dc.contributorAragón Novoa, Diana Marcela
dc.contributorOliveira Simões, Claudia Maria
dc.contributorSistemas para Liberación Controlada de Moléculas Biológicamente Activas
dc.creatorDomínguez Moré, Gina Paola
dc.date.accessioned2021-01-26T15:23:39Z
dc.date.available2021-01-26T15:23:39Z
dc.date.created2021-01-26T15:23:39Z
dc.date.issued2020-12-04
dc.identifierDomínguez, G. (2020). Estudio farmacocinético de quercetina-3-O-rutinósido a partir de un extracto estandarizado de cálices de Physalis peruviana en dos modelos animales [Tesis de doctorado, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78924
dc.description.abstractPhysalis peruviana es una planta de la familia Solanaceae con propiedades medicinales. Un extracto hidroalcohólico de cálices de P. peruviana presentó actividad antiinflamatoria e hipoglicemiante. El objetivo de esta investigación fue estudiar la farmacocinética del flavonoide mayoritario del extracto, quercetina-3-O-rutinósido (rutina), en ratas y conejos, como parte del desarrollo preclínico de un fitoterapéutico. Se estudió inicialmente la permeabilidad intestinal de rutina desde el extracto, utilizando el modelo de Caco-2. El estudio farmacocinético se realizó tras la administración en los animales de dosis del extracto entre 100 y 1000 mg/kg, por vía i.v. y oral y la toma de muestras de sangre entre las 0 y las 48 h. Las muestras provenientes de los estudios de permeabilidad y farmacocinéticos se cuantificaron para rutina y sus metabolitos, utilizando técnicas HPLC y UHPLC-UV validadas. Se obtuvo también el coeficiente de permeabilidad aparente (Papp) y los parámetros farmacocinéticos de rutina estándar con fines comparativos. El Papp de rutina en el extracto fue mayor que el del compuesto puro (1.53 ± 0.07 vs 0.9 ± 0.03 x 10-5 cm/s). En los animales, rutina administrada por vía oral, como compuesto puro o en el extracto, estuvo sujeta a metabolismo intestinal y los compuestos encontrados en el plasma fueron principalmente los conjugados glucurónido y sulfato de quercetina (Q3OG y Q3OS respectivamente). La biodisponibilidad relativa oral de Q3OG y Q3OS desde el extracto fue 11.2 (1120%) en ratas y de 12.0 (1200%) en conejos, frente al compuesto puro. Se concluyó que la matriz del extracto tiene influencia sobre la permeabilidad y biodisponibilidad de rutina y sus metabolitos.
dc.description.abstractPhysalis peruviana is a plant of the Solanaceae family with medicinal properties. A hydroalcoholic extract from calyces of P. peruviana showed anti-inflammatory and hypoglycemic activity. The aim of this research was to study the pharmacokinetics of the main flavonoid in the extract, quercetin-3-O-rutinoside (rutin), in rats and rabbits, as part of the preclinical development of a botanical drug. Intestinal permeability of rutin from the extract was initially studied using the Caco-2 model. The pharmacokinetic study was carried out by administrating in the animals i.v. and oral doses of the extract among 100 and 1000 mg/kg and taking blood samples from 0 to 48 h. Samples from permeability and pharmacokinetic studies were quantified for rutin and its main metabolites, using validated HPLC and UHPLC-UV methods. Pure rutin was also assayed for permeability and pharmacokinetic for comparison purposes. The intestinal permeability of rutin in the extract was greater than that of the pure compound (1.53 ± 0.07 vs 0.9 ± 0.03 x 10-5 cm/s). In animals orally administered with rutin (pure or extract), the flavonoid was subject to intestinal metabolism and the compounds found in plasma were glucuronide and sulfate conjugates of quercetin (Q3OG and Q3OS respectively). The relative bioavailability of Q3Og y Q3OS in the extract versus the pure compound was up to 11.2 (1120%) in rats and 12.0 (1200%) in rabbits. It was concluded that the extract matrix influences the permeability and bioavailability of rutin and its metabolites.
dc.languagespa
dc.publisherBogotá - Ciencias - Doctorado en Ciencias Farmacéuticas
dc.publisherDepartamento de Farmacia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAgilent technologies. (2016). The LC Handbook.
dc.relationAguilar Ros, A., Camaño Somoza, M., Martin Martin, F. R., & Montejo Rubio, M. C. (2014). Biofarmacia y farmacocinética: ejercicios y problemas resueltos (2nd ed.). Elsevier. https://books.google.com.co/books?id=5NN_oAEACAAJ.
dc.relationAhmad, N., Ahmad, R., Naqvi, A. A., Alam, M. A., Ashafaq, M., Samim, M., Iqbal, Z., & Ahmad, F. J. (2016). Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. International Journal of Biological Macromolecules, 91, 640–655. https://doi.org/10.1016/j.ijbiomac.2016.06.001
dc.relationAhmad, N., Ahmad, R., Naqvi, A. A., Alam, M. A., Samim, M., Iqbal, Z., & Ahmad, F. J. (2016). Quantification of rutin in rat’s brain by UHPLC/ESI-Q-TOF-MS/MS after intranasal administration of rutin loaded chitosan nanoparticles. EXCLI Journal, 15, 518–531. https://doi.org/10.17179/excli2016-361.
dc.relationAndlauer, W., Stumpf, C., & Fürst, P. (2001). Intestinal absorption of rutin in free and conjugated forms. Biochemical Pharmacology, 62(3), 369–374. https://doi.org/10.1016/S0006-2952(01)00638-4.
dc.relationArtursson, P., Karlsso, J., & Karlsson, J. (1991). Correlation between oral drug absorption in humans and apparent drug permebility coefficients in human intestinal epithelial (CaCO-2) cells. Biochemical and Biophisical Research Communications, 175(3), 880–885.
dc.relationBai, X., Moraes, T. F., & Reithmeier, R. A. F. (2017). Structural biology of solute carrier (SLC) membrane transport proteins. Molecular Membrane Biology, 34(1–2), 1–32. https://doi.org/10.1080/09687688.2018.1448123.
dc.relationBenet, L Z. (1984). Pharmacokinetic parameters: which are necessary to define a drug substance? European Journal of Respiratory Diseases. Supplement, 134, 45—61. http://europepmc.org/abstract/MED/6586486.
dc.relationBenet, Leslie Z., & Hoener, B. A. (2002). Changes in plasma protein binding have little clinical relevance. Clinical Pharmacology and Therapeutics, 71(3), 115–121. https://doi.org/10.1067/mcp.2002.121829.
dc.relationBerger, L. M., Wein, S., Blank, R., Metges, C. C., & Wolffram, S. (2012). Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin. Journal of Dairy Science, 95(9), 5047–5055. https://doi.org/10.3168/jds.2012-5439.
dc.relationBischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J. D., Serino, M., Tilg, H., Watson, A., & Wells, J. M. (2014). Intestinal permeability - a new target for disease prevention and therapy. BMC Gastroenterology, 14(1), 1–25. https://doi.org/10.1186/s12876-014-0189-7.
dc.relationBormans, V., & Peeters, T. L. (1986). Motilin receptors in rabbit stomach and small intestine *. 15(October 1984), 143–153.
dc.relationBoyer, J. E. B., Rown, D. A. N. B., & Iu, R. U. I. H. A. I. L. (2004). Uptake of Quercetin and Quercetin 3-Glucoside from Whole Onion and Apple Peel Extracts by Caco-2 Cell Monolayers. Journal of Agricultural and Food Chemistry, 54, 7172–7179. https://doi.org/10.1021/jf030733d.
dc.relationBraune, A., & Blaut, M. (2016). Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes, 7(3), 216–234. https://doi.org/10.1080/19490976.2016.1158395.
dc.relationBrodin, B., Steffansen, B., & Nielsen, C. U. (2010). Passive diffusion of drug substances: the concepts of flux and permeability. In Molecular Biopharmaceutics (pp. 135–151). https://doi.org/10.1200/JCO.2003.10.116.
dc.relationBuchner, N., Krumbein, A., Rohn, S., & Kroh, L. W. (2006). Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communications in Mass Spectrometry, 20, 3229–3235. https://doi.org/10.1002/rcm.
dc.relationCao, H., Liu, X., Ulrih, N. P., Sengupta, P. K., & Xiao, J. (2019). Plasma protein binding of dietary polyphenols to human serum albumin: A high performance affinity chromatography approach. Food Chemistry, 270(March 2018), 257–263. https://doi.org/10.1016/j.foodchem.2018.07.111.
dc.relationCao, X., Li, H., Wang, M., Ren, X., & Deng, Y. (2020). Analysis of five active ingredients of Er-Zhi-Wan, a traditional Chinese medicine water-honeyed pill, using the biopharmaceutics classification system. Biomedical Chromatography, 34(2), e4757. https://doi.org/10.1002/bmc.4757.
dc.relationCardona, María Isabel. (2014). Aporte a la estandarización de un extracto de cálices de Physalis peruviana.
dc.relationCardona, Maria Isabel, Toro, R. M., Costa, G. M., Ospina, L. F., Castellanos, L., Ramos, F. A., & Aragón, D. M. (2017). Influence of extraction process on antioxidant activity and rutin content in Physalis peruviana calyces extract. Journal of Applied Pharmaceutical Science, 7(6), 164–168. https://doi.org/10.7324/JAPS.2017.70623.
dc.relationCastro, J., Ocampo, Y., & Franco, L. (2015). Cape gooseberry [Physalis peruviana L.] calyces ameliorate TNBS acid-induced colitis in rats. Journal of Crohn’s and Colitis, 9(11), 1004–1015. https://doi.org/10.1093/ecco-jcc/jjv132.
dc.relationCenter for drug evaluation and research (CDER). (1994). Reviewer Guidance ’ Validation of Chromatographic Methods. November.
dc.relationChaaban, H., Ioannou, I., Chebil, L., Slimane, M., Gérardin, C., Paris, C., Charbonnel, C., Chekir, L., & Ghoul, M. (2017). Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. Journal of Food Processing and Preservation, 41(5), 1–12. https://doi.org/10.1111/jfpp.13203.
dc.relationChebil, L., Humeau, C., Anthony, J., Dehez, F., Engasser, J. M., & Ghoul, M. (2007). Solubility of flavonoids in organic solvents. Journal of Chemical and Engineering Data, 52(5), 1552–1556. https://doi.org/10.1021/je7001094.
dc.relationChen, C. H., Hsu, H. J., Huang, Y. J., & Lin, C. J. (2007). Interaction of flavonoids and intestinal facilitated glucose transporters. Planta Medica, 73(4), 348–354. https://doi.org/10.1055/s-2007-967172.
dc.relationChen, X., Yin, O. Q. P., Zuo, Z., & Chow, M. S. S. (2005). Pharmacokinetics and modeling of quercetin and metabolites. Pharmaceutical Research, 22(6), 892–901. https://doi.org/10.1007/s11095-005-4584-1.
dc.relationChoudhury, R., Srai, S. K., Debnam, E., & Rice-Evans, C. A. (1999). Urinary excretion of hydroxycinnamates and flavonoids after oral and intravenous administration. Free Radical Biology and Medicine, 27(3–4), 278–286. https://doi.org/10.1016/S0891-5849(99)00054-4.
dc.relationChua, L. S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of Ethnopharmacology, 150(3), 805–817. https://doi.org/10.1016/j.jep.2013.10.036.
dc.relationCorradini, D. (2016). Handbook of HPLC (2nd ed.). CRC Press. https://books.google.com.co/books?id=8rd1kucmJ4QC.
dc.relationCzank, C., Cassidy, A., Zhang, Q., Morrison, D. J., Preston, T., Kroon, P. A., Botting, N. P., & Kay, C. D. (2013). Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A 13C-tracer study. American Journal of Clinical Nutrition, 97(5), 995–1003. https://doi.org/10.3945/ajcn.112.049247.
dc.relationDahlgren, D., & Lennernäs, H. (2019). Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics, 11(8). https://doi.org/10.3390/pharmaceutics11080411.
dc.relationDavies, B., & Morris, T. (1993). Physiological parameters in laboratory animals and humans. In Pharmaceutical Research (Vol. 10, Issue 7, pp. 1093–1095). https://doi.org/10.1023/A:1018943613122.
dc.relationde Waziers, I., Cugnenc, P. H., Yang, C. S., Leroux, J. P., & Beaune, P. H. (1990). Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. Journal of Pharmacology and Experimental Therapeutics, 253(1), 387 LP – 394. http://jpet.aspetjournals.org/content/253/1/387.abstract.
dc.relationDebrus, B., Rozet, E., Hubert, P., Veuthey, J. L., Rudaz, S., & Guillarme, D. (2012). Method transfer between conventional HPLC and UHPLC. In RSC Chromatography Monographs (Vols. 2012-Janua, Issue 16). https://doi.org/10.1039/9781849735490-00067.
dc.relationDiehl, K., Hull, R., Morton, D., Pfister, R., Rabemampianina, Y., Smith, D., Vidal, J., & Vorstenbosch, C. Van De. (2001). A Good Practice Guide to the Administration of Substances and Removal of Blood, Including Routes and Volumes. JOURNAL OF APPLIED TOXICOLOGY, 21, 15–23.
dc.relationDomínguez Moré, G. P., Cardenas, P. A., Costa, G. M., Simoes, C. M. O., & Aragon, D. M. (2017). Pharmacokinetics of Botanical Drugs and Plant Extracts. Mini-Reviews in Medicinal Chemistry, 17(17), 1646–1664. https://doi.org/10.2174/1389557517666170510112508.
dc.relationDomínguez Moré, G. P., Feltrin, C., Brambila, P. F., Cardona, M. I., Echeverry, S. M., Simões, C. M. O., & Aragón, D. M. (2020). Matrix effects of the hydroethanolic extract and the butanol fraction of calyces from Physalis peruviana L. on the biopharmaceutics classification of rutin. Journal of Pharmacy and Pharmacology, 72(5), 738–747. https://doi.org/10.1111/jphp.13248.
dc.relationDong, M. W., & Zhang, K. (2014). Ultra-high-pressure liquid chromatography (UHPLC) in method development. TrAC - Trends in Analytical Chemistry, 63, 21–30. https://doi.org/10.1016/j.trac.2014.06.019.
dc.relationDwivedi, P., Zhou, X., Powell, T. G., Calafat, A. M., & Ye, X. (2018). Impact of enzymatic hydrolysis on the quantification of total urinary concentrations of chemical biomarkers. Chemosphere, 199, 256–262. https://doi.org/10.1016/j.chemosphere.2018.01.177.
dc.relationEcheverry, S. M., Valderrama, I. H., Costa, G. M., Ospina-Giraldo, L. F., & Aragón, D. M. (2018). Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. Journal of Applied Pharmaceutical Science, 8(5), 10–18. https://doi.org/10.7324/JAPS.2018.8502.
dc.relationEl-Kattan, A., & Varma, M. (2012). Oral Absorption, Intestinal Metabolism and Human Oral Bioavailability. In J. Paxton (Ed.), Topics on Drug Metabolism. InTech. https://doi.org/http://dx.doi.org/10.5772/57353.
dc.relationEl-Saber Batiha, G., Beshbishy, A. M., Ikram, M., Mulla, Z. S., Abd El-Hack, M. E., Taha, A. E., Algammal, A. M., & Ali Elewa, Y. H. (2020). The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 9(3). https://doi.org/10.3390/foods9030374.
dc.relationEMA. (2008). REFLECTION PAPER ON MARKERS USED FOR QUANTITATIVE AND QUALITATIVE ANALYSIS OF HERBAL MEDICINAL PRODUCTS AND TRADITIONAL HERBAL MEDICINAL PRODUCTS (Issue July). https://doi.org/10.32388/yokp53.
dc.relationEnogieru, A. B., Haylett, W., Hiss, D. C., Bardien, S., & Ekpo, O. E. (2018). Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxidative Medicine and Cellular Longevity, 2018, 1–17. https://doi.org/10.1155/2018/6241017.
dc.relationErlund, I., Kosonen, T., Alfthan, G., Mäenpää, J., Perttunen, K., Kenraali, J., Parantainen, J., & Aro, a. (2000). Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. European Journal of Clinical Pharmacology, 56, 545–553. https://doi.org/10.1007/s002280000197.
dc.relationEuropean Medicines Agency. (2013). ICH M3 (R2) - Non-clinical Safety studies for the conduct of human clinical trials and marketing authorisation for pharmaceuticals. European Medicines Agency, 3(R2), 31. http://www.ich.org/products/guidelines/multidisciplinary/article/multidisciplinary-guidelines.html.
dc.relationFan, Z.-C., Xie, C.-J., & Zhang, Z.-Q. (2006). Simultaneous Quantitation of Tetrahydropalmatine and Protopine in Rabbit Plasma by HPLC–PAD, and Application to Pharmacokinetic Studies. Chromatographia, 64(9), 577–581. https://doi.org/10.1365/s10337-006-0080-y.
dc.relationFDA/CDER. (2005). Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. https://doi.org/10.1089/blr.2006.25.697.
dc.relationFDA/CDER. (2006). Exploratory IND Studies. Guidance for Industry, Investigators, and Reviewers, January, http://www.fda.gov/downloads/Drugs/GuidanceComplia. https://doi.org/10.1089/blr.2006.25.167.
dc.relationFDA/CDER. (2017). Guidance for Industry, Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system. December. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm%0AU.S.
dc.relationFDA/CDER. (2018). Guidance for Industry Bioanalytical Method Validation Guidance for Industry Bioanalytical Method Validation (Issue May). http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm.
dc.relationFDA/CDER. (2019). Evaluation of Internal Standard Responses During Chromatographic Bioanalysis : Questions and Answers Guidance for Industry Evaluation of Internal Standard Responses During Chromatographic Bioanalysis : Questions and Answers Guidance for Industry (Issue September).
dc.relationFDA/CDER. (2020). Safety Testing of Drug Metabolites Guidance for Industry. March. https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs.
dc.relationFong, S. Y. K., Liu, M., Wei, H., Löbenberg, R., Kanfer, I., Lee, V. H. L., Amidon, G. L., & Zuo, Z. (2013). Establishing the pharmaceutical quality of Chinese herbal medicine: A provisional BCS classification. Molecular Pharmaceutics, 10(5), 1623–1643. https://doi.org/10.1021/mp300502m.
dc.relationFranco, L. A., Matiz, G. E., Calle, J., Pinzón, R., & Ospina, L. F. (2007). Actividad antinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L . Journal of Ethnopharmacology, 110–115. http://www.scielo.unal.edu.co/scielo.php?pid=S0120-41572007000100010&script=sci_arttext&tlng=en.
dc.relationFranco, L. A., Ocampo, Y. C., Gómez, H. A., De La Puerta, R., Espartero, J. L., & Ospina, L. F. (2014). Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity. Planta Medica, 80(17), 1605–1614. https://doi.org/10.1055/s-0034-1383192.
dc.relationFriedman, M., & Jürgens, H. S. (2000). Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry, 48(6), 2101–2110. https://doi.org/10.1021/jf990489j.
dc.relationGaneshpurkar, A., & Saluja, A. K. (2017). The Pharmacological Potential of Rutin. Saudi Pharmaceutical Journal, 25(2), 149–164. https://doi.org/10.1016/j.jsps.2016.04.025.
dc.relationGao, S., & Hu, M. (2010). Bioavailability challenges associated with development of anti-cancer phenolics. Mini Reviews in Medicinal Chemistry, 10(6), 550–567. https://doi.org/10.2174/138955710791384081.
dc.relationGao, S., Jiang, W., Yin, T., & Ming, H. (2010). Highly Variable Contents of Phenolics in St John’s Wort Products Impact Their Transport in the Human Intestinal Caco-2 Cell Model: Pharmaceutical and Biopharmaceutical Rationale for Product Standardization. J Agric Food Chem, 58(11), 6650–6659. https://doi.org/https://doi.org/10.1021/jf904459u.
dc.relationGhorbani, A. (2017). Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine and Pharmacotherapy, 96(October), 305–312. https://doi.org/10.1016/j.biopha.2017.10.001.
dc.relationGlobal CRO Council for Bioanalysis. (2011). Recommendations on : internal standard criteria , stability , incurred sample reanalysis and recent 483s by the Global CRO Council for Bioanalysis. Bioanalysis, 3, 1323–1332. https://doi.org/8.
dc.relationGobburu, J. V. S., & Holford, N. H. G. (2001). Vz, THE TERMINAL PHASE VOLUME: TIME FOR ITS TERMINAL PHASE? * . Journal of Biopharmaceutical Statistics, 11(4), 373–375. https://doi.org/10.1081/bip-120008854.
dc.relationGonzales, G. B., Van Camp, J., Vissenaekens, H., Raes, K., Smagghe, G., & Grootaert, C. (2015). Review on the Use of Cell Cultures to Study Metabolism, Transport, and Accumulation of Flavonoids: From Mono-Cultures to Co-Culture Systems. Comprehensive Reviews in Food Science and Food Safety, 14(6), 741–754. https://doi.org/10.1111/1541-4337.12158.
dc.relationGraefe, E., Witting, J., Mueller, S., Riethling, A.-K., Uehleke, B., Drewelow, B., Pforte, H., Jacobash, G., & Derendorf, H. (2001). Pharmacokinetics and bioavailability of quercetin glycosides in humans. Journal OfClinical Pharmacology, 41, 492–499.
dc.relationGram, T. E., & Fouts, J. R. (1966). TIME COURSE DIFFERENCES IN THE METABOLISM OF DRUGS BY HEPATIC MICROSOMES FROM RATS, RABBITS AND MICE. Journal of Pharmacology and Experimental Therapeutics, 152(3), 363 LP – 371. http://jpet.aspetjournals.org/content/152/3/363.abstract.
dc.relationGuan, H., Qian, D., Ren, H., Zhang, W., Nie, H., Shang, E., & Duan, J. (2014). Interactions of pharmacokinetic profile of different parts from Ginkgo biloba extract in rats. Journal of Ethnopharmacology, 155(1), 758–768. https://doi.org/10.1016/j.jep.2014.06.022.
dc.relationGullón, B., Lú-Chau, T. A., Moreira, M. T., Lema, J. M., & Eibes, G. (2017). Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science and Technology, 67, 220–235. https://doi.org/10.1016/j.tifs.2017.07.008.
dc.relationH. Wagner, G. U.-M. (2009). Synergy research:Approaching a new generation of phytopharmaceuticals. Review (Part 1). Phytomedicine, 16(2), 97–110. https://doi.org/10.1016/j.phymed.2008.12.018.
dc.relationHatton, G. B., Yadav, V., Basit, A. W., & Merchant, H. A. (2015). Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans. Journal of Pharmaceutical Sciences, 104(9), 2747–2776. https://doi.org/10.1002/jps.24365.
dc.relationHazra, A., & Gogtay, N. (2016). Biostatistics Series Module 3: Comparing Groups: Numerical Variables. Indian Journal of Dermatology, 61(3), 251–260. https://doi.org/10.4103/0019-5154.182416.
dc.relationHe, J., Feng, Y., Ouyang, H.-Z., Yu, B., Chang, Y.-X., Pan, G.-X., Dong, G.-Y., Wang, T., & Gao, X.-M. (2013). A sensitive LC-MS/MS method for simultaneous determination of six flavonoids in rat plasma: application to a pharmacokinetic study of total flavonoids from mulberry leaves. Journal of Pharmaceutical and Biomedical Analysis, 84, 189–195. https://doi.org/10.1016/j.jpba.2013.06.019.
dc.relationHeinisch, S., & Rocca, J. L. (2004). Effect of mobile phase composition, pH and buffer type on the retention of ionizable compounds in reversed-phase liquid chromatography: Application to method development. Journal of Chromatography A, 1048(2), 183–193. https://doi.org/10.1016/j.chroma.2004.07.022.
dc.relationHelms, R. A., & Quan, D. J. (2006). Textbook of Therapeutics: Drug and Disease Management. Lippincott Williams & Wilkins. https://books.google.com.co/books?id=aVmRWrknaWgC.
dc.relationHenriques, J., Falé, P. L., Pacheco, R., Florêncio, M. H., & Serralheiro, M. L. (2018). Phenolic compounds from Actinidia deliciosa leaves: Caco-2 permeability, enzyme inhibitory activity and cell protein profile studies. Journal of King Saud University - Science, 30(4), 513–518. https://doi.org/10.1016/j.jksus.2017.07.007.
dc.relationHollman, P. C. H., Van Trijp, J. M. P., Buysman, M. N. C. P., Martijn, M. S., Mengelers, M. J. B., De Vries, J. H. M., & Katan, M. B. (1997). Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Letters, 418(1–2), 152–156. https://doi.org/10.1016/S0014-5793(97)01367-7.
dc.relationHsiu, S., Huang, T., & Hou, Y. (2002). Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sciences, 70, 1481–1489.
dc.relationHuang, Q., & Riviere, J. E. (2014). The application of allometric scaling principles to predict pharmacokinetic parameters across species. Expert Opinion on Drug Metabolism & Toxicology, 10(9), 1241–1253.
dc.relationHubatsch, I., Ragnarsson, E. G. E., & Artursson, P. (2007). Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Protocol, 2(9), 2111–2119. https://doi.org/10.1038/nprot.2007.303.
dc.relationIch. (2005). ICH Topic Q2 (R1) Validation of Analytical Procedures : Text and Methodology. International Conference on Harmonization, 1994(November 1996), 17. https://doi.org/http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf.
dc.relationJones, D. J. L., Lamb, J. H., Verschoyle, R. D., Howells, L. M., Butterworth, M., Lim, C. K., Ferry, D., Farmer, P. B., & Gescher, A. J. (2004). Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity. British Journal of Cancer, 91(6), 1213–1219. https://doi.org/10.1038/sj.bjc.6602091.
dc.relationJurasekova, Z., Domingo, C., Garcia-Ramos, J. V., & Sanchez-Cortes, S. (2014). Effect of pH on the chemical modification of quercetin and structurally related flavonoids characterized by optical (UV-visible and Raman) spectroscopy. Physical Chemistry Chemical Physics, 16(25), 12802–12811. https://doi.org/10.1039/c4cp00864b.
dc.relationKammalla, A. K., Ramasamy, M. K., Chintala, J., Dubey, G. P., Agrawal, A., & Kaliappan, I. (2014). Comparative pharmacokinetic interactions of Quercetin and Rutin in rats after oral administration of European patented formulation containing Hipphophae rhamnoides and Co-administration of Quercetin and Rutin. European Journal of Drug Metabolism and Pharmacokinetics, 40(3), 277–284. https://doi.org/10.1007/s13318-014-0206-9.
dc.relationKang, H. E., & Lee, M. G. (2011). Approaches for predicting human pharmacokinetics using interspecies pharmacokinetic scaling. Archives of Pharmacal Research, 34(11), 1779–1788. https://doi.org/10.1007/s12272-011-1101-4.
dc.relationKawabata, K., Yoshioka, Y., & Terao, J. (2019). Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 24(2). https://doi.org/10.3390/molecules24020370.
dc.relationKratz, J. M., Teixeira, M. R., Koester, L. S., & Simões, C. M. O. (2011). An HPLC-UV method for the measurement of permeability of marker drugs in the Caco-2 cell assay. Brazilian Journal of Medical and Biological Research, 44(6), 531–537. https://doi.org/10.1590/S0100-879X2011007500060.
dc.relationKrishna, R., & Mayer, L. D. (2000). Multidrug resistance (MDR) in cancerMechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. European Journal of Pharmaceutical Sciences, 11(4), 265–283. https://doi.org/10.1016/S0928-0987(00)00114-7.
dc.relationLee, M., Ta, G. H., Weng, C., & Leong, M. K. (2020). In Silico Prediction of Intestinal Permeability by Hierarchical Support Vector Regression. International Journal of Molecular Sciences, 21. https://doi.org/doi:10.3390/ijms21103582.
dc.relationLi, H., Cao, X., Liu, Y., Liu, T., Wang, M., & Ren, X. (2019). Establishment of modi fi ed biopharmaceutics classi fi cation system absorption model for oral Traditional Chinese Medicine ( Sanye Tablet ). Journal of Ethnopharmacology, 244(January), 112148. https://doi.org/10.1016/j.jep.2019.112148.
dc.relationLiu, Y., & Hu, M. (2002). Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perfused rat intestinal model. Drug Metabolism and Disposition, 30(4), 370–377. https://doi.org/10.1124/dmd.30.4.370.
dc.relationLiu, Z., & Hu, M. (2007). Natural polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism and Toxicology, 3(3), 389–406. https://doi.org/10.1517/17425255.3.3.389.
dc.relationLiua, S., Guo, C., Guo, Y., Yu, H., Greenaway, F., & Sun, M.-Z. (2014). Comparative Binding Affinities of Flavonoid Phytochemicals with Bovine Serum Albumin. Iranian Journal of Pharmaceutical Research, 13(3), 1019–1028.
dc.relationLorenzi, H., & Matus, F. J. A. (2008). Plantas Medicinais no Brasil: nativas e exóticas. https://doi.org/10.1123/tsp.5.1.15.
dc.relationLu, L., Qian, D., Guo, J., Qian, Y., Xu, B., Sha, M., & Duan, J. (2013). Abelmoschi Corolla non- fl avonoid components altered the pharmacokinetic pro fi le of its fl avonoids in rat. Journal of Ethnopharmacology, 148, 804–811. https://doi.org/10.1016/j.jep.2013.05.009.
dc.relationLuca, S. V., Macovei, I., Bujor, A., Miron, A., Skalicka-Woźniak, K., Aprotosoaie, A. C., & Trifan, A. (2019). Bioactivity of dietary polyphenols: The role of metabolites. Critical Reviews in Food Science and Nutrition, 0(0), 1–34. https://doi.org/10.1080/10408398.2018.1546669.
dc.relationMahmood, I. (2018). Misconceptions and issues regarding allometric scaling during the drug development process. Expert Opinion on Drug Metabolism and Toxicology, 14(8), 843–854. https://doi.org/10.1080/17425255.2018.1499725.
dc.relationManach, C. (2004). Polyphenols : food sources and bioavailability . Am J Clin Nutr. American Journal of Clinical Nutrition, 79(October 2015), 727–747.
dc.relationMandery, K., Balk, B., Bujok, K., Schmidt, I., Fromm, M. F., & Glaeser, H. (2012). Inhibition of hepatic uptake transporters by flavonoids. European Journal of Pharmaceutical Sciences, 46(1–2), 79–85. https://doi.org/10.1016/j.ejps.2012.02.014.
dc.relationMeinl, W., Ebert, B., Glatt, H., & Lampen, A. (2008). Sulfotransferase forms expressed in human intestinal Caco-2 and TC7 cells at varying stages of differentiation and role in benzo[a]pyrene metabolism. Drug Metabolism and Disposition, 36(2), 276–283. https://doi.org/10.1124/dmd.107.018036.
dc.relationRESOLUCION NUMERO 8430 DE 1993, 19 (1993). https://doi.org/10.7705/biomedica.v32i4.1526.
dc.relationMorris, B., & Courtice, F. C. (1955). THE PROTEIN AND LIPID COMPOSITION OF THE PLASMA OF DIFFERENT ANIMAL SPECIES DETERMINED BY ZONE ELECTROPHORESIS AND CHEMICAL ANALYSIS. Experimental Physiology, 40(2), 127–137.
dc.relationMould, D. R., & Upton, R. N. (2013). Basic concepts in population modeling, simulation, and model-based drug development - Part 2: Introduction to pharmacokinetic modeling methods. CPT: Pharmacometrics and Systems Pharmacology, 2(4). https://doi.org/10.1038/psp.2013.14.
dc.relationMüller-Sepúlveda, A., Letelier, M. E., San Martin, B., & Saavedra-Saavedra, I. (2016). Simultaneous determination of different flavonoids in human plasma by a simple HPLC assay. Journal of the Chilean Chemical Society, 61(4), 3164–3169. https://doi.org/10.4067/S0717-97072016000400003.
dc.relationNan, Y., Zhao, X., Wei, L., Wang, H., Xiao, C., & Zheng, X. (2010). Determination of Jasminoidin in Rabbit Plasma for the Pharmacokinetic Investigation after Single Dose Oral Administration of Gardenia jasminoides Ellis and Gardenia jasminoides Ellis Coupling Coptis chinensis Franch Extracts. Chromatographia, 71(11–12), 1031–1037. https://doi.org/10.1365/s10337-010-1572-3.
dc.relationNigam, S. K. (2014). What do drug transporters really do? Nature Reviews Drug Discovery, 14(1), 29–44. https://doi.org/10.1038/nrd4461.
dc.relationO’Leary, K. A., Day, A. J., Needs, P. W., Mellon, F. A., O’Brien, N. M., & Williamson, G. (2003). Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: The role of human β-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochemical Pharmacology, 65(3), 479–491. https://doi.org/10.1016/S0006-2952(02)01510-1.
dc.relationOMS. (2019). Informe mundial de la OMS sobre medicina tradicional y complementaria 2019. In Organización Mundial de la Salud. https://apps.who.int/iris/bitstream/handle/10665/312342/9789241515436-eng.pdf?ua=1.
dc.relationOu-yang, Z., Cao, X., Wei, Y., Zhang, W.-W.-Q., Zhao, M., & Duan, J. (2013). Pharmacokinetic study of rutin and quercetin in rats after oral administration of total flavones of mulberry leaf extract. Revista Brasileira de Farmacognosia, 23(5), 776–782. https://doi.org/10.1590/S0102-695X2013000500009.
dc.relationOzdal, T., Sela, D. A., Xiao, J., Boyacioglu, D., Chen, F., & Capanoglu, E. (2016). The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, 8(2), 1–36. https://doi.org/10.3390/nu8020078.
dc.relationPérez-Sánchez, A., Borrás-Linares, I., Barrajón-Catalán, E., Arráez-Román, D., González-Álvarez, I., Ibáñez, E., Segura-Carretero, A., Bermejo, M., & Micol, V. (2017). Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers. PLoS ONE, 12(2), 1–18. https://doi.org/10.1371/journal.pone.0172063.
dc.relationPollard, T., & Earnshaw, W. (2017). Cell biology.
dc.relationQiang, Z., Zhong, Y., Hauck, C., Murphy, P. A., McCoy, J.-A., Widrlechner, M. P., Reddy, M. B., & Hendrich, S. (2011). Permeability of Rosmarinic acid in Prunella vulgaris and Ursolic acid in Salvia officinalis Extracts across Caco-2 Cell Monolayers. J Ethnopharmacol., 137(3), 1107–1112. https://doi.org/110.110.1016/j.jep.2011.07.037.
dc.relationRamadan, M. F. (2019). Bioactive Phytochemicals of Cape Gooseberry (Physalis peruviana L.). In H. Murthy & V. Bapat (Eds.), Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. (pp. 1–16). Springer, Cham. https://doi.org/10.1007/978-3-030-06120-3_3-1.
dc.relationRamírez, L. P. M., Dallos, M. P., & Perea, A. T. (2010). Biotecnología aplicada al mejoramiento de los cultivos de frutas tropicales. http://books.google.com.co/books/about/Biotecnología_aplicada_al_mejoramiento.html?id=axOXMwEACAAJ&pgis=1.
dc.relationRasmussen, H. T., Li, W., Dirk, R., & Jimidar, M. I. (2005). Hplc method development. In S. Ahuja & M. W. Dong (Eds.), Handbook of pharmaceutical analysis by hplc (1st ed., p. 658). Elsevier.
dc.relationRasoanaivo, P., Wright, C. W., Willcox, M. L., & Gilbert, B. (2011). Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malaria Journal, 10(Suppl 1), S4. https://doi.org/10.1186/1475-2875-10-S1-S4.
dc.relationRastogi, H., & Jana, S. (2016). Evaluation of physicochemical properties and intestinal permeability of six dietary polyphenols in human intestinal colon adenocarcinoma Caco-2 cells. European Journal of Drug Metabolism and Pharmacokinetics, 41(1), 33–43. https://doi.org/10.1007/s13318-014-0234-5.
dc.relationRazmara, R. S., Daneshfar, A., & Sahraei, R. (2010). Solubility of quercetin in water + methanol and water + ethanol from (292.8 to 333.8) K. Journal of Chemical and Engineering Data, 55(9), 3934–3936. https://doi.org/10.1021/je9010757.
dc.relationReinboth, M., Wolffram, S., Abraham, G., Ungemach, F. R., & Cermak, R. (2010). Oral bioavailability of quercetin from different quercetin glycosides in dogs. British Journal of Nutrition, 104, 198–203. https://doi.org/10.1017/S000711451000053X.
dc.relationRescigno, A. (2010). The two faces of pharmacokinetics. Journal of Pharmacy and Pharmaceutical Sciences, 13(1), 38–42. https://doi.org/10.18433/J3V013.
dc.relationReyes-Beltrán, M. E. D., Guanilo-Reyes, C. K., Ibáñez-Cárdenas, M. W., García-Collao, C. E., Idrogo-Alfaro, J. J., & Huamán-Saavedra, J. J. (2016). Efecto del consumo de Physalis peruviana L. (aguaymanto) sobre el perfil lipídico de pacientes con hipercolesterolemia. Acta Medica Peruana, 32(4), 195. https://doi.org/10.35663/amp.2015.324.2.
dc.relationŠatínský, D., Jägerová, K., Havlíková, L., & Solich, P. (2013). A New and Fast HPLC Method for Determination of Rutin, Troxerutin, Diosmin and Hesperidin in Food Supplements Using Fused-Core Column Technology. Food Analytical Methods, 6(5), 1353–1360. https://doi.org/10.1007/s12161-012-9551-y.
dc.relationScheepens, A., Tan, K., & Paxton, J. W. (2010). Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes and Nutrition, 5(1), 75–87. https://doi.org/10.1007/s12263-009-0148-z.
dc.relationSengupta, P., Sardar, P. S., Roy, P., Dasgupta, S., & Bose, A. (2018). Investigation on the interaction of Rutin with serum albumins: Insights from spectroscopic and molecular docking techniques. Journal of Photochemistry and Photobiology B: Biology, 183, 101–110. https://doi.org/10.1016/j.jphotobiol.2018.04.019.
dc.relationShargel, L., & Yu, A. B. C. (Eds.). (2015). Applied Biopharmaceutics & Pharmacokinetics, Seventh Edition (7th ed.). McGraw-Hill Education. https://books.google.com.co/books?id=yMhbCgAAQBAJ.
dc.relationShi, J., Fu, Q., Chen, W., Yang, H. P., Liu, J., Wang, X. M., & He, X. (2013). Comparative study of pharmacokinetics and tissue distribution of osthole in rats after oral administration of pure osthole and Libanotis buchtormensis supercritical extract. Journal of Ethnopharmacology, 145(1), 25–31. https://doi.org/10.1016/j.jep.2012.10.028.
dc.relationShimoi, K., Yoshizumi, K., Kido, T., Usui, Y., & Yumoto, T. (2003). Absorption and Urinary Excretion of Quercetin , Rutin , and r G-Rutin , a Water Soluble Flavonoid , in Rats. Journal of Agricultural and Food Chemistry, 51, 2785–2789.
dc.relationShugarts, S., & Benet, L. Z. (2009). The role of transporters in the pharmacokinetics of orally administered drugs. Pharmaceutical Research, 26(9), 2039–2054. https://doi.org/10.1007/s11095-009-9924-0.
dc.relationSladkovský, R., Solich, P., & Opletal, L. (2001). Simultaneous determination of quercetin, kaempferol and (E)-cinnamic acid in vegetative organs of Schisandra chinensis Baill. by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 24(5–6), 1049–1054. https://doi.org/10.1016/S0731-7085(00)00539-2.
dc.relationSlámová, K., Kapešov, J., & Valentová, K. (2018). “ Sweet Flavonoids ”: Glycosidase-Catalyzed Modifications. International Journal of Molecular Sciences, 19(2126), 1–19. https://doi.org/10.3390/ijms19072126.
dc.relationSmolarz, H. D., Budzianowski, J., Bogucka-Kocka, A., Kocki, J., & Mendyk, E. (2008). Flavonoid glucuronides with anti-leukaemic activity from Polygonum amphibium L. Phytochemical Analysis, 19(6), 506–513. https://doi.org/10.1002/pca.1076.
dc.relationSrinivas, K., King, J. W., Howard, L. R., & Monrad, J. K. (2010). Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. Journal of Food Engineering, 100(2), 208–218. https://doi.org/10.1016/j.jfoodeng.2010.04.001.
dc.relationSrinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L., Hickman, J., Srinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L., & Hickman, J. J. (2016). TEER measurement techniques for in vitro barrier model systems. In Journal of laboratory automation (Vol. 20, Issue 2). https://doi.org/10.1177/2211068214561025.TEER.
dc.relationStern, S. T., Martinez, M. N., & Stevens, D. M. (2016). When is it important to measure unbound drug in evaluating nanomedicine pharmacokinetics? Drug Metabolism and Disposition, 44(12), 1934–1939. https://doi.org/10.1124/dmd.116.073148.
dc.relationSun, H., Chow, E. C., Liu, S., Du, Y., & Pang, K. S. (2008). The Caco-2 cell monolayer: usefulness and limitations. Expert Opinion on Drug Metabolism & Toxicology, 4(4), 395–411. https://doi.org/10.1517/17425255.4.4.395.
dc.relationSun, H., & Pang, K. S. (2008). PAPER 1 Permeability, Transport, and Metabolism of Solutes in Caco-2 Cell Monolayers A Theoretical Study. Drug Metabolism and Disposition, 36(1), 102–123. https://doi.org/10.1124/dmd.107.015321.with.
dc.relationTamura, M., Nakagawa, H., Tsushida, T., Hirayama, K., & Itoh, K. (2007). Effect of pectin enhancement on plasma quercetin and fecal flora in rutin-supplemented mice. Journal of Food Science, 72(9), 648–651. https://doi.org/10.1111/j.1750-3841.2007.00557.x.
dc.relationTan, H., Chen, L., Ma, L., Liu, S., Zhou, H., Zhang, Y., Guo, T., Liu, W., Dai, H., & Yu, Y. (2019). Fluorescence spectroscopic investigation of competitive interactions between quercetin and aflatoxin B1 for binding to human serum albumin. Toxins, 11(4), 1–14. https://doi.org/10.3390/toxins11040214.
dc.relationTang, D., Yin, X., Zhang, Z., Gao, Y., Wei, Y., Chen, Y., & Han, L. (2009). Gradient HPLC-DAD for the Simultaneous Determination of Five Flavonoids in Plasma After Intravenously Administrated Ginkgo biloba Extract and its Application in the Study of Pharmacokinetics in Rats. Journal of Liquid Chromatography & Related Technologies, 32(February 2015), 2065–2079. https://doi.org/10.1080/10826070903126948.
dc.relationTeng, Z., Yuan, C., Zhang, F., Huan, M., Cao, W., Li, K., Yang, J., Cao, D., Zhou, S., & Mei, Q. (2012). Intestinal absorption and first-pass metabolism of polyphenol compounds in rat and their transport dynamics in caco-2 cells. PLoS ONE, 7(1), 1–9. https://doi.org/10.1371/journal.pone.0029647.
dc.relationTian, X. J., Yang, X. W., Yang, X., & Wang, K. (2009). Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model. International Journal of Pharmaceutics, 367(1–2), 58–64. https://doi.org/10.1016/j.ijpharm.2008.09.023.
dc.relationToro Arango, R. M. (2014). Propuesta de un marcador analítico como herramienta en la microencapsulación de un extracto con actividad antioxidante de cálices de Physalis peruviana. Universidad Nacional de Colombia..
dc.relationToro Arango, R. M., Aragón N., D. M., & Ospina G., L. F. (2013). Hepatoprotective effect of calyces extract of Physalis peruviana in hepatotoxicity induced by CCl4 in Wistar rats. Vitae, 20(45), 125–132. http://aprendeenlinea.udea.edu.co/revistas/index.php/vitae/article/viewArticle/12560%5Cnhttp://www.scielo.org.co/pdf/vitae/v20n2/v20n2a6.pdf.
dc.relationToro, R. M., Aragón, D. M., Ospina, L. F., Ramos, F. A., & Castellanos, L. (2014). Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana. Natural Product Communications, 9(11), 1–3. http://www.ncbi.nlm.nih.gov/pubmed/25532284.
dc.relationUSP (Ed.). (2019). CapÍtulo 621 Cromatografia. In USP 42 (pp. 6896–6908).
dc.relationVaidyanathan, J. B., & Walle, T. (2003). Cellular uptake and efflux of the tea flavonoid (-)epicatechin-3-gallate in the human intestinal cell line Caco-2. The Journal of Pharmacology and Experimental Therapeutics, 307(2), 745–752. https://doi.org/10.1124/jpet.103.054296.genesis.
dc.relationVerjee, S., Kelber, O., Kolb, C., Abdel-Aziz, H., & Butterweck, V. (2017). Permeation characteristics of hypericin across Caco-2 monolayers in the presence of single flavonoids, defined flavonoid mixtures or Hypericum extract matrix. Journal of Pharmacy and Pharmacology. https://doi.org/10.1111/jphp.12717.
dc.relationVerotta, D. (2012). Covariate Modeling in Population PK/PD Models: an Open Problem. Advances in Pharmacoepidemiology & Drug Safety, 01(S1), 1–5. https://doi.org/10.4172/2167-1052.s1-006.
dc.relationVichai, V., & Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytoxicity screening. Nature Protocols, 1, 1112–1116. https://doi.org/10.1038/nprot.2006.179.
dc.relationWaldmann, S., Almukainzi, M., Bou-Chacra, N. A., Amidon, G. L., Lee, B. J., Feng, J., Kanfer, I., Zuo, J. Z., Wei, H., Bolger, M. B., & Löbenberg, R. (2012). Provisional biopharmaceutical classification of some common herbs used in western medicine. Molecular Pharmaceutics, 9(4), 815–822. https://doi.org/10.1021/mp200162b.
dc.relationWang, Jing, & Zhao, Xi. H. (2016). Degradation kinetics of fisetin and quercetin in solutions affected by medium pH, temperature and co-existing proteins. Journal of the Serbian Chemical Society, 81(3), 243–253. https://doi.org/10.2298/JSC150706092W.
dc.relationWang, Jun, Zhao, L., Sun, G., Liang, Y., Wu, F., Chen, Z., & Cui, S. (2011). A comparison of acidic and enzymatic hydrolysis of rutin. Journal of Biotechnology, 10(February 2011), 1460–1466. https://doi.org/10.5897/AJB10.2077.
dc.relationWang, L., Sun, R., Zhang, Q., Luo, Q., Zeng, S., Li, X., Gong, X., Li, Y., Lu, L., Hu, M., & Liu, Z. (2019). An update on polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism and Toxicology, 15(2), 151–165. https://doi.org/10.1080/17425255.2019.1559815.
dc.relationWang, S.-Y., Chai, J.-Y., Zhang, W.-J., Liu, X., Du, Y., Cheng, Z.-Z., Ying, X.-X., & Kang, T.-G. (2010). HPLC determination of five polyphenols in rat plasma after intravenous administration of hawthorn leaves extract and its application to pharmacokinetic study. Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan, 130(11), 1603–1613.
dc.relationWei, B. Bin, Chen, Z. X., Liu, M. Y., & Wei, M. J. (2017). Development of a UPLC-MS/MS method for simultaneous determination of six flavonoids in rat plasma after administration of Maydis stigma extract and its application to a comparative pharmacokinetic study in normal and diabetic rats. Molecules, 22(8). https://doi.org/10.3390/molecules22081267.
dc.relationWei, Y., Wu, B., Jiang, W., Yin, T., Jia, X., Basu, S., Yang, G., & Hu, M. (2013). Revolving door action of breast cancer resistance protein (BCRP) facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing hela cells. Molecular Pharmaceutics, 10(5), 1736–1750. https://doi.org/10.1021/mp300562q.
dc.relationWilliamson, G., Kay, C. D., & Crozier, A. (2018). The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054–1112. https://doi.org/10.1111/1541-4337.12351.
dc.relationWu, J., Xing, H., Tang, D., Gao, Y., Yin, X., Du, Q., Jiang, X., & Yang, D. (2012). Simultaneous determination of nine flavonoids in beagle dog by HPLC with DAD and application of Ginkgo biloba extracts on the pharmacokinetic. Acta Chromatographica, 24(4), 627–642. https://doi.org/10.1556/AChrom.24.2012.4.9.
dc.relationXiao, J., & Kai, G. (2012). A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Critical Reviews in Food Science and Nutrition, 52(1), 85–101. https://doi.org/10.1080/10408398.2010.499017.
dc.relationYang, C. Y., Hsiu, S. L., Wen, K. C., Lin, S. P., Tsai, S. Y., Hou, Y. C., & Chao, P. D. L. (2005). Bioavailability and metabolic pharmacokinetics of rutin and quercetin in rats. Journal of Food and Drug Analysis, 13(3), 244–250.
dc.relationYang, Yan, Yang, R., Wei, Y., & Zheng, X. (2008). MEKC Determination and Pharmacokinetic Study of Danshensu in Rabbits after Intragastric Administration of the Aqueous Extract from Danshen. Chromatographia, 67(5–6), 477–481. https://doi.org/10.1365/s10337-008-0540-7.
dc.relationYang, Yong, Zhang, Z., Li, S., Ye, X., Li, X., & He, K. (2014). Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia, 92, 133–147. https://doi.org/10.1016/j.fitote.2013.10.010.
dc.relationYang, Yuya, Bai, L., Li, X., Xiong, J., Xu, P., Guo, C., & Xue, M. (2014). Transport of active flavonoids, based on cytotoxicity and lipophilicity: An evaluation using the blood-brain barrier cell and Caco-2 cell models. Toxicology in Vitro, 28(3), 388–396. https://doi.org/10.1016/j.tiv.2013.12.002.
dc.relationYates, J. W. T., & Arundel, P. A. (2008). On the volume of distribution at steady state and its relationship with two-compartmental models. Journal of Pharmaceutical Sciences, 97(1), 111–122. https://doi.org/10.1002/jps.21089.
dc.relationYin, J., & Wang, J. (2016). Renal drug transporters and their significance in drug-drug interactions. Acta Pharmaceutica Sinica B, 6(5), 363–373. https://doi.org/10.1016/j.apsb.2016.07.013.
dc.relationYoshino, S., Hara, A., Sakakibara, H., Kawabata, K., Tokumura, A., Ishisaka, A., Kawai, Y., & Terao, J. (2011). Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition, 27(7–8), 847–852. https://doi.org/10.1016/j.nut.2010.09.002.
dc.relationYou, J., Cui, F. De, Li, Q. P., Yong-Sheng, W., Han, X., & Yu, Y. W. (2005). A HPLC method for the analysis of germacrone in rabbit plasma and its application to a pharmacokinetic study of germacrone after administration of zedoary turmeric oil. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 823(2), 172–176. https://doi.org/10.1016/j.jchromb.2005.06.032.
dc.relationZamek-Gliszczynski, M. J., Taub, M. E., Chothe, P. P., Chu, X., Giacomini, K. M., Kim, R. B., Ray, A. S., Stocker, S. L., Unadkat, J. D., Wittwer, M. B., Xia, C., Yee, S. W., Zhang, L., & Zhang, Y. (2018). Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clinical Pharmacology and Therapeutics, 104(5), 890–899. https://doi.org/10.1002/cpt.1112.
dc.relationZhang, H.-B., Lu, P., Guo, Q.-Y., Zhang, Z.-H., & Meng, X.-Y. (2013). Baicalein induces apoptosis in esophageal squamous cell carcinoma cells through modulation of the PI3K/Akt pathway. Oncology Letters, 5(2), 722–728. https://doi.org/10.3892/ol.2012.1069.
dc.relationZhang, H., Hassan, Y. I., Liu, R., Mats, L., Yang, C., Liu, C., & Tsao, R. (2020). Molecular Mechanisms Underlying the Absorption of Aglycone and Glycosidic Flavonoids in a Caco-2 BBe1 Cell Model. ACS Omega, 5(19), 10782–10793. https://doi.org/10.1021/acsomega.0c00379.
dc.relationZhang, L., Zuo, Z., & Lin, G. (2007). Intestinal and hepatic glucuronidation of flavonoids. Molecular Pharmaceutics, 4(6), 833–845. https://doi.org/10.1021/mp700077z.
dc.relationZhang, X., Sun, Y. G., Cheng, M. C., Wang, Y. Q., Xiao, H. B., & Liang, X. M. (2007). Simultaneous quantification of three isoflavonoid glycosides in rabbit plasma after oral administration of Astragalus mongholicus extract by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Analytica Chimica Acta, 602(2), 252–258. https://doi.org/10.1016/j.aca.2007.09.033.
dc.relationZhang, Xiaofang, Song, J., Shi, X., Miao, S., Li, Y., & Wen, A. (2013). Absorption and metabolism characteristics of rutin in caco-2 cells. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/382350.
dc.relationZhao, G., Zou, L., Wang, Z., Hu, H., Hu, Y., & Peng, L. (2011). Pharmacokinetic Profile of Total Quercetin after Single Oral Dose of Tartary Buckwheat Extracts in Rats. Journal of Agricultural and Food Chemistry, 59, 4435–4441.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEstudio farmacocinético de quercetina-3-O-rutinósido a partir de un extracto estandarizado de cálices de Physalis peruviana en dos modelos animales
dc.typeOtro


Este ítem pertenece a la siguiente institución