dc.contributorRomero Frías, Alicia Adela
dc.contributorSierra Ávila, César Augusto
dc.creatorVidal Medina, Valentina
dc.date.accessioned2021-06-24T17:13:52Z
dc.date.available2021-06-24T17:13:52Z
dc.date.created2021-06-24T17:13:52Z
dc.date.issued2021-02-15
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79709
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn Colombia, el cultivo de palma de aceite ha representado, desde 1960, uno de los cultivos agroindustriales de mayor importancia debido a su gran productividad. Actualmente, el país es el cuarto productor de aceite de palma a nivel mundial, y el primero en América, con más de 550 mil hectáreas de palma sembrada. Colombia cuenta con cuatro zonas palmeras, de las cuales la zona oriental representa el 41% del total de hectáreas sembradas. Tal como suele suceder en el campo agrícola, este cultivo, y principalmente el de la zona oriental, se ve afectado por enfermedades y plagas, entre las cuales se encuentra el Strategus aloeus, comúnmente conocido como escarabajo torito. Considerando las serias repercusiones económicas resultantes de la infestación de los cultivos por este insecto, en el 2015 el ICA declaró esta especie como plaga de control oficial. Una de las tácticas del Manejo Integrado de Plagas (MIP) consiste en el control etológico a través del uso de semioquímicos o compuestos orgánicos volátiles (VOCs) que actúan como modificadores del comportamiento de la plaga. Para el S. aloeus, la feromona reportada por Rochat et al. (2000) no ha sido efectiva en campo. Por lo tanto, persiste la necesidad de seguir estudiando los semioquímicos de esta especie. Este estudio se realizó con el objetivo de identificar los semioquímicos responsables de las interacciones en el sistema hospedero-huésped, constituido por la palma de aceite (Elaeis guineensis) y el insecto-plaga Strategus aloeus. Para tal fin, la investigación cubrió las siguientes etapas: extracción de los volátiles liberados por la planta hospedera y por los individuos machos de S. aloeus; separación, análisis e identificación de los VOCs mediante cromatografía de gases acoplada a espectrometría de masas; y, validación de algunos VOCs mediante la evaluación de la respuesta electrofisiológica y comportamental de los insectos frente a los compuestos identificados. Mediante las extracciones por Headspace Micro Extracción en Fase Sólida (HS-MEFS) y Headspace Dinámico (HSD) se identificaron 45 VOCs liberados por la palma de aceite (E. guineensis), alimento y hospedero natural del S. aloeus. Entre los cuales se identificaron la 2-butanona y la 3-pentanona, cetonas previamente reportadas por Rochat et al. (2000) como constituyentes de la feromona del insecto, lo que indicó su participación en la interacción interespecífica. Por medio de la extracción directa con hexano de las glándulas, en los insectos adultos de S. aloeus se identificaron el 2,4,7,9-tetrametil-5-decin-4,7-diol, el 4-metiloctanoato de etilo y el acetato de sec-butilo como VOCs macho-específicos de esta especie. La respuesta comportamental de insectos adultos de ambos sexos de S. aloeus frente a estos tres compuestos, solos o en mezcla, demostró su atracción significativa, lo que sugiere su participación en la interacción intraespecífica, es decir, como feromona de la especie. Los semioquímicos identificados en la interacción Elaeis guineensis- Strategus aloeus representan una alternativa para ser incorporados en el MIP de esta plaga en cultivos de palma de aceite, por lo que se recomienda su evaluación en campo. (Texto tomado de la fuente).
dc.description.abstractThe oil palm has been one of the most important agro-industrial crops in Colombia since 1960, due to its high productivity. Currently, the country is the fourth largest palm oil producer in the world, and the first in the Americas, with more than 550,000 hectares of plantations. Colombia has four palm-growing zones, of which the eastern zone accounts for 41% of the total planted area. As is often the case in the agricultural field, this crop, and mainly in the eastern zone, is affected by diseases and pests, including the Strategus aloeus, commonly known as the bull beetle. The serious economic repercussions resulting from S. aloeus infestation led ICA, in 2015, to declare this species as subject to official control. One of the tactics of Integrated Pest Management (IPM) consists of ethological control through the use of semiochemicals or volatile organic compounds (VOCs) that act as pest behavior modifiers. For S. aloeus, the pheromone reported by Rochat et al. (2000) has not been effective in the field. Thus further study of the semiochemicals of this species is required. This study was designed to identify the semiochemicals responsible for interactions in the oil palm (Elaeis guineensis) host-host system with the pest insect Strategus aloeus. To this end, the research covered the following stages: extraction of volatiles released by the host plant and by male S. aloeus individuals; separation, analysis and identification of VOCs by gas chromatography coupled with mass spectrometry; and, validation of some VOCs by evaluating the electrophysiological and behavioral response of insects to the identified compounds. In Headspace Solid Phase Micro Extraction (HS-SPME) and Dynamic Headspace (DHS) extractions 45 VOCs released by oil palm (E. guineensis), a food source and natural host of S. aloeus, were identified. Among them, 2-butanone and 3-pentanone, ketones previously reported by Rochat et al. (2000) as constituents of the insect pheromone, were identified, indicating their participation in the interspecific interaction. By direct hexane extraction from glands, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, ethyl 4-methyloctanoate and sec-butyl acetate were identified as male-specific VOCs in adult S. aloeus insects. The behavioral response of adult S. aloeus insects of both sexes to these three compounds alone or in mixture showed their significant attraction, suggesting their involvement in intraspecific interaction, i.e., as a pheromone specific to the specie. The semiochemicals identified in the Elaeis guineensis-Strategus aloeus interaction constitute an alternative for incorporation in the IPM of this pest in oil palm crops, hence their evaluation in the field is recommended. (Texto tomado de la fuente).
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationWhittaker, R. H.; Feeny, P. P. Allelochemics: Chemical Interactions between Species. Science (80-. ). 1971, 171, 757–770.
dc.relationBrown, W. L.; Eisner, T.; Whittaker, R. H. Allomones and Kairomones: Transspecific Chemical Messengers. Bioscience 1970, 20 (1), 21–22.
dc.relationFont Quer, P. Diccionario de Botánica, 9° reimpre.; Editorial Labor, S. A.: Barcelona, 1985.
dc.relationFreiría, M.; Alvarez, A.; Lorenzo, R.; Racamonde, F.; Rodríguez, A. Aplicaciones de La Técnica Denominada Espacio de Cabeza. Rev. Cuba. Química 1998, 10, 32–53.
dc.relationAsociación de Academias de la Lengua Española. Real Academia de la Lengua Española https://dle.rae.es.
dc.relationOxford Unifersity Press. Oxford Languages https://languages.oup.com/google-dictionary-es/.
dc.relationBarrera, J. F.; Toledo, J.; Infante, F. Manejo Integrado de Plagas : Conceptos y Estrategias. In Manejo Integrado de Plagas; Editorial Trillas: México, 2008; pp 13–33.
dc.relationFAO. Glosario de términos fitosanitarios de la FAO http://www.fao.org/3/W3587E/w3587e03.htm.
dc.relationLaw, J. H.; Regnier, F. E. Pheromones. Annu. Rev. Biochem. 1971, 40, 533–548.
dc.relationDudareva, N.; Klempien, A.; Muhlemann, J. K.; Kaplan, I. Biosynthesis, Function and Metabolic Engineering of Plant Volatile Organic Compounds. New Phytol. 2013, 198 (1), 16–32.
dc.relationAnaya Lang, A. L. Ecología Química, 1st ed.; Plaza y Valdés, S.A. de C.V: México D.F., 2003.
dc.relationDangond, I. El Aceite Del Post Conflicto. El Espectador. 2015.
dc.relationAguilera, D. M. Palma Africana En La Costa Caribe. In Documentos de Trabajo Sobre Economia Regional, Centro de Estudios Economicos regionales No 30; Banco de la Republica: Cartagena de Indias, 2002.
dc.relationFedepalma. La palma de Aceite en Colombia https://web.fedepalma.org/sites/default/files/files/infografia-palmadeaceite-colombia-2020.pdf.
dc.relationCenipalma. Sanidad de la Palma https://www.cenipalma.org/sanidad/.
dc.relationAldana-De la Torre, R.; Montes-Bazurto, L. G.; Barrios-Trilleras, C. E.; Matabanchoy-Solarte, J. A.; Beltrán-Aldana, I. J.; Rosero-Guerrero, M.; Bustillo-Pardey, A. E. Guía de Bolsillo Para El Reconocimiento de Las Plagas Más Frecuentes En La Palma de Aceite; Cenipalma-Fedepalma-SENA: Bogotá D. C., 2017.
dc.relationGenty, P.; Desmier de Chenons, R.; Morin, J.-P. Las Plagas de La Palma Aceitera En América Latina. Oleagineux 1978, 33 (7), 326–420.
dc.relationAhumada, M.; Calvache-Guerrero, H.; Cruz, M.; Luque, J. Strategus aloeus (L.) (Coleoptera: Scarabaeidae): Biología y Comportamiento En Puerto Wilches (Santander). Rev. Palmas 1995, 16 (3), 9–16.
dc.relationMontesinos, G. A. Estudios Preliminares Para La Determinación de Atrayentes Sexuales de Strategus aloeus (L.) (Coleoptera:Scarabaeidae) Puerto Wilches (Santander), Instituto Universitario de la Paz Barrancabermeja, Colombia, 1999.
dc.relationAldana-De la Torre, R.; Aldana-De la Torre, J. A.; Calvache-Guerrero, H. H.; Franco-Bautista, P. N. Manual de Plagas de La Palma de Aceite En Colombia, Cuarta Edi.; Centro de Investigación en Palma de Aceite, Cenipalma- SENA-: Bogotá D. C., 2010.
dc.relationAldana, J.; Pallares, C.; Correa, N. Control Químico de Strategus aloeus (L.) (Coleoptera: Scarabaeidae). Ceniavances. 2000, pp 1–4.
dc.relationBergmann, J.; González, A.; Zarbin, P. H. G. Insect Pheromone Research in South America. J. Braz. Chem. Soc. 2009, 20 (7), 1206–1219.
dc.relationVillanueva Mejía, D. F.; Saldamando Benjumea, C. I. Tecia Solanivora, Povolny (Lepidoptera: Gelechiidae): Una Revisión Sobre Su Origen, Dispersión y Estrategias de Control Biológico. Ing. y Cienc. 2013, 9 (18), 197–214.
dc.relationKarlson, P.; Butenandt, A. Pheromones (Ectohormones) in Insects. Annu. Rev. Entomol. 1958, 4, 39–58.
dc.relationRomero-Frías, A. A. Estudio de Los Semioquímicos Responsables de La Interacción Entre La Guayaba (Psidium guajava L.) y El Picudo de La Guayaba Conotrachelus psidii Marshall, Universidad Nacional de Colombia, 2015.
dc.relationRochat, D.; Ramirez-Lucas, P.; Malosse, C.; Aldana-De la Torre, R. C.; Kakul, T.; Morin, J. P. Role of Solid-Phase Microextraction in the Identification of Highly Volatile Pheromones of Two Rhinoceros Beetles Scapanes australis and Strategus aloeus (Coleoptera, Scarabaeidae, Dynastinae). J. Chromatogr. A 2000, 885 (1–2), 433–444.
dc.relationCenipalma. Comunicaciones Personales, 2017.
dc.relationKlaschka, U. Chemical Communication by Infochemicals. Environ. Sci. Pollut. Res. 2009, 16 (4), 367–369.
dc.relationNordlund, D. A.; Lewis, W. J. Terminology of Chemical Releasing Stimuli in Intraspecific and Interspecific Interactions. J. Chem. Ecol. 1976, 2 (2), 211–220.
dc.relationVisser, J. H.; De Jong, R. Olfactory Coding In The Perception Of Semiochemicals. J. Chem. Ecol. 1988, 14 (11), 2005–2018.
dc.relationStensmyr, M. C. The Fly Nose -Function and Evolution, Swedish Univesity of Agricultural Sciences, 2004.
dc.relationDicke, M.; Sabelis, M. W. Infochemical Terminology: Based on Cost-Benefit Analysis Rather than Origin of Compounds? Funct. Ecol. 1988, 2 (2), 131–139.
dc.relationKarlson, P.; Lüscher, M. “Pheromones”: A New Term for a Class of Biologically Active Substances. Nature 1959, 183 (4653), 55–56.
dc.relationBrown, W. L. An Hypothesis Concerning The Function Of The Metapleural Glands In Ants. Am. Nat. 1968, 102, 188–191.
dc.relationEl-ghany, N. M. A. Semiochemicals for Controlling Insect Pests. J. Plant Protecion Res. 2019, 59 (1), 1–11.
dc.relationMorse, R. A. Honey Bee Alarm Pheromone: Another Function. Annu. Entomol. Soc. Am. 1972, 756, 1430.
dc.relationWood, D. L.; Browne, L. E.; Bedard, W. D.; Tilden, P. E.; Silverstein, R. M.; Rodin, J. O. Response of Ips confusus to Synthetic Sex Pheromones in Nature. Science (80-. ). 1968, 159 (3821), 1373–1374.
dc.relationRaffa, K. F.; Dahlsten, D. L. Differential Responses among Natural Enemies and Prey to Bark Beetle Pheromones. Oecologia 1995, 102 (1), 17–23.
dc.relationNgumbi, E.; Fadamiro, H. Comparative Responses of Four Pseudacteon Phorid Fly Species to Host Fire Ant Alarm Pheromone and Analogs. Chemoecology 2015, 25 (2), 85–92.
dc.relationWood, W. F. Chemical Ecology: Chemical Communication in Nature. J. Chem. Educ. 1983, 60 (7), 531–539. https://doi.org/10.1021/ed060p531.
dc.relationElsevier. Scopus https://www-scopus-com.ezproxy.unal.edu.co/term/analyzer.uri?sid=40ae560a588554dbb35190defc6ba6dd&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%22chemical+ecology%22+OR+%22semiochemical%22%29&sort=plf-f&sdt=b&sot=b&sl=52&count=4067&analyzeResults=Analyze+re.
dc.relationOrmeño, E.; Goldstein, A.; Niinemets, Ü. Extracting and Trapping Biogenic Volatile Organic Compounds Stored in Plant Species. TrAC - Trends Anal. Chem. 2011, 30 (7), 978–989.
dc.relationTholl, D.; Boland, W.; Hansel, A.; Loreto, F.; Ro, U. S. R. Practical Approaches to Plant Volatile Analysis. 2006, 540–560.
dc.relationMaterić, D.; Bruhn, D.; Turner, C.; Morgan, G.; Mason, N.; Gauci, V. Methods in Plant Foliar Volatile Organic Compounds Research. Appl. Plant Sci. 2015, 3 (12), 1500044.
dc.relationBarbosa-cornelio, R.; Cantor, F.; Coy-barrera, E. Tools in the Investigation of Volatile Semiochemicals on Insects : From Sampling to Statistical Analysis. 2019, 1–35.
dc.relationHuang, S.; Chen, G.; Ye, N.; Kou, X.; Zhu, F.; Shen, J.; Ouyang, G. Solid-Phase Microextraction : An Appealing Alternative for the Determination of Endogenous Substances - A Review. Anal. Chim. Acta 2019, 1077, 67–86.
dc.relationPawliszyn, J. Theory of Solid-Phase Microextraction. In Handbook of Solid Phase Microextraction; Elsevier Inc., 2012; pp 13–60.
dc.relationOuyang, G.; Pawliszyn, J. A Critical Review in Calibration Methods for Solid-Phase Microextraction. 2008, 7, 184–197.
dc.relationMaia, A. C. D.; Gibernau, M.; Dötterl, S.; Do Amaral Ferraz Navarro, D. M.; Seifert, K.; Müller, T.; Schlindwein, C. The Floral Scent of Taccarum ulei (Araceae): Attraction of Scarab Beetle Pollinators to an Unusual Aliphatic Acyloin. Phytochemistry 2013, 93, 71–78.
dc.relationRochat, D.; Meillour, P. N. Le; Esteban-Duran, J. R.; Malosse, C.; Perthuis, B.; Morin, J. P.; Descoins, C. Identification of Pheromone Synergists in American Palm Weevil, Rhynchophorus palmarum, and Attraction of Related Dynamis borassi. J. Chem. Ecol. 2000, 26 (1), 155–187.
dc.relationRomero-frías, A.; Sinuco, D. C.; Bento, J. M. S. Big Avocado Seed Weevil Heilipus lauri Management with Volatile Organic Compounds Produced by Males of This Species. In 5th Congress of Latin American Association of Chemical Ecology-ALAEQ; Valparaíso, Chile, 2018.
dc.relationAlves Filho, E. G.; Brito, R. S.; Rodrigues, T. H. S.; Silva, L. M. A.; de Brito, E. S.; Canuto, K. M.; Krug, C.; Zocolo, G. J. Association of Pollinators of Different Species of Oil Palm with the Metabolic Profiling of Volatile Organic Compounds. Chem. Biodivers. 2019, 16 (6).
dc.relationWard, A.; Moore, C.; Anitha, V.; Wightman, J.; Rogers, D. J. Identification of the Sex Pheromone of Holotrichia reynaudi. J. Chem. Ecol. 2002, 28 (3), 515–522.
dc.relationLeal, W. S.; Yada, C.; Vijayvergia, J. Aggregation of the Scarab Beetle Holotrichia consanguinea in Response to Female-Released Pheromone Suggests Secondary Function Hypothesis for Semiochemical. J. Chem. Ecolo 1996, 22 (8), 1557–1566.
dc.relationCortez, V.; Favila, M. E.; Verdú, J. R.; Ortiz, A. J. Behavioral and Antennal Electrophysiological Responses of a Predator Ant to the Pygidial Gland Secretions of Two Species of Neotropical Dung Roller Beetles. Chemoecology 2012, 22 (1), 29–38.
dc.relationTada, S.; Leal, W. S. Localization and Morphology of Sex Pheromone Glands in Scarab Beetles. J. Chem. Ecol. 1997, 23 (4), 903–915.
dc.relationBrezolin, A. N.; Martinazzo, J.; Muenchen, D. K.; de Cezaro, A. M.; Rigo, A. A.; Steffens, C.; Steffens, J.; Blassioli-Moraes, M. C.; Borges, M. Tools for Detecting Insect Semiochemicals: A Review. Anal. Bioanal. Chem. 2018, 410 (17), 4091–4108.
dc.relationBlight, M. M. Techniques for Isolation and Characterization of Volatile Semiochemicals of Phytophagous Insects. In Chromatography and Isolation of Insect Hormones and Pheromones; McCaffery, A. ., Wilson, I. D., Eds.; Plenum Poress: New York, 1990; Vol. 1, pp 281–288.
dc.relationStashenko, E. E.; Martínez, J. R. Algunos Aspectos Prácticos Para La Identificación de Analitos Por Cromatografía de Gases Acoplada a Espectrometría de Masas. Sci. Chromatogr. 2009, 1 (3), 31–49.
dc.relationJones, G. R.; Oldham, N. J. Pheromone Analysis Using Capillary Gas Chromatographic Techniques. J. Chromatogr. A. 1999, 843 (199–236).
dc.relationStashenko, E. E.; Martínez, J. R. Algunos Aspectos Prácticos Para La Identificación de Analitos Por Cromatografía de Gases Acoplada a Espectrometría de Masas. Sci. Chromatogr. 2010, 2 (1), 29–47.
dc.relationBruce, T. J. A.; Wadhams, L. J.; Woodcock, C. M. Insect Host Location: A Volatile Situation. Trends Plant Sci. 2005, 10 (6), 269–274. https://doi.org/10.1016/j.tplants.2005.04.003.
dc.relationXu, H.; Turlings, T. C. J. Plant Volatiles as Mate-Finding Cues for Insects. Trends Plant Sci. 2018, 23 (2), 100–111.
dc.relationHilker, M.; Meiners, T. Plants and Insect Eggs: How Do They Affect Each Other? Phytochemistry 2011, 72 (13), 1612–1623.
dc.relationVisser, J. Host Odor Perception in Phytophagous Insects. Annu. Rev. Entomol. 1986, 31 (1), 121–144.
dc.relationSchneider, D. Elektrophysiologische Untersuchungen von Chemo- Und Mechanorezeptoren Der Antenne Des Seidenspinners Bombyx mori L. Z. Vergl. Physiol. 1957, 40, 8–41.
dc.relationWeissbecker, B.; Holighaus, G.; Schütz, S. Gas Chromatography with Mass Spectrometric and Electroantennographic Detection: Analysis of Wood Odorants by Direct Coupling of Insect Olfaction and Mass Spectrometry. J. Chromatogr. A 2004, 1056 (1-2 SPEC.ISS.), 209–216.
dc.relationHassemer, M. J.; Santana, J.; de Oliveira, M. W. M.; Borges, M.; Laumann, R. A.; Caumo, M.; Blassioli-Moraes, M. C. Chemical Composition of Alphitobius diaperinus (Coleoptera: Tenebrionidae) Abdominal Glands and the Influence of 1,4-Benzoquinones on Its Behavior. J. Econ. Entomol. 2015, 108, 2107–2116.
dc.relationSaïd, I.; Aldana-De la Torre, R. C.; Morin, J. P.; Rochat, D. Adaptation of a Four-Arm Olfactometer for Behavioural Bioassays of Large Beetles. Chemoecology 2006, 16 (1), 9–16.
dc.relationSmith, R. F.; Apple, J. L.; Bottrell, D. G. The Origins of Integrated Pest Management Concepts for Agricultural Crops. Integr. Pest Manag. 2012, 1–16.
dc.relationProkopy, R. J. Two Decades of Bottom-up, Ecologically Based Pest Management in a Small Commercial Apple Orchard in Massachusetts. Agric. Ecosyst. Enviroment 2003, 94, 299–309.
dc.relationWitzgall, P.; Kirsch, P.; Cork, A. Sex Pheromones and Their Impact on Pest Management. J. Chem. Ecol. 2010, 36 (1), 80–100.
dc.relationTewari, S.; Leskey, T. C.; Nielsen, A. L.; Piñero, J. C.; Rodriguez-Saona, C. R. Use of Pheromones in Insect Pest Management, with Special Attention to Weevil Pheromones; 2013.
dc.relationBorrero-Echeverry, F.; Barreto-Triana, N.; Aragón-Rodríguez, S. M.; Rivera-Trujillo, H. F.; Oehlschlager, C.; Cotes-Prado, A. M. Las Feromonas En El Control de Insectos. Control biológico fitopatógenos, insectos y ácaros 2018, 411–453.
dc.relationBakthavatsalam, N. Chapter 19 - Semiochemicals; Elsevier Inc., 2016.
dc.relationBedford, G. O. Biology and Management of Palm Dynastid Beetles : Recent Advances. 2013.
dc.relationGries, R.; Oehlschlager, A. C.; Perez, A. L.; Gonzales, L. M.; Gries, G.; Pierce, H. D. Aggregation Pheromone of the African Rhinoceros Beetle, Oryctes monoceros (Olivier) (Coleoptera: Scarabaeidae). Zeitschrift für Naturforsch. C 1994, 49 (5–6), 363–366.
dc.relationHasni, N.; Pinier, C.; Imed, C.; Ouhichi, M.; Couzi, P.; Chermiti, B.; Frérot, B.; Saïd, I.; Rochat, D. Synthetic Co-Attractants of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon. J. Chem. Ecol. 2017, 43 (7), 631–643.
dc.relationSmart, L. E.; Aradottir, G. I.; Bruce, T. J. A. Role of Semiochemicals in Integrated Pest Management; Elsevier Inc., 2014.
dc.relationAdam, D. Does Colombia hold the answer to sustainable palm oil? https://chinadialogue.net/en/food/11720-does-colombia-hold-the-answer-to-sustainable-palm-oil/.
dc.relationFedepalma; SISPA. Sistema de Información Estadística del Sector Palmero http://sispaweb.fedepalma.org/sispaweb/.
dc.relationMesa, D. J. Fedepalma, 55 Años de Gestión Gremial Para Desarrollar y Consolidar Agroindustria de La Palma de Aceite En Colombia. El Palmicultor 2018, 552.
dc.relationGarcés, I.; Sánchez Cuéllar, M. Productos Derivados de La Industria de La Palma de Aceite : Usos. Rev. Palmas 1997, 18 (1), 33–48.
dc.relationMarquez Sierra, J. D.; Sierra, L.; Olivero-Verbel, J. Potencial de La Palma Aceitera ( Elaeis guineensis Jacq ). Agron. Mesoam. 2017, 28 (2), 523–534.
dc.relationHenson, I. E. A Brief History of Oil Palm; AOCS Press, 1916.
dc.relationNair, K. P. P. Oil Palm (Elaeis guineensis Jacquin). In The Agronomy and Economy of Important Tree Crops of the Developing World; 2010; pp 209–236.
dc.relationBauer, S.; Kauffman, L. The anatomy of oil palm https://chinadialogue.net/en/food/the-anatomy-of-an-oil-palm/.
dc.relationNg, S.; Uexkull, V.; Hardter, R. Aspectos Botánicos de La Palma de Aceite Pertinentes Al Manejo de Cultivo. In Palma de aceite: manejo para rendimientos altos y sostenibles.; Fairhurst, T., Hardter, R., Eds.; International Plant: Quito, 2012; pp 33–46.
dc.relationSanabria García, R. Estudio Faunístico de La Tribu Oryctini (Coleoptera: Scarabaeidae: Dynastinae) de Colombia, Universidad Nacional de Colombia, 2012.
dc.relationPardo, L. C. Escarabajos (Coleoptera-Scarabaeidae) de Importancia Agrícola en Colombia, 1994, 159–182.
dc.relationRatcliffe, B. C. A Revision of the Genus Strategus (Coleoptera:Scarabaeidae). Bulletin of the University of Nebraska State Museum. 1976, pp 93–204.
dc.relationCalvache, H.; Gómez, P. . Comportamiento de Las Plagas de La Palma de Aceite En Colombia. Palmas 1991, 12 (3), 7–14.
dc.relationAldana-De la Torre, R. C.; Cabra, M. G.; Pineda, J.; E., B.-P. A. Parámetros Poblacionales de Strategus aloeus, Barrenador de La Palma de Aceite. XIV Reun. Técnica Nac. Palma Aceite. 2017, 2011.
dc.relationPallares, C. H.; Aldana-De la Torre, J. A.; Calvache-Guerrero, H.; Ramírez-Lucas, P.; Luque, J.; Correa, N. Análisis Del Comportamiento y Comunicación Química Intraespecífica En Strategus aloeus (L.) (Coleoptera, Scarabaeidae - Dynastinae). Rev. Palmas 2000, 21 (especial,), 185–194.
dc.relationRodríguez Farías, Á. L. Semioquímicos Para El Manejo Integrado de Insectos Plaga de La Familia Taxonómica Scarabaeidae, Universidad Antonio Nariño, 2019.
dc.relationGalante, E.; Marcos, Á. Detrívoros,Coprófagos y Necrófagos. Bol. S.E.A. 1997, 20, 57–64.
dc.relationArias, L. Evaluación Del Comportamiento Del Escarabajo-Plaga Strategus aloeus (Coleoptera: Scarabaeidae: Dynastinae) Frente a Compuestos Orgánicos Volátiles Que Median Su Comunicación Química, Universidad Antonio Nariño. Colombia, 2019.
dc.relationValencia, C.; Pérez, S. M.; Aldana De la Torre, R. C.; Mesa, E.; Gomes de Olivera, H. Patogenicidad de Hongos Entomopatógenos Del Género Metarhizium Sobre Larvas de Strategus aloeus L. ( Coleoptera: Scarabaeidae) , En Condiciones de Laboratorio. Rev. Palmas 2011, 32 (4), 30–40.
dc.relationICA. Plaguicidas Registrados https://www.ica.gov.co/getdoc/d3612ebf-a5a6-4702-8d4b-8427c1cdaeb1/registrosnacionales-pqua-15-04-09.aspx.
dc.relationMartínez, L. C.; Plata-Rueda, A.; Zanuncio, J. C.; Serrao, J. E. Comparative Toxicity of Six Insecticides on the Rhinoceros Beetle (Coleoptera : Scarabaeidae). Florida Entomol. 2014, 97 (3), 1056–1062.
dc.relationMarín, C.; Céspedes, C. Compuestos Volátiles de Plantas, Origen, Emisión, Efectos, Análisis y Aplicaciones Agro. Rev. Fitotec. Mex. 2007, 30, 327–351.
dc.relationKnudsen, J. T.; Eriksson, R.; Gershenzon, J.; Stahl, B. Diversity and Distribution of Floral Scent. Bot. Rev. 2006, 72 (1), 1–120.
dc.relationDudareva, N.; Negre, F.; Nagegowda, D. A.; Orlova, I. Plant Volatiles: Recent Advances and Future Perspectives. CRC. Crit. Rev. Plant Sci. 2006, 25 (5), 417–440.
dc.relationTholl, D. Biosynthesis and Biological Functions of Terpenoids in Plants. Adv. Biochem. Eng. Biotechnol. 2014, 123 (July 2015), 127–141.
dc.relationPichersky, E.; Noel, J. P.; Dudareva, N. Biosynthesis of Plant Volatiles: Nature’s Diversity and Ingenuity. Science (80-. ). 2006, 311 (5762), 808–811.
dc.relationErvik, F.; Tollsten, L.; Knudsen, J. T. Floral Scent Chemistry and Pollination Ecology in Phytelephantoid Palms (Arecaceae). Plant Syst. Evol. 1999, 217 (3–4), 279–297.
dc.relationKnudsen, J. T.; Tollsten, L.; Ervik, F. Flower Scent and Pollination in Selected Neotropical Palms. Plant Biol. 2001, 3, 642–653.
dc.relationCampos, A.; Maia, D.; Reis, L. K.; Maria, D.; Navarro, F.; Aristone, F.; Augusto, C.; Javier, C.; Barrera, C.; Alberto, L.; Avellaneda, N. Chemical Ecology of Cyclocephala forsteri ( Melolonthidae ), a Threat to Macauba Oil Palm Cultivars ( Acrocomia aculeata , Arecaceae ). 2019, No. April, 1–8.
dc.relationMaia, A. C. D.; Santos, G. K. N.; Gonçalves, E. G.; Navarro, D. M. do A. F.; Nuñez-Avellaneda, L. A. 2-Alkyl-3-Methoxypyrazines Are Potent Attractants of Florivorous Scarabs (Melolonthidae, Cyclocephalini) Associated with Economically Exploitable Neotropical Palms (Arecaceae). Pest Manag. Sci. 2018, 74 (9), 2053–2058.
dc.relationKnudsen, J. T.; Andersson, S.; Bergman, P. Floral Scent Attraction in Geonoma macrostachys, an Understorey Palm of the Amazonian Rain Forest. Oikos 1999, 85 (3), 409.
dc.relationCaissard, J.-C.; Meekijjironenroj, A.; Baudino, S.; Anstett, M.-C. Localization Of Production And Emission Of Pollinator Attractant On Whole Leaves Of Chamaerops humilis (Arecaceae). Maerican J. Bot. 2004, 91 (8), 1190–1199.
dc.relationLumabas, J. L.; Sioson, J. C.; Janairo, J. I. B. Chemical Diversity of Scarab Beetle Pheromones and Its Implication in Chemical Evolution. 2016, 5 (1), 65–70.
dc.relationParra, R. Contribution of Oil Palm Isoprene Emissions to Tropospheric Ozone Levels in the Distrito Metropolitano de Quito ( Ecuador ). 116, 95–104.
dc.relationJardine, K. J.; Gimenez, B. O.; Araüjo, A. C.; Cunha, R. L.; Felizzola, J. F.; Piva, L. R.; Chambers, J. Q.; Higuchi, N. Diurnal Pattern of Leaf, Flower and Fruit Specific Ambient Volatiles above an Oil Palm Plantation in Pará State, Brazil. J. Braz. Chem. Soc. 2016, 27 (8), 1484–1492.
dc.relationVolatiles, F.; Lajis, N. H.; Hussein, M. Y.; Toia, R. F. Extraction and Identification of the Main Compound Present in Elaeis guineensis. Pertanika 1985, 8 (1), 105–108.
dc.relationMuhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B. Analysis of Volatile Organic Compound from Elaeis guineensis Inflorescences Planted on Different Soil Types in Malaysia. AIP Conf. Proc. 2016, 1784.
dc.relationZainol Hilmi, N. H.; Idris, A. S.; Mohd Azmil, M. N. Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry for the Detection of Volatile Organic Compounds Released from Ganoderma boninense and Oil Palm Wood. For. Pathol. 2019, 49 (4), 1–9.
dc.relationBruce, T. J.; Cork, A. Electrophysiological and Behavioral Responses of Female Helicoverpa armigera to Compounds Identified in Flowers of African Marigold, Tagetes Erecta. J. Chem. Ecol. 2001, 27 (6), 1119–1131.
dc.relationWurmitzer, C.; Blüthgen, N.; Krell, F. T.; Maldonado, B.; Ocampo, F.; Müller, J. K.; Schmitt, T. Attraction of Dung Beetles to Herbivore Dung and Synthetic Compounds in a Comparative Field Study. Chemoecology 2017, 27, 75–84.
dc.relationWeevil, A. P.; Rhynchophorus, L. Ethyl Propionate : Synergistic Kairomone For. Agriculture 1994, 20 (4), 889–897.
dc.relationVacas, S.; Melita, O.; Michaelakis, A.; Milonas, P.; Minuz, R.; Riolo, P.; Abbass, M. K.; Lo Bue, P.; Colazza, S.; Peri, E.; Soroker, V.; Livne, Y.; Primo, J.; Navarro-Llopis, V. Lures for Red Palm Weevil Trapping Systems: Aggregation Pheromone and Synthetic Kairomone. Pest Manag. Sci. 2017.
dc.relationHasni, N.; Pinier, C.; Imed, C.; Ouhichi, M.; Couzi, P.; Chermiti, B.; Frérot, B.; Saïd, I.; Rochat, D. Synthetic Co-Attractants of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon. J. Chem. Ecol. 2017, 43 (7), 631–643.
dc.relationRuther, J.; Mayer, C. J. Response of Garden Chafer, Phyllopertha horticola, to Plant Volatiles: From Screening to Application. Entomol. Exp. Appl. 2005, 115 (1), 51–59.
dc.relationLeal, W. S. Chemical Ecology of Phytophagous Scarab Beetles. Annu. Rev. Entomol. 2002, 43 (1), 39–61.
dc.relationLeal, W. S.; Ono, M.; Hasegawa, M.; Sawada, M. Kairomone from Dandelion, Taraxacum officinale, Attractant for Scarab Beetle Anomala Octiescostata. J. Chem. Ecol. 1994, 20 (7), 1697–1704.
dc.relationImai, T.; Maekawa, M.; Tsuchiya, S.; Fujimori, T. Field Attraction of Hoplia communis to 2-Phenylethanol, a Major Volatile Component from Host Flowers, Rosa spp. J. Chem. Ecol. 1998, 24 (9), 1491–1497.
dc.relationChen, R. zhao; Klein, M. G.; Sheng, C. fa; Li, Y.; Li, Q. yun. Male and Female Popillia quadriguttata (Fabricius) and Protaetia brevitarsis (Lewis) (Coleoptera: Scarabaeidae) Response to Japanese Beetle Floral and Pheromone Lures. J. Asia. Pac. Entomol. 2013, 16 (4), 479–484.
dc.relationHallett, R. H. Aggregation Pheromones Of Coleopteran Pests Of Palms, Simon Fraser University, 1996.
dc.relationBarber, I. A.; McGovern, T. P.; Beroza, M.; Hoyt, C. P.; Walker, A. Attractant for de Coconut Rhinoceros Beetle. J. Econ. Entomol. 1971, 64 (5), 1042–1044.
dc.relationMaddison, P. A.; Beroza, M.; McGovern, T. P. Ethyl Chrysanthemumate as an Attractant for the Coconut Rhinoceros Beetle. J. Econ. Entomol. 1972, 66 (3), 591–592.
dc.relationEl-Sayed. The Pherobase: Database of Pheromones and Semiochemicals http://www.pherobase.com.
dc.relationLevinson, H. Z.; Levinson, A. R.; U., M. Action and Composition of the Alarm Pheromone of the Bedbug Cimex lectularius L. Naturwissenschaften 1974, 61, 684–685.
dc.relationCollins, R. P. Carbonyl Compounds Produced by the Bed Bug, Cimex lectularius. Ann. Entomol. Soc. Am. 1967, 61 (5), 1338–1340.
dc.relationChoudhuri, D. K. On the Chemical Components of the Stink of Khrysocoris stollid Wolf. (Heteroptera : Pentatomidae : Insecta). 1969.
dc.relationPontes, G. B.; Bohman, B.; Unelius, C. R.; Lorenzo, M. G. Metasternal Gland Volatiles and Sexual Communication in the Triatomine Bug , Rhodnius prolixus. 2008, 450–457.
dc.relationMorgan, E. D.; Tyler, R. C.; Cammarets, C. Identification of the Components of Dufour Gland Secretion of the Ant Myrmica rubra and Responses to Them. J. Insect Physiol. 1977, 23, 511–515.
dc.relationCammaerts-Tricot, M.-C.; Morgan, E. D.; Tyler, R. C.; Braekman, J.-C. Dufour’s Gland Secretion of Myrmica rubra: Chemical, Electrophysiological, and Ethological Studies. J. Insect Physiol. 1976, 22, 927–932.
dc.relationInouchi, J.; Shibuya, T.; Hatanaka, T. Food Odor Responses of Single Antennal Olfactory Cells in Japanese Dung Beetle, Geotrupes auratus (Coleoptera: Geotrupidae). Appl. Entomol. Zool. 1988, 23 (2), 167–174.
dc.relationMoretto, P. Pollination of Amorphophallus Barthlottii and A. abyssinicus subsp. akeassii (Araceae) by Dung Beetles (Insecta: Coleoptera: Scarabaeoidea). Cathar. La Rev. 2019, 18 (April), 19–36.
dc.relationKrell, F.; Schmitt, T.; Herzner, G. The Attractive Odors of Dung. In The Third, Highly Irregular, Scarab Workshop; 2006.
dc.relationKite, G. C.; Hetterscheid, W. L. A. Phytochemistry Phylogenetic Trends in the Evolution of in Florescence Odours in Amorphophallus. Phytochemistry 2017, 142, 126–142.
dc.relationVitta, A. C. R.; Bohman, B.; Unelius, C. R.; Lorenzo, M. G. Behavioral and Electrophysiological Responses of Triatoma brasiliensis Males to Volatiles Produced in the Metasternal Glands of Females. J. Chem. Ecol. 2009, 35 (10), 1212–1221.
dc.relationManrique, G.; Vitta, A. C. R.; Ferreira, R. A.; Zani, C. L.; Unelius, C. R.; Lazzari, C. R.; Diotaiuti, L.; Lorenzo, M. G. Chemical Communication in Chagas Disease Vectors. Source, Identity, and Potential Function of Volatiles Released by the Metasternal and Brindley’s Glands of Triatoma infestans Adults. J. Chem. Ecol. 2006, 32 (9), 2035–2052.
dc.relationBrossut, R. Allomonal Secretions in Cockroaches. J. Chem. Ecol. 1983, 9 (1), 143–158.
dc.relationSkubatz, H.; Kunkel, D. D.; Howald, W. N.; Trenkle, R.; Mookherjee, B. The Sauromatum guttatum Appendix as an Osmophore: Excretory Pathways, Composition of Volatiles and Attractiveness to Insects. New Phytol. 1996, 134, 631–640.
dc.relationKnudsen, J.T.; Eriksson, E.; Gershenzon, J.; Ståhl, B. Diversity and Distribution of Floral Scent. New York Botanical Review Springer. 2016, 72 (1), 1–120.
dc.relationChoudhary, D. K.; Sharma, A. K.; Agarwak, P.; Varma, A.; Tuteja, N. Volatiles and Food Security; Springer: Singapore, 2017.
dc.relationKite, G.; Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach, Third Edit.; Wiley: Chichester, 2007; Vol. 53.
dc.relationSigma-Aldrich. No TitlePlas-Labs Nitrogen dry-boxes http://www.sigmaaldrich.com/catalog/substance/plaslabsnitrogendryboxglovebox1234598765?lang=en&region=CO (accessed Feb 15, 2017).
dc.relationEngewald, K. D. W. Adsorbent Materials Commonly Used in Air Analysis for Adsorptive Enrichment and Thermal Desorption of Volatile Organic Compounds. Anal Bioanal Chem 2002, 373 (6), 490–500.
dc.relationBuśko, M.; Kulik, T.; Ostrowska, A.; Góral, T.; Perkowski, J. Quantitative Volatile Compound Profiles in Fungal Cultures of Three Different Fusarium graminearum Chemotypes. FEMS Microbiol. Lett. 2014, 359 (1), 85–93.
dc.relationBouwmeester, H. The Role of Volatiles in Plant Communication. Plant J. 2019, 1–16.
dc.relationCastells, A. A. The Role of Terpenes in the Defensive Responses of Conifers against Herbivores and Pathogens, Universitat Autònoma de Barcelona, 2015.
dc.relationMumm, R.; Posthumus, M. A.; Dicke, M. Significance of Terpenoids in Induced Indirect Plant Defence against Herbivorous Arthropods. Plant, Cell Environ. 2008, 31 (4), 575–585.
dc.relationGarms, S.; Boland, W.; Arimura, G. I. Early Herbivore-Elicited Events in Terpenoid Biosynthesis. Plant Signal. Behav. 2008, 3 (6), 418–419.
dc.relationWei, J.; Yang, Z.; Hao, H.; Du, J.; Hope, M.; Blessig, M.; Hope, A. ( R ) - (+) -Limonene , Kairomone for Dastarcus helophoroides , a Natural Enemy of Longhorned Beetles. Agric. For. Entomol. 2008, 10 (4), 323–330.
dc.relationAzuma, H.; Toyota, M.; Asakawa, Y.; Takaso, T.; Tobe, H. Floral Scent Chemistry of Mangrove Plants. 2002, Journal of (115), 47–53.
dc.relationCipriano, A. .; Moya, O. .; Rincón, Á. .; Aldana, R. .; Oliveira, H. .; Ruiz, R. .; Avila, R. Dinámica de Reproducción de Strategus aloeus Bajo Diferentes Métodos de Erradicación y Daño Causado En La Nueva Siembra. Ceniavance 2010, 166, 1–4.
dc.relationÁvila, R. A.; Bayona, C.; Ricón, Á.; Romero, H. M. Effect of Replanting Systems on Populations of Strategus aloeus (L.) and Rhynchophorus palmarum (L.) Associated with the Oil Palm OxG Interspecific Hybrid (Elaeis oleifera × Elaeis guineensis) in Southwestern Colombia. Agron. Colomb. 2014, 32 (2), 224–231.
dc.relationBurger, B. V.; Petersen, W. G. B.; Tribe, G. D. Semiochemicals of the Scarabaeinae, IV*: Identification of an Attractant for the Dung Beetle Pachylomerus femoralis in the Abdominal Secretion of the Dung Beetle Kheper lamarcki. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 1995, 50 (9–10), 675–680.
dc.relationKumano-Nomura, Y.; Yamaoka, R. Beetle Visitations, and Associations with Quantitative Variation of Attractants in Floral Odors of Homalomena propinqua (Araceae). J. Plant Res. 2009, 122 (2), 183–192.
dc.relationAmbrogi, B. G.; Vidal, D. M.; Zarbin, P. H. G.; Rosado-Neto, G. H. Feromônios de Agregação Em Curculionidae (Insecta: Coleoptera) e Sua Implicação Taxonômica. Quim. Nova 2009, 32 (8), 2151–2158.
dc.relationSong, Y.; Kong, Y.; Wang, J.; Ruan, Y.; Huang, Q.; Ling, N.; Shen, Q. Identification of the Produced Volatile Organic Compounds and the Involved Soil Bacteria during Decomposition of Watermelon Plant Residues in a Fusarium-Infested Soil. Geoderma 2018, 315 (November 2017), 178–187.
dc.relationStotzky, G.; Schenck, S. Sources of Organic Reagents. Adv. Org. Synth. 1971, No. May, 161–165.
dc.relationAzmi, W. A.; Daud, S. N.; Hussain, M. H.; Wai, Y. K.; Chik, Z.; Sajap, A. S. Field Trapping of Adult Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Curcilionidae) with Food Baits and Synthetic Pheromone Lure in a Coconut Plantation. Philipp. Agric. Sci. 2014, 97 (4), 409–415.
dc.relationTillman, J. A.; Seybold, S. J.; Jurenka, R. A.; Blomquist, G. J. Insect Pheromones — an Overview of Biosynthesis and Endocrine Regulation. Insect Biochem. Mol. Biol. 1999, 29, 481–514.
dc.relationVanderwel, D.; Oehlschlager, A. C. Biosynthesis of Pheromones and Endocrine Regulation of Pheromone Production in Coleoptera. In Pheromone Biochemistry; Prestwich, G., Blomquist, G., Eds.; Academic Press, 1987; pp 175–215.
dc.relationSeybold, S. J.; Vanderwel, D. Biosynthesis and Endocrine Regulation of Pheromone Production in the Coleoptera. In Insect Pheromone Biochemistry and Molecular Biology; Blomquist, G., Vogt, R., Eds.; Academic Press, 2003; pp 137–200.
dc.relationJurenka, R.; Blomquist, G. J.; Schal, C.; Tittiger, C. Biochemistry and Molecular Biology of Pheromone Production ☆; 2017.
dc.relationBlomquist, G. J.; Jurenka, R.; Schal, C.; Tittiger, C. Pheromone Production: Biochemistry and Molecular Biology.; Elsevier, 2012.
dc.relationDe Mazo, L.; Vit, S. Contribution to the Knowledge of Palearctic batrisinae (Colopetera:Pselaphidae). Antennal Male Glands of Batrisus Aubé and Batrisodes Reitter: Morponogy, Histology and Taxanomical Implications. Entomologica 1983, 18, 77–110.
dc.relationFaustini, D. L.; Post, D. C.; Burkholder, W. E. Histology of Aggregation Pheromone Gland in the Red Flour Beetle. Ann. Entomol. Soc. Am. 1982, 75, 187–190.
dc.relationHoshino, K.; Nakaba, S.; Inoue, H.; Iwabuchi, K. Structure and Development of Male Pheromone Gland of Longicorn Beetles and Its Phylogenetic Relationships within the Tribe Clytini. J. Exp. Zool. B Mol. Dev. Evol. 2015, 324, 68–76.
dc.relationTumlinson, J. H.; Klein, M. G.; Doolittle, R. E.; Ladd, T. L.; Proveaux, A. T. Identification of the Female Japanese Beetle Sex Pheromone: Inhibition of Male Response by an Enantiomer. Science (80-. ). 1977, 197 (4305), 789–792.
dc.relationZhang, A. Essential Amino Acid Methyl Esters: Mjor Sex Pheromone Components of the Cranberry White Grub, Phyllophaga anxia (Coleoptera: Scarabaeidae). J. Chem. Ecol. 1997, 23 (1), 231–245.
dc.relationHenzel, R. F.; Lowe, M. D. Sex Attractant of the Grass Grub Beetle Social Organization in the Bat Myotis adversus. Science (80-. ). 1970, 168 (2), 1005–1006.
dc.relationLarsson, M. C.; Hedin, J.; Svensson, G. P.; Tolasch, T.; Francke, W. Characteristic Odor of Osmoderma eremita Identified as a Male-Released Pheromone. J. Chem. Ecol. 2003, 29 (3), 575–587.
dc.relationHallett, R. H.; Perez, A. L.; Gries, G.; Gries, R.; Pierce, H. D.; Yue, J.; Oehlschlager, A. C.; Gonzalez, L. M.; Borden, J. H. Aggregation Pheromone of Coconut Rhinoceros Beetle, Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae). J. Chem. Ecol. 1995, 21 (10), 1549–1570.
dc.relationRochat, D.; Mohammadpoor, K.; Malosse, C.; Avand-Faghih, A.; Lettere, M.; Beauhaire, J.; Morin, J.-P.; Pezier, A.; Renou, M.; Absollahi, G. A. Male Aggregation Pheromone of Date Palm Fruit Stalk Borer Oryctes elegans. J. Chem. Ecol. 2004, 30 (2), 387–407.
dc.relationSaïd, I.; Hasni, N.; Abdallah, Z.; Couzi, P.; Ouhichi, M.; Renou, M.; Rochat, D. Identification of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon. J. Chem. Ecol. 2015, 41 (5), 446–457.
dc.relationBento, J. M. S. Comunicaciones Personales, 2019.
dc.relationOpitz, S. E. W.; Mu, Æ. C. Plant Chemistry and Insect Sequestration. 2009, 117–154.
dc.relationRudinsky, B. J. A.; Morgan, M. E.; Libbey, L. M.; Putnam, T. B. Limonene Released by the Scolytid Beetle Dendroctonus pseudotsugae. Zeitschrift für Angew. Entomol. 1977, 82, 376–380.
dc.relationBurger, B. V. First Investigation of the Semiochemistry of South African Dung Beetle Species. In Neurobiology of Chemical Communication; Mucignat-Caretta, C., Ed.; 2014; pp 57–95.
dc.relationManjeri, G. Oryctes Rhinoceros Beetles, an Oil Palm Pest in Malaysia. Annu. Res. Rev. Biol. 2014, 4 (22), 3429–3439.
dc.relationAllou, K.; Morin, J. P.; Kouassi, P.; N’Klo, F. H.; Rochat, D. Oryctes monoceros Trapping with Synthetic Pheromone and Palm Material in Ivory Coast. J. Chem. Ecol. 2006, 32 (8), 1743–1754.
dc.relationLeal, W. S. Molecules and Macromolecules Involved in Chemical Communication of Scarab Beetles . 2001, 73 (3), 613–616.
dc.relationLeal, W. S. Chapter 4. 2005, 45–57.
dc.relationHarvey, D. J.; Vuts, J.; Hooper, A.; Finch, P.; Woodcock, C. M.; Caulfield, J. C.; Kadej, M.; Smolis, A.; Withall, D. M.; Henshall, S.; Pickett, J. A.; Gange, A. C.; Birkett, M. A. Environmentally Vulnerable Noble Chafers Exhibit Unusual Pheromone-Mediated Behaviour. PLoS One 2018, 13 (11), 1–15.
dc.relationRochat, D.; Morin, J. P.; Kakul, T.; Beaudoin-Ollivier, L.; Prior, R.; Renou, M.; Malosse, I.; Stathers, T.; Embupa, S.; Laup, S. Activity of Male Pheromone of Melanesian Rhinoceros Beetle Scapanes australis. J. Chem. Ecol. 2002, 28 (3), 479–500.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos Reservados al Autor, 2021
dc.titleSeñales químicas entre el escarabajo-plaga Strategus aloeus (Coleoptera: Scarabaeidae: Dynastinae) y la palma de aceite (Elaeis guineensis Jacq.)
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución