dc.contributorNanclares-Arango, Francisco Javier
dc.contributorEcheverrí Ramírez, Oscar
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorGRUPO DE GEOTECNIA
dc.creatorBetancur-Marín, Juan Manuel
dc.date.accessioned2020-05-18T20:04:11Z
dc.date.available2020-05-18T20:04:11Z
dc.date.created2020-05-18T20:04:11Z
dc.date.issued2020-05-06
dc.identifierBetancur, J. M. (2020). Influencia de la geometría, la proporción volumétrica de bloques y la gradación en la resistencia al corte de mezclas remoldeadas de suelo y roca (Tesis de maestría). Universidad Nacional de Colombia - Sede Medellín.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77530
dc.description.abstractThere are geomaterials formed by mixtures between blocks and soils, which, given their characteristics (presence of blocks and contrast in shear resistance of this materials), are difficult to characterize. Determine the shear resistance parameters of these geomaterials becomes a complex task, because there is a contribution of the matrix and the blocks. In the study of this material, the engineering practice sometimes opts to neglect the contribution of the blocks in the resistance of the whole, or use reference values. These practices sometimes lead to very conservative designs, or in the worst scenarios, to unsafe designs. Due to the variety of origins that soil-rock mixtures are present in nature (coluvial deposits, alluvial deposits, tropical soils, glacial deposits, anthropogenic deposits, etc.), it is important to have a better knowledge of their geomechanical behavior. Thinking about the limitations, the present research aims to study the geomechanical behavior of soil-rock mixtures, in search of the influence of properties such as geometry, the blocks proportion and gradation, in the shear resistance of these materials. The results of the investigation showed equations that correlated the block-matrix proportion and the granulometric properties, with the resistance of soil-rock mixtures. It was corrobotated, among other things, that the properties such as the volumetric block proportion has a great influence on the parameters such as the internal friction angle of the material. The correlations found and the results of the investigation was validated from in-situ HCT (Hydraulic Cylinder Test) tests, on materials of different shapes and origins (alluvial and coluvial deposits), finding that the equations found from the research, offer good results.
dc.description.abstractExisten geomateriales conformados por mezclas entre suelo y bloques de roca, las cuales, dadas sus características (presencia de bloques y contraste en la resistencia de los materiales), son de difícil caracterización mecánica. Por lo anterior, determinar los parámetros de resistencia al corte de estos geomateriales se convierte en una tarea compleja; debido a que hay una combinación del aporte de la matriz y de los bloques. En el estudio de estos materiales, la práctica ingenieril opta en ocasiones por despreciar el aporte de los bloques en la resistencia de todo el conjunto o usar valores de referencia. Estas prácticas llevan en ocasiones a diseños muy conservadores, o en los peores escenarios, a diseños inseguros. Debido a la variedad de orígenes se tienen las mezclas suelo-roca en la naturaleza (depósitos de vertiente, depósitos aluviales, suelos residuales, depósitos glaciares, llenos antrópicos, etc.), es preponderante tener un mejor conocimiento del comportamiento mecánico de los mismos. Pensando en las limitantes mencionadas, el presente trabajo de investigación tiene como objetivo estudiar el comportamiento geomecánico de las mezclas suelo-roca, buscando determinar la influencia de la geometría, la proporción volumétrica de bloques y la gradación, en la resistencia al corte de estos materiales. Los resultados de la investigación arrojaron ecuaciones que correlacionan la proporción bloques-matriz y su distribución granulométrica, con la resistencia de las mezclas suelo-roca. Se corroboró, así mismo, que propiedades como la proporción volumétrica de bloques, tienen gran influencia en parámetros como el ángulo de fricción interna del conjunto suelo-bloques. Las correlaciones halladas y los resultados de la investigación fueron validados a partir de pruebas in-situ HCT (Hydraulic Cylinder Test), sobre materiales de diferentes formas y orígenes (llenos antrópicos y depósitos de vertiente), que permitieron validar las ecuaciones halladas a partir de la investigación.
dc.languagespa
dc.publisherMedellín - Minas - Maestría en Ingeniería - Geotecnia
dc.publisherDepartamento de Ingeniería Civil
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAMVA. (2007). Micro-zonificación sísmica en el Valle de Aburrá y definición del riesgo a deslizamientos e inundaciones. Medellín.
dc.relationASTM Desgination: D4318-17. (Reapproved 2017). Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
dc.relationASTM Desgination: D5731-16. (Reapproved 2016). Standard Test Method for Determination of the Point Load Strength Indez of Rock and Application to Rock Strength Classifications.
dc.relationASTM Desgination: D7181-11. (2011). Standard Test Method for Consolidated Drained Traixial Compression Test for Soils. doi:10.1520/D7181-11
dc.relationASTM Designation: D2216-16. (Reapproved 2019). Standard Test for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.
dc.relationASTM Designation: D2850-15. (Reapproved 2007). Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. doi:10.1520/2850-15
dc.relationASTM Designation: D3080-04. (Reapproved 2004). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions.
dc.relationASTM Designation: D4767-11. (Reapproved 2004). Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. doi:10.1250/D4767-11
dc.relationASTM Designation: D6913/D6913M-17. (Reapproved 2017). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis.
dc.relationASTM Designation: D854-14. (Reapproved 2014). Standard Test Method for Specific Gravity of Soil Solids by Water Pycnometer.
dc.relationAtashBahar, M., Jamshidi chenari, R., & Lashteneshaie, M. (2015). Evaluation of the Behavior of Rockfill Material Using Large-Scale Triaxial Tests. 2nd International Conference on Geotechnical % urban Earthquake Engineering. Tabriz, Irán.
dc.relationAyala, L. (2019). Explorock SAC Soluciones Geológicas. Obtenido de Explorock SAC Soluciones Geológicas: https://www.explorock.com/clasificacion-de-los-depositos-sedimentarios/
dc.relationBarton, N., & Choubey, V. (1997). The shear strength of rock joints in theory and practice. Rock Mechanics, Vol 10, 1-54.
dc.relationBates, R., & Jackson, J. (1980). Glossary of geology. American Geological Institute.
dc.relationBoughton, N. (1970). Elastic analysis for behavior of rockfill. ASCE Journal of the Soil Mechanics and Foundation Division, Vol.96, pp 1715-1733.
dc.relationBowles, J. (1997). Foundation analysis and design. McGraw-Hill.
dc.relationBraja M. Das. (2001). Fundamentos de ingeniería geotécnica. California State University, Sacramento: Thomson Learning Inc.
dc.relationBrinch Hansen, J. (s.f.). A general formula for bearing capacity. Geoteknisk Institut. Institute Akademict for de Tekniske Videuskaber, Bulletin N°11.
dc.relationColi, N., Berry, P., & Boldini, D. (2008). Analysis of the block-size distribution in the Shale-Limestone Chaotic Complex (Tuscany, Italy). 42nd US Rock Mechanics Symposium and 2nd U.S.-Canada Rock Mechanics Symposium. San Francisco: ARMA.
dc.relationColi, N., Berry, P., & Boldini, D. (2010). In situ non-conventional test for the mechanical characterisation of a bimrock. International Journal of Rock Mechanics & Mining Sciences.
dc.relationColi, N., Berry, P., Boldini, D., & Bruno, R. (2009). In situ large size non conventional shear test for the mechanical characterization of a bimrock in The Santa Bárbara open pit mine (Italy). 43rd US Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium. Asheville, NC.
dc.relationCoulomb, C. (1776). Essai sur une application des regles de Maximums et Minimis á quelques Problemes de Statique, relatifs á l'Architecture. á l'Academie royale des Sciences, Vol.3,38. París.
dc.relationDeere, D., & Patton, F. (1971). Slope stability in residual soils. Fourth Pan American Conference on Soil Mechanics and Foundation Engineering, Vol. 1, págs. 87-170. Puerto Rico.
dc.relationDelesse, A. (1848). Pour determiner la composition des roches. Ann Des Mines, v.13, p.379.
dc.relationEdmund, M., & Dimitrios, Z. (2011). geopractitioner approaches to working with antisocial mélanges. The Geological Society of America - Special Paper 480, 18.
dc.relationEsri Inc. (2015). ArcGis 10.4.1 for Desktop.
dc.relationFundación Wikimedia, Inc. (2019). Wikipedia. Obtenido de Wikipedia: https://es.wikipedia.org/wiki/Raíz_del_error_cuadrático_medio
dc.relationFundación Wikimedia, Inc. (2019). Wikipedia. Obtenido de Wikipedia: https://es.wikipedia.org/wiki/Validaci%C3%B3n_cruzada
dc.relationFundación Wikimedia, Inc. (2019). Wikipedia. Obtenido de Wikipedia: https://es.wikipedia.org/wiki/Coeficiente_de_correlaci%C3%B3n_de_Pearson
dc.relationGómez P., E. (2017). Ensayos geotécnicos in-situ. Curso sibre investigación del subsuelo e instrumentación. Medellín. Recuperado el 2019
dc.relationGonzález-Nicieza, C., Prendes-Gero, M., Fernandez-Rodriguez, R., & Lopez-Gayarre, F. (2013). A new test for the characterization of highly jointed rock masses. Rock Mechanics for Resources, Energy and Environment.
dc.relationGoodman, R. (1989). Introduction to rock mechanics. New York: Wiley.
dc.relationGoodman, R., & Ahlgren, C. (May de 2000). Evaluating Safety of Concrete Gravity Dam on Weak Rock: Scott Dam. Journal of Geotechnical and Geoenviromental Engineering, v. 126, 429-442.
dc.relationGoodman, R., & Ahlgren, C. (2001). Evaluating safety of concrete gravity dam on weak rock: Scott Dam. Jounal of Geotechnical and Geoenviromental Engineering, V.126, 429-442.
dc.relationGoogle. (2019). Google Maps. Obtenido de Google Maps: https://www.google.com/maps/@6.2358477,-75.5707908,20542m/data=!3m1!1e3
dc.relationHamidi, A., Alizadeh, M., & Soleimani, S. (2009). Effect of Particle Crushing on Shear Strength and Dilation Characteristics of Sand-Gravel Mixtures. International Journal of Civil Engineering, Vol. 7, N°1.
dc.relationHolmes, A. (1921). Petrographic Methods and Calculations. p.525.
dc.relationHoltz, R., & Kovacs, W. (1981). An Introduction to Geotechnical Engineering. Prentice Hall.
dc.relationHoltz, W., & Ellis, W. (1961). Triaxial shear characteristics of clayey gravel soils. 5th International Conference on Soil Mechanics and Foundation Engineering. Paris, France.
dc.relationHoyos Patiño, F. (2012). Geotecnia - Diccionario básico. Medellín.
dc.relationhyg consutores sas. (2015). MapGis5. Obtenido de MapGis5: https://www.medellin.gov.co/MAPGISV5_WEB/mapa.jsp?aplicacion=0
dc.relationIndraratna, B., Wijewardena, L., & Balasubramaniam, A. (1993). Large-scale triaxial testing of greywacke rockfill. Géotechnique, 43, 37-51.
dc.relationINGEOMINAS. (1983). Geología de la Plancha 146 - Medellín Occidental. Colombia. Obtenido de http://recordcenter.sgc.gov.co/B4/13010010001950/mapa/pdf/0101019501300006.pdf
dc.relationINGEOMINAS. (2005). Geología de la Plancha 147 - Medellín Oriental. Colombia. Obtenido de http://recordcenter.sgc.gov.co/B12/23008010002745/mapa/pdf/2105027451300001.pdf
dc.relationIrfan, T., & Tang, K. (1993). Effect of the coarse fractions on the shear strength of colluvium. Geo Report #23.
dc.relationKalender, A., Sonmez, H., Medley, E., Tunusluoglu, C., & Kasapoglu, K. (2014). An approach to predicting the overall strengths of unwelded bimrocks and bimsoils. Engineering Geology, 183, 65-79.
dc.relationLindquist, E. (1991). Fractals-Franciscan and Fractures. University of California a Berkeley, Department of Civil Engineering, California.
dc.relationLindquist, E. S. (1994). The Strength and Deformation Properties of Melange. Ph.D. thesis, Universidad de California, Department of Civil Engineering, Berkeley.
dc.relationLindquist, E., & Goodman, R. (1994). Strength and deformation properties of a physical model melange. Rock Mechanics.
dc.relationLopez-Gayarre, F., Fernandez-Rodriguez, R., Gonzalez-Nicieza, C., & García-Menendez, J. (2015). Analysis if viscoelastic behavior of rock salt using hydraulic cylinder test. Bulletin of Engineering Geology and the Environment, 545-553.
dc.relationMalamud, B. (2004). Tails of natural hazards. Physics World, Volume 17.
dc.relationMarsal, R. J. (1967). Comportamiento de suelos granulares. Caracas, Venezuela.
dc.relationmbf Bioscience. (20 de Abril de 2019). stereology.info. Obtenido de stereology.info: http://www.stereology.info/stereology/
dc.relationMedley, E. (1994). The Engineering Characterization of Melanges and Similar Block-in-Matrix Rocks (Bimrocks). PhD Thesis, University of California at Berkeley.
dc.relationMedley, E. (1997). Uncertainty in estimates of block volumetric proportions in melange bimrocks. Engineering Geology and the Enviroment.
dc.relationMedley, E. (2002). Estimating block size distribution of Melange and similar Block-in-Matrix Rocks (Bimrocks). Proceedings of 5th North American Rock Mechanics Symposium (NARMS), (págs. 509-606). Toronto.
dc.relationMedley, E. (2004). Observations on Tortuous Failure Surfaces in Bimrocks. FELSBAU JOURNAL FOR ENGINEERING GEOLOGY, GEOMECHANICS AND TUNNELLING.
dc.relationMedley, E. (2008). Egineering the Geological Chaos of Franciscan and Other Bimrocks. Melanges, Mixed Materials and Chaotic Rocks. San Fracisco, California.
dc.relationMedley, E., & Lindquist, E. (1995). The engineering significance of the scale-independence of some Franciscan melanges un California, USA. Rock Mechanics.
dc.relationMedley, E., & Rehermann, P. (2004). Characterization of Bimrocks (Rock/Soil Mixtures) With Application to Slope Stability Problems. Proceedings: Eurock 2004 & 53rd Geomecanics Colloquium . Salzburg, Austria.
dc.relationMedley, E., & Zekkos, D. (2011). Geopractitioner approaches to working with antisocial mélanges. The Geological Society if America (Special Paper 480).
dc.relationMeissner, H. (1991). Empfehlungen des arbeitskreises “numerik in der geotechnik” der. G. Geotechnik, 14, 1-10.
dc.relationMeyerhof, G. (1961). The ultimate bearing capacity of wedge-shaped foundations. V Congreso Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones Vol II. París.
dc.relationMeyerhof, G. (1963). Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal Vol I.
dc.relationMohr, O. (1900). Welche Umstände Bedingen die Elastizitätsgrenze und den Bruch eines Materiales? Zeitschrift des Vereines Deutscher Ingenieure, Vol44, 1524-1530, 1572-1577.
dc.relationNanclares, F. (2018). Comportamiento Mecánico de Suelos Grueso Granulares de Origen Aluvial. Tesis doctoral, Universidad Nacional de Colombia, Departamento de Ingeniería Civil y Agrícola, Bogotá.
dc.relationPlaxis B.V. (2004). Plaxis 3D Foundation v1.1.
dc.relationpython TM. (2019). python. Obtenido de python: https://www.python.org
dc.relationRoadifer, J., Forrest, M., & Lindquist, E. (2009). Evaluation of shear strength of Mélange foundation at Calaveras Dam. Proceedings of 29th US Society for Dams, Annual Meeting and Conference: "Managing our Water Retention Systems". Nashville - Tenessee.
dc.relationRodrigez, R. F., Nicieza, C. G., Gayarre, F. L., & Ramos Lopez, F. (2015). Application of hydraulic cylinder testing on determine the geotechnical propoerties of eath-filled dams. Geomechanics and Engineering Vol 9, 483-498.
dc.relationRollins, K., Evans, D., Diehi, N., & Daily III, W. (1998). Shear modulus and damping relationship for gravels. ASCE Journal of geotechnical and geoenviromental engineering, pp. 396-405.
dc.relationRosiwal, A. (1898). Uber geometrische Gesteinsanalysen . Verhandl der K-K geologische Reichanstalt, v.5/6, p.143.
dc.relationSarac, M., & Popovic, M. (1985). Shear strength of rockfill and slope stability . Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, (págs. pp. 641-645). San Francisco.
dc.relationSharma, V., Venkatachalam, K., & Roy, A. (1994). Strength and defomration characteristics of rockfill materials. XIII ICSMFE. New Delhi, India.
dc.relationSonmez, H., Altinsoy, H., Gokceoglu, C., & Medley, E. (2006). Considerations in developing an empirical strength criterion for bimrocks. 4th Asian Rock Mechanics Symposium (ARMS). Singapore.
dc.relationSonmez, H., Gokceoglu, C., Medley, E., Tuncay, E., & Nefeslioglu, H. (2006). Estimating the uniaxial compressive strength of a volcanic bimrock. International Journal of Rock Mechanics and Mining Sciences, 554-561.
dc.relationTerzaghi, K. (1956). Theoretical Soil Mechanics - Cap VIII. John Wiley and Sons.
dc.relationThomson, E. (1930). Quantitative Microscopic Analysis. Journal of Geology, v.XXXVIII, p.193-222.
dc.relationTien, Y., Chung, Y., Lu, Y., & Chang, C. (2012). The uncertainty of volumetric fraction and mechanical behaviors of Bimrocks. 1st year report National Science Council. Taiwan.
dc.relationTien, Y., Lin, J., Kou, M., Lu, Y., Chung, Y., Wu, T., & Lee, D. (2010). Uncertainty in Estimation of Volumetric Block Proportion of Bimrocks by Using Scanline Method. 44th US Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium. Salt Lake City, UT.
dc.relationTien, Y., Lu, Y., Chang, H., Chung, Y., Lin, J., & Lee, D. (2012). Uncertainty of Volumetric Fraction Estimates Using 2-D Measurements. 46th US Rock Mechanics/Geomechanics Symposium. Chicago.
dc.relationTien, Y., Lu, Y., Wu, T., & Chung, Y. (2010). Analytical solution for uncertainty of of volumetric proportion using linear measurement. Taiwan Rock Engineering Symposium. Taiwan.
dc.relationTien, Y., Lu, Y., Wu, T., & Chung, Y. (2011). Quantify uncertainty in scanline estimates of volumetric fraction of anisotropic scanline estimates of volumetric fraction of anisotropic bimrocks. 45th US Rock Mechanics Symposium. San Francisco.
dc.relationTosun, H., Mirata, T., Mollamahmutoglu, M., & Colakoglu, N. (1999). Shear strength for gravel and rockfill measured in triaxial and prismatic wedge shear tests. Electronic journal of geotechnical engineering.
dc.relationTurcotte, D., Malamud, B., Guzzetti, F., & Reichenbach, P. (2002). Self-organization, the cascade model, and natural hazards. Proceedings of the National Academy of Scienses, vol. 99.
dc.relationUnderwood, E. (1970). Quantitative Stereology. Reading, MA, p.273.
dc.relationUS Bureau of Reclamation. (1966). Summary of large triaxial shear tests for silty gravels earth research studies - Report N°EM-731. Denver, Colorado.
dc.relationVallejo, L., & Mawby, R. (2000). Porosity influence on the shear strength of granular-clay mixtures. Engineering Geology, 125-136.
dc.relationWeibel, E. (1979). Stereological Methods, vol 1. En E. Weibel, Practical Methods for Biological Morphometry (Vol. v.1). New York: Academic Press.
dc.relationXu, W.-J., Xu, Q., & Hu, R.-L. (2011). Study on the shear strength of soil-rock mixture by large scale direct shear test. International Jounal of rock Mechanics & Mining Sciences, 1235-1247.
dc.relationZhang, Z.-L., Xu, W.-J., Xia, W., & Zhang, H.-Y. (2015). Large-scale in-situ test for mechanical characterization of soil-rock mixture used in an embankment dam. International Journal of Rock Mechanics & Mining Sciences, 317-322.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleInfluencia de la geometría, proporción volumétrica de bloques y la gradación en la resistencia al corte de mezclas remoldeadas de suelo y roca.
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución