 4286–4298. https://doi.org/10.1128/IAI.00207-11
dc.relationGlick, B. R. (2012). Plant Growth-Promoting Bacteria : Mechanisms and Applications. 2012.
dc.relationGurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). BIOINFORMATICS APPLICATIONS NOTE Genome analysis QUAST : quality assessment tool for genome assemblies. 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
dc.relationHaas, D., Keel, C., & Reimmann, C. (2002). Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 81(1–4), 385–395. https://doi.org/10.1023/A:1020549019981
dc.relationHarrison, F., Browning, L. E., Vos, M., & Buckling, A. (2006). Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biology, 4, 1–5. https://doi.org/10.1186/1741-7007-4-21
dc.relationHeermann, R., & Fuchs, T. M. (2008). Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes : uncovering candidate genes involved in insect pathogenicity. 21, 1–21. https://doi.org/10.1186/1471-2164-9-40
dc.relationHenson, J., Tischler, G., & Ning, Z. (2012). Next-generation sequencing and large genome assemblies. Pharmacogenomics, 13(8), 901–915. https://doi.org/10.2217/pgs.12.72
dc.relationHeroven, A. K., Nuss, A. M., Dersch, P., Kathrin, A., Nuss, A. M., Rna-based, P. D., … Dersch, P. (2017). RNA-based mechanisms of virulence control in Enterobacteriaceae RNA-based mechanisms of virulence control in Enterobacteriaceae. RNA Biology, 14(5), 471–487. https://doi.org/10.1080/15476286.2016.1201617
dc.relationHurst, Mark R.H., Beattie, A., Altermann, E., Moraga, R. M., Harper, L. A., Calder, J., & Laugraud, A. (2016). The draft genome sequence of the yersinia entomophaga entomopathogenic type strain MH96T. Toxins, 8(5). https://doi.org/10.3390/toxins8050143
dc.relationHurst, Mark R.H., Beattie, A., Jones, S. A., Laugraud, A., van Koten, C., & Harper, L. (2018). Characterization of Serratia proteamaculans strain AGR96X encoding an 2 anti-feeding prophage (tailocin) with activity against grass grub 3 (Costelytra giveni) and manuka beetle (Pyronota spp.) larvae. Applied and Environmental Microbiology, 84(10), 1–54. https://doi.org/10.1128/AEM.02739-17
dc.relationHurst, Mark R.H., Jones, S. A., Binglin, T., Harper, L. A., Jackson, T. A., & Glare, T. R. (2011). The main virulence determinant of Yersinia entomophaga MH96 is a broad-host-range toxin complex active against insects. Journal of Bacteriology, 193(8), 1966–1980. https://doi.org/10.1128/JB.01044-10
dc.relationHurst, Mark R.H., Jones, S. M., Tan, B., & Jackson, T. A. (2007). Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiology Letters, 275(1), 160–167. https://doi.org/10.1111/j.1574-6968.2007.00886.x
dc.relationHurst, Mark Robin Holmes, Jones, S. A., Beattie, A., van Koten, C., Shelton, A. M., Collins, H. L., & Brownbridge, M. (2019). Assessment of Yersinia entomophaga as a control agent of the diamondback moth Plutella xylostella. Journal of Invertebrate Pathology, 162(February), 19–25. https://doi.org/10.1016/j.jip.2019.02.002
dc.relationI. B. Gross. (2007). Automatic Emotion Regulation. Soc. Personal. Psychol. Compass, 1(1), 146–167.
dc.relationInstituto Colombiano Agropecuario. (2011). Manejo Fitosanitario del Cultivo de la Papa. Línea Agrícola ICA, 112(483), 211–212. https://doi.org/10.1192/bjp.112.483.211-a
dc.relationInstituto Colombiano Agropecuario. (2016). Informe especial: Polilla Guatemalteca o Polilla de la Papa. Retrieved from http://www.boyacaradio.com/noticia.php?id=10187
dc.relationIshii, K., Adachi, T., Hara, T., Hamamoto, H., & Sekimizu, K. (2014). Identification of a Serratia marcescens virulence factor that promotes hemolymph bleeding in the silkworm, Bombyx mori. Journal of Invertebrate Pathology, 117(1), 61–67. https://doi.org/10.1016/j.jip.2014.02.001
dc.relationIzzo, V. M., Chen, Y. H., Schoville, S. D., Wang, C., & Hawthorne, D. J. (2018). Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 111(2), 868–878. https://doi.org/10.1093/jee/tox367
dc.relationJeong, H. U., Mun, H. Y., Oh, H. K., Kim, S. B., Yang, K. Y., Kim, I., & Lee, H. B. (2010). Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth. Journal of Microbiology, 48(4), 541–545. https://doi.org/10.1007/s12275-010-0221-9
dc.relationJones, P., Binns, D., Chang, H., Fraser, M., Li, W., Mcanulla, C., … Hunter, S. (2014). Sequence analysis InterProScan 5 : genome-scale protein function classification. 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031
dc.relationJoshi, M. C., Sharma, A., Kant, S., Birah, A., Gupta, G. P., Khan, S. R., … Banerjee, N. (2008). An insecticidal GroEL protein with chitin binding activity from Xenorhabdus nematophila. Journal of Biological Chemistry, 283(42), 28287–28296. https://doi.org/10.1074/jbc.M804416200
dc.relationKamal, A., Shaik, A. B., Ganesh Kumar, C., Mongolla, P., Usha Rani, P., Rama Krishna, K. V. S., … Joseph, J. (2012). Metabolic profiling and biological activities of bioactive compounds produced by Pseudomonas sp. strain ICTB-745 isolated from Ladakh, India. Journal of Microbiology and Biotechnology, 22(1), 69–79. https://doi.org/10.4014/jmb.1105.05008
dc.relationKhan, A. R., Park, G., Asaf, S., Hong, S., Jung, K., & Shin, J. (2017). Complete genome analysis of Serratia marcescens RSC-14 : A plant growth-promoting bacterium that alleviates cadmium stress in host plants. 1–17. https://doi.org/10.1371/journal.pone.0171534
dc.relationKievit, T. R. De. (2009). Quorum sensing in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 11, 279–288. https://doi.org/10.1111/j.1462-2920.2008.01792.x
dc.relationKim, S. K., Kim, Y. C., Lee, S., Kim, J. C., Yun, M. Y., & Kim, I. S. (2011). Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). Journal of Agricultural and Food Chemistry, 59(3), 934–938. https://doi.org/10.1021/jf104027x
dc.relationKoroney, A. S., Plasson, C., Pawlak, B., Sidikou, R., Driouich, A., Menu-Bouaouiche, L., & Vicré-Gibouin, M. (2016). Root exudate of solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of pectobacterium atrosepticum. Annals of Botany, 118(4), 797–808. https://doi.org/10.1093/aob/mcw128
dc.relationKupferschmied, P., Maurhofer, M., & Keel, C. (2013). Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 4(July), 1–18. https://doi.org/10.3389/fpls.2013.00287
dc.relationKwak, Y. S., Bonsall, R. F., Okubara, P. A., Paulitz, T. C., Thomashow, L. S., & Weller, D. M. (2012). Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. Soil Biology and Biochemistry, 54, 48–56. https://doi.org/10.1016/j.soilbio.2012.05.012
dc.relationL. M.-B. M. V.-G. Koroney Abdoul Salam. (2016). Root exudate of Solanum tuberosum is enriched in galactose- containing molecules and impacts the growth of Pectobacterium atrosepticum. 118(4), 797–808.
dc.relationLandsberg, M. J., Jones, S. A., Rothnagel, R., Busby, J. N., Marshall, S. D. G., Simpson, R. M., … Hurst, M. R. H. (2011). 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proceedings of the National Academy of Sciences, 108(51), 20544–20549. https://doi.org/10.1073/pnas.1111155108
dc.relationLareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575–587. https://doi.org/10.1007/s11103-015-0417-8
dc.relationLeggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B. J., Waite, D., & Davey, R. P. (2013). Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Frontiers in Genetics, 4(DEC), 1–5. https://doi.org/10.3389/fgene.2013.00288
dc.relationLiu, K., McInroy, J. A., Hu, C.-H., & Kloepper, J. W. (2017). Mixtures of Plant-Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Plant Diseases and Plant-Growth Promotion in the Presence of Pathogens. Plant Disease, 102(1), 67–72. https://doi.org/10.1094/pdis-04-17-0478-re
dc.relationLiu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., … Law, M. (2014). Comparison of next-generation sequencing systems. The Role of Bioinformatics in Agriculture, 2012, 1–25. https://doi.org/10.1201/b16568
dc.relationLiu, X., Jia, J., Atkinson, S., Cámara, M., Gao, K., Li, H., & Cao, J. (2010). Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World Journal of Microbiology and Biotechnology, 26(8), 1465–1471. https://doi.org/10.1007/s11274-010-0321-y
dc.relationLoper, Joyce E., & Gross, H. (2007). Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research, 265–278. https://doi.org/10.1007/978-1-4020-6776-1_4
dc.relationLoper, Joyce E., Hassan, K. A., Mavrodi, D. V., Davis, E. W., Lim, C. K., Shaffer, B. T., … Paulsen, I. T. (2012). Comparative genomics of plant-associated pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics, 8(7). https://doi.org/10.1371/journal.pgen.1002784
dc.relationLoper, Joyce Elizabeth, Stockwell, V. O., Loper, J. E., Henkels, M. D., Rangel, L. I., Olcott, M. H., … Hesse, C. N. (2016). Rhizoxin , orfamide a , and chitinase production contribute to the toxicity of pseudomonas protegens strain pf-5 to drosophila ... Rhizoxin analogs , orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Dr. Environmental Microbiology, 00(April). https://doi.org/10.1111/1462-2920.13369
dc.relationLópez-Pazos SA, Rojas A, & Chaparro-Giraldo A. (2013). Actividad biológica de Bacillus thuringiensis sobre la polilla guatemalteca de la papa, Tecia solanivora Povolny (Lepidoptera: Gelechiidae). Revista Mutis. Vol, 3(2), 31–42.
dc.relationM. H. Olcott. (2010). Lethality and developmental delay in drosophila melanogaster larvae after ingestion of selected pseudomonas fluorescens strains. PLOS ONE, 5(9), 1–12.
dc.relationM. L. Metzker. (2010). Sequencing technologies — the next generation. Genet. V, 11, 31–46.
dc.relationMa, Z., Geudens, N., Kieu, N. P., Sinnaeve, D., Ongena, M., Martins, J. C., & Höfte, M. (2016). Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Frontiers in Microbiology, 7(MAR), 1–16. https://doi.org/10.3389/fmicb.2016.00382
dc.relationMAHARJAN, R., KWON, M., KIM, J., & JUNG, C. (2010). Mass production of Diglyphus isaea (Hymenoptera: Eulophidae), a biological control agent of aKorean population of potato leaf miner Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae). 48, 18–26. https://doi.org/10.1111/1748-5967
dc.relationMajeed, A., Kaleem Abbasi, M., Hameed, S., Imran, A., & Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6(MAR), 1–10. https://doi.org/10.3389/fmicb.2015.00198
dc.relationManter, D. K., Delgado, J. A., Holm, D. G., & Stong, R. A. (2010). Pyrosequencing Reveals a Highly Diverse and Cultivar-Specific Bacterial Endophyte Community in Potato Roots. 157–166. https://doi.org/10.1007/s00248-010-9658-x
dc.relationMatthijs, S., Laus, G., Meyer, J. M., Abbaspour-Tehrani, K., Schäfer, M., Budzikiewicz, H., & Cornelis, P. (2009). Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. BioMetals, 22(6), 951–964. https://doi.org/10.1007/s10534-009-9247-y
dc.relationMcQuade, R., & Stock, S. P. (2018, June 19). Secretion systems and secreted proteins in gram-negative entomopathogenic bacteria: Their roles in insect virulence and beyond. Insects, Vol. 9. https://doi.org/10.3390/insects9020068
dc.relationMeca, A., Sepúlveda, B., Ogoña, J. C., Grados, N., Moret, A., Moret, A., … Tume, P. (2013). In vitro pathogenicity of Northern Peru native bacteria on Phyllocnistis citrella Stainton (Gracillariidae: Phyllocnistinae), on predator insects (Hippodamia convergens and Chrysoperla externa), on Citrus aurantiifolia Swingle and white rats. Spanish Journal of Agricultural Research, 7(1), 137. https://doi.org/10.5424/sjar/2009071-406
dc.relationMendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028
dc.relationMeng, S., Brown, D. E., Ebbole, D. J., Torto-Alalibo, T., Oh, Y. Y., Deng, J., … Dean, R. A. (2009). Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae. BMC Microbiology, 9(SUPPL. 1), 1–6. https://doi.org/10.1186/1471-2180-9-S1-S8
dc.relationMinAgricultura. (2018). MinAgricultura analiza estrategias para fortalecer el sector de la papa en Colombia. Retrieved from https://www.minagricultura.gov.co/noticias/Paginas/minagricultura-analiza-estrategias-para-fortalecer-el-sector-de-la-papa-en-Colombia.aspx
dc.relationMohan, M., Selvakumar, G., Sushil, S. N., Bhatt, J. C., & Gupta, H. S. (2011). Entomopathogenicity of endophytic Serratia marcescens strain SRM against larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World Journal of Microbiology and Biotechnology, 27(11), 2545–2551. https://doi.org/10.1007/s11274-011-0724-4
dc.relationMolina-Santiago, C., Udaondo, Z., & Ramos, J. L. (2015). Draft whole-genome sequence of the antibiotic-producing soil isolate Pseudomonas sp. strain 250J. Environmental Microbiology Reports, 7(2), 288–292. https://doi.org/10.1111/1758-2229.12245
dc.relationMUNIF, A., HALLMANN, J., & A. SIKORA, R. (2013). Isolation of Endophytic Bacteria from Tomato and Their Biocontrol Activities against Fungal Diseases. Microbiology Indonesia, 6(4), 148–156. https://doi.org/10.5454/mi.6.4.2
dc.relationNalini, S., & Parthasarathi, R. (2017). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science, 1–8. https://doi.org/10.1016/j.aasci.2017.11.002
dc.relationNaqqash, T., Hameed, S., Imran, A., & Hanif, M. K. (2016). Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria. 7(February), 1–12. https://doi.org/10.3389/fpls.2016.00144
dc.relationNyambura Ngamau, C. (2012). Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology Research, 6(34), 6414–6422. https://doi.org/10.5897/ajmr12.1170
dc.relationOsman, G. H., Assem, S. K., Alreedy, R. M., El-Ghareeb, D. K., Basry, M. A., Rastogi, A., & Kalaji, H. M. (2015). Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Scientific Reports, 5(December), 18067. https://doi.org/10.1038/srep18067
dc.relationPantoja, L. (2018). Efecto de moléculas señal tipo N-acil homoserina lactonas ( AHLs ) de aislamientos provenientes de cultivos de papa en el control de Tecia solanivora ( Lepidóptera : Gelechiidae ) homoserina lactonas ( AHLs ) de aislamientos Gelechiidae ). Universidad Nacional de Colombia.
dc.relationPark, S. J., Kim, S. K., So, Y. I., Park, H. Y., Li, X. H., Yeom, D. H., … Lee, J. H. (2014). Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity. Molecular Microbiology, 94(6), 1298–1314. https://doi.org/10.1111/mmi.12830
dc.relationPatel, R. K., & Jain, M. (2012). NGS QC toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030619
dc.relationPati, A., Ivanova, N. N., Mikhailova, N., Ovchinnikova, G., Hooper, S. D., Lykidis, A., & Kyrpides, N. C. (2010). GenePRIMP: A gene prediction improvement pipeline for prokaryotic genomes. Nature Methods, 7(6), 455–457. https://doi.org/10.1038/nmeth.1457
dc.relationPaulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S. A., Mavrodi, D. V, … Loper, J. E. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23(7), 873–878. https://doi.org/10.1038/nbt1110
dc.relationPéchy-Tarr, M., Borel, N., Kupferschmied, P., Turner, V., Binggeli, O., Radovanovic, D., … Keel, C. (2013). Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environmental Microbiology, 15(3), 736–750. https://doi.org/10.1111/1462-2920.12050
dc.relationPéchy-Tarr, M., Bruck, D. J., Maurhofer, M., Fischer, E., Vogne, C., Henkels, M. D., … Keel, C. (2008). Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environmental Microbiology, 10(9), 2368–2386. https://doi.org/10.1111/j.1462-2920.2008.01662.x
dc.relationPétriacq, P., Williams, A., Cotton, A., McFarlane, A. E., Rolfe, S. A., & Ton, J. (2017). Metabolite profiling of non-sterile rhizosphere soil. Plant Journal, 92(1), 147–162. https://doi.org/10.1111/tpj.13639
dc.relationPineda-Castellanos, M., Rodríguez-Segura, Z., Villalobos, F., Hernández, L., Lina, L., & Nuñez-Valdez, M. (2015). Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera). Pathogens, 4(2), 210–228. https://doi.org/10.3390/pathogens4020210
dc.relationPinheiro, V. B., & Ellar, D. J. (2007). Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins. Cellular Microbiology, 9(10), 2372–2380. https://doi.org/10.1111/j.1462-5822.2007.00966.x
dc.relationPiro, V. C., Faoro, H., Weiss, V. A., Steffens, M. B. R., Pedrosa, F. O., Souza, E. M., & Raittz, R. T. (2014). Open Access FGAP : an automated gap closing tool. 1–5.
dc.relationPop, M. (2009). Genome assembly reborn: Recent computational challenges. Briefings in Bioinformatics, 10(4), 354–366. https://doi.org/10.1093/bib/bbp026
dc.relationPopova, A. A., Koksharova, O. A., Lipasova, V. A., Zaitseva, J. V., Katkova-Zhukotskaya, O. A., Eremina, S. I., … Khmel, I. A. (2014). Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans , and Drosophila melanogaster . BioMed Research International, 2014, 1–11. https://doi.org/10.1155/2014/125704
dc.relationR. L. Berendsen. (2012). The rhizosphere microbiome and plant health. Trends Plant Sci., 17(8), 478–486.
dc.relationRangel, L. I., Henkels, M. D., Shaffer, B. T., Walker, F. L., Davis, E. W., Stockwell, V. O., … Loper, J. E. (2016). Characterization of toxin complex gene clusters and insect toxicity of bacteria representing four subgroups of pseudomonas fluorescens. PLoS ONE, 11(8), 1–22. https://doi.org/10.1371/journal.pone.0161120
dc.relationRoesch, L. F. W., Camargo, F. A. O., Bento, F. M., & Triplett, E. W. (2008). Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant and Soil, 302(1–2), 91–104. https://doi.org/10.1007/s11104-007-9458-3
dc.relationRohini, S., Aswani, R., Kannan, M., Sylas, V. P., & Radhakrishnan, E. K. (2018). Culturable Endophytic Bacteria of Ginger Rhizome and their Remarkable Multi-trait Plant Growth-Promoting Features. Current Microbiology, 75(4), 505–511. https://doi.org/10.1007/s00284-017-1410-z
dc.relationRoongsawang, N., Washio, K., & Morikawa, M. (2011). Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Sciences, 12(1), 141–172. https://doi.org/10.3390/ijms12010141
dc.relationRosenau, F., & Jaeger, K. (2000). Bacterial lipases from Pseudomonas : Regulation of gene expression and mechanisms of secretion. Biochimie, 82, 1023–1032.
dc.relationRuffner, B., Péchy-Tarr, M., Höfte, M., Bloemberg, G., Grunder, J., Keel, C., & Maurhofer, M. (2015). Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics, 16(1), 1–14. https://doi.org/10.1186/s12864-015-1763-2
dc.relationRuffner, B., Péchy-tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., … Maurhofer, M. (2012). Oral insecticidal activity of plant-associated Pseudomonads Oral insecticidal activity of plant-associated pseudomonads. Environmental Microbiology, 15(September 2012), 751–763. https://doi.org/10.1111/j.1462-2920.2012.02884.x
dc.relationRuffner, B., Péchy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., … Maurhofer, M. (2013). Oral insecticidal activity of plant-associated pseudomonads. Environmental Microbiology, 15(3), 751–763. https://doi.org/10.1111/j.1462-2920.2012.02884.x
dc.relationS. A. Aleti Gajender. (2017). Secondary metabolite genes encoded by potato rhizosphere microbiomes in the Andean highlands are diverse and vary with sampling site and vegetation stage. View Issue TOC, 16(8), 2389–2407.
dc.relationS. Pfeiffer. (2017). Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol, 93.
dc.relationS. SHOKRALLA. (2012). Next-generation sequencing technologies for environmental DNA research. 21(8), 1794–1805.
dc.relationSandhya, V., Shrivastava, M., Ali, S. Z., & Sai Shiva Krishna Prasad, V. (2017). Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agricultural Sciences, 43(1), 22–34. https://doi.org/10.3103/s1068367417010165
dc.relationSanta, J. D., Berdugo-Cely, J., Cely-Pardo, L., Soto-Suárez, M., Mosquera, T., & Galeano, C. H. M. (2018). QTL analysis reveals quantitative resistant loci for Phytophthora infestans and Tecia solanivora in tetraploid potato (Solanum tuberosum L.). PLoS ONE, 13(7), 1–21. https://doi.org/10.1371/journal.pone.0199716
dc.relationSantoyo, G., del Orozco-Mosqueda, M. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22(8), 855–872. https://doi.org/10.1080/09583157.2012.694413
dc.relationSaravanakumar, D., Lavanya, N., Muthumeena, K., Raguchander, T., & Samiyappan, R. (2009). Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl, 54(2), 273–286. https://doi.org/10.1007/s10526-008-9166-9
dc.relationSchnider-Keel, U., & Seematter, a. (2000). 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescensCHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. Journal of …, 182(5), 1215–1225.
dc.relationSchwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
dc.relationSeo, S., Lee, S., Hong, Y., & Kim, Y. (2012). Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. Temperata. Applied and Environmental Microbiology, 78(11), 3816–3823. https://doi.org/10.1128/AEM.00301-12
dc.relationSharaby, A. M. F., & Fallatah, S. B. (2019). Protection of stored potatoes from infestation with the potato tuber moth, Phthorimaea operculella (Zeller)(Lepidoptera: Gelechiidae) using plant powders. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0119-5
dc.relationSheets, J. J., Hey, T. D., Fencil, K. J., Burton, S. L., Ni, W., Lang, A. E., … Aktories, K. (2011). Insecticidal toxin complex proteins from Xenorhabdus nematophilus: Structure and pore formation. Journal of Biological Chemistry, 286(26), 22742–22749. https://doi.org/10.1074/jbc.M111.227009
dc.relationShi, J. F., & Sun, C. Q. (2017). Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian Journal of Microbiology, 48(4), 706–714. https://doi.org/10.1016/j.bjm.2017.03.002
dc.relationShokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21(8), 1794–1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x
dc.relationSilby, M. W., Winstanley, C., Godfrey, S. A. C., Levy, S. B., & Jackson, R. W. (2011). Pseudomonas genomes: diverse and adaptable. FEMS Microbiology Reviews, 35(4), 652–680. https://doi.org/10.1111/j.1574-6976.2011.00269.x
dc.relationSingh, B., & Satyanarayana, T. (2011). Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17(2), 93–103. https://doi.org/10.1007/s12298-011-0062-x
dc.relationSingh, P., Kumar, V., & Agrawal, S. (2014). Evaluation of phytase producing bacteria for their plant growth promoting activities. International Journal of Microbiology, 2014. https://doi.org/10.1155/2014/426483
dc.relationSingh, V., Ram, B., Prakash, J., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015). Potassium solubilizing rhizobacteria ( KSR ): Isolation , identi fi cation , and K-release dynamics from waste mica. Ecological Engineering, 81, 340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065
dc.relationSnyder, E. E., Kampanya, N., Lu, J., Nordberg, E. K., Karur, H. R., & Shukla, M. (2007). PATRIC : The VBI PathoSystems Resource Integration Center. 35(December 2006), 401–406. https://doi.org/10.1093/nar/gkl858
dc.relationStanke, M., & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(SUPPL. 2), 465–467. https://doi.org/10.1093/nar/gki458
dc.relationStavrinides, J., McCloskey, J. K., & Ochman, H. (2009). Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Applied and Environmental Microbiology, 75(7), 2230–2235. https://doi.org/10.1128/AEM.02860-08
dc.relationSugio, A., Dubreuil, G., Giron, D., & Simon, J. C. (2015). Plant-insect interactions under bacterial influence: Ecological implications and underlying mechanisms. Journal of Experimental Botany, 66(2), 467–478. https://doi.org/10.1093/jxb/eru435
dc.relationSzklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., … Von Mering, C. (2015). STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452. https://doi.org/10.1093/nar/gku1003
dc.relationT. S. Walker. (2003). Metabolic profiling of root exudates of Arabidopsis thaliana. J. Agric. Food Chem, 51(9), 2548–2554.
dc.relationTatusova, T. A., & Madden, T. L. (1999). BLAST 2 SEQUENCES, a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letters, 174(2), 247–250. https://doi.org/10.1016/S0378-1097(99)00149-4
dc.relationTaylor, P., Otsu, Y., Matsuda, Y., Mori, H., Ueki, H., & Nakajima, T. (2010). Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of Phytophagous ladybird beetles Epilachna vigintioctopunctata ( Coleoptera : Coccinellidae ). Biocontrol Science and Technology, 14(5, 427–439), 427–439. https://doi.org/10.1080/09583150410001683538
dc.relationThakur, D., Kaur, M., & Mishra, A. (2017). Isolation and screening of plant growth promoting Bacillus spp . and Pseudomonas spp . and their effect on growth , rhizospheric population and phosphorous concentration of Aloe vera. 5(1), 187–192.
dc.relationThokchom, E., Thakuria, D., Kalita, M. C., Sharma, C. K., & Talukdar, N. C. (2017). Root colonization by host-specific rhizobacteria alters indigenous root endophyte and rhizosphere soil bacterial communities and promotes the growth of mandarin orange. European Journal of Soil Biology, 79, 48–56. https://doi.org/10.1016/j.ejsobi.2017.02.003
dc.relationToribio-Jiménez, J., Aradillas, J. C. V., Romero Ramírez, Y., Rodríguez Barrera, M. Á., González, J. D. C., Luna, J. G., & Noyola, J. L. A. (2014). Pseudomonas sp productoras de biosurfactantes. Tlamati, 5(2), 66–82.
dc.relationUllah, I., Khan, A. L., Ali, L., Khan, A. R., Waqas, M., Hussain, J., … Shin, J. H. (2015). Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. Journal of Microbiology, 53(2), 127–133. https://doi.org/10.1007/s12275-015-4632-4
dc.relationVacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., … Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4(September), 356. https://doi.org/10.3389/fpls.2013.00356
dc.relationVallet-Gely, I., Lemaitre, B., & Boccard, F. (2008, April). Bacterial strategies to overcome insect defences. Nature Reviews Microbiology, Vol. 6, pp. 302–313. https://doi.org/10.1038/nrmicro1870
dc.relationvan Dam, N. M., & Bouwmeester, H. J. (2016). Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. Trends in Plant Science, 21(3), 256–265. https://doi.org/10.1016/j.tplants.2016.01.008
dc.relationVan Der Voort, M., Meijer, H. J. G., Schmidt, Y., Watrous, J., Dekkers, E., Mendes, R., … Raaijmakers, J. M. (2015). Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Frontiers in Microbiology, 6(JUL), 1–14. https://doi.org/10.3389/fmicb.2015.00693
dc.relationVodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., … Boccard, F. (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24(6), 673–679. https://doi.org/10.1038/nbt1212
dc.relationVodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., … Lemaitre, B. (2005). Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11414–11419. https://doi.org/10.1073/pnas.0502240102
dc.relationWang, W., Xia, M., Chen, J., Deng, F., Yuan, R., Zhang, X., & Shen, F. (2016). Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum. Data in Brief, 9, 345–348. https://doi.org/10.1016/j.dib.2016.05.025
dc.relationWattam, A. R., Abraham, D., Dalay, O., Disz, T. L., Driscoll, T., Gabbard, J. L., … Sobral, B. W. (2014). PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Research, 42(D1), 581–591. https://doi.org/10.1093/nar/gkt1099
dc.relationWattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., … Stevens, R. L. (2017). Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Research, 45(D1), D535–D542. https://doi.org/10.1093/nar/gkw1017
dc.relationXiong, Z., Niu, J., Liu, H., Xu, Z., Li, J., & Wu, Q. (2017). Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group. Bioorganic and Medicinal Chemistry Letters, 27(9), 2010–2013. https://doi.org/10.1016/j.bmcl.2017.03.011
dc.relationYork, L. M., Carminati, A., Mooney, S. J., Ritz, K., & Bennett, M. J. (2016). The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 67(12), 3629–3643. https://doi.org/10.1093/jxb/erw108
dc.relationZhao, D., Zhao, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., … Chen, L. (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biological Control, 119, 12–19. https://doi.org/10.1016/j.biocontrol.2018.01.004
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleGenómica de rizobacterias entomopatógenas de Tecia solanivora (Lepidóptera: Gelechiidae)
dc.typeDocumento de trabajo


Este ítem pertenece a la siguiente institución