dc.contributorVilla Garzón, Fernán Alonso
dc.creatorRamírez Sánchez, Juan David
dc.date.accessioned2022-08-17T21:54:35Z
dc.date.available2022-08-17T21:54:35Z
dc.date.created2022-08-17T21:54:35Z
dc.date.issued2022-02-28
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81945
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa retinopatía diabética (RD) es una patología retiniana causada por la diabetes, y es una de las principales causas de ceguera en todo el mundo; su detección temprana es primordial con el fin de prevenir su avance en el paciente. Existen diversos métodos para el diagnóstico temprano, entre estos, se ha evidenciado que las redes neuronales convolucionales (CNN – Convolucional Neural Networks) son adecuadas para el análisis de este fenómeno, contribuyendo con el diagnóstico temprano de esta enfermedad. Además, se han empleado técnicas de aprendizaje profundo (DL – Deep Learning), los modelos planteados en la literatura se centran en las etapas de preprocesamiento, extracción y selección de características de la imagen; sin embargo, estos modelos pueden adolecer de sobreajuste (Overfitting) y no se ha considerado el uso de técnicas de regularización para controlarlo. Entonces, en el presente trabajo, se ha propuesto desde un punto de vista conceptual y experimental, la selección de cinco técnicas de regularización sobre cinco modelos de aprendizaje profundo preentrenados y mediante el análisis de métricas (precisión, Recall, F1 score) se determina una técnica de regularización de redes neuronales artificiales que mejora la capacidad de generalización para la clasificación de imágenes de retinopatía diabética. (Texto tomado de la fuente)
dc.description.abstractDiabetic retinopathy (DR) is a retinal pathology caused by diabetes, and is one of the main causes of blindness worldwide; Its early detection is essential in order to prevent its progression in the patient. There are various methods for early diagnosis, among these, it has been shown that convolutional neural networks (CNN) are suitable for the analysis of this phenomenon, contributing to the early diagnosis of this disease. In addition, deep learning techniques (DL – Deep Learning) have been used, the models proposed in the literature focus on the stages of preprocessing, extraction and selection of image features; however, these models may suffer from overfitting and the use of regularization techniques to control it has not been considered. So, in the present work, it has been proposed from a conceptual and experimental point of view, the selection of five regularization techniques on five pretrained deep learning models and through the analysis of metrics (precision, Recall, F1 score) a Artificial neural network regularization technique that improves the generalization capacity for the classification of diabetic retinopathy images. it is an abbreviated presentation. A maximum length of 250 words should be used. It is recommended that this summary be analytical, that is, that it be complete, with quantitative and qualitative information, generally including the following aspects: objectives, design, place and circumstances, patients (or objective of the study), intervention, measurements and main results, and conclusions. At the end of the summary, keywords taken from the text should be used, which allow the retrieval of information
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Analítica
dc.publisherDepartamento de la Computación y la Decisión
dc.publisherFacultad de Minas
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbdelmaksoud, E., El-Sappagh, S., Barakat, S., Abuhmed, T., & Elmogy, M. (2021). Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. IEEE Access, 9, 15939-15960. https://doi.org/10.1109/ACCESS.2021.3052870
dc.relationAgustin, T., & Sunyoto, A. (2020). Optimization Convolutional Neural Network for Classification Diabetic Retinopathy Severity. 2020 3rd International Conference on Information and Communications Technology (ICOIACT), 66-71. https://doi.org/10.1109/ICOIACT50329.2020.9332087
dc.relationAlyoubi, W. L., Shalash, W. M., & Abulkhair, M. F. (2020). Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 20, 100377. https://doi.org/10.1016/j.imu.2020.100377
dc.relationAPTOS 2019 Blindness Detection. (s. f.). Recuperado 28 de febrero de 2022, de https://kaggle.com/c/aptos2019-blindness-detection
dc.relationBarhate, N., Bhave, S., Bhise, R., Sutar, R. G., & Karia, D. C. (2020). Reducing Overfitting in Diabetic Retinopathy Detection using Transfer Learning. 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), 298-301. https://doi.org/10.1109/ICCCA49541.2020.9250772
dc.relationBenzamin, A., & Chakraborty, C. (2018). Detection of Hard Exudates in Retinal Fundus Images Using Deep Learning. 2018 Joint 7th International Conference on Informatics, Electronics Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision Pattern Recognition (icIVPR), 465-469. https://doi.org/10.1109/ICIEV.2018.8641016
dc.relationChetoui, M., Akhloufi, M. A., & Kardouchi, M. (2018). Diabetic Retinopathy Detection Using Machine Learning and Texture Features. 2018 IEEE Canadian Conference on Electrical Computer Engineering (CCECE), 1-4. https://doi.org/10.1109/CCECE.2018.8447809
dc.relationChudzik, P., Majumdar, S., Calivá, F., Al-Diri, B., & Hunter, A. (2018). Microaneurysm detection using fully convolutional neural networks. Computer Methods and Programs in Biomedicine, 158, 185-192. https://doi.org/10.1016/j.cmpb.2018.02.016
dc.relationDas, S., Kharbanda, K., M, S., Raman, R., & D, E. D. (2021). Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy. Biomedical Signal Processing and Control, 68, 102600. https://doi.org/10.1016/j.bspc.2021.102600
dc.relationDiabetic Retinopathy 224x224 Gaussian Filtered. (s. f.). Recuperado 28 de febrero de 2022, de https://kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered
dc.relationFong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., Ferris, F. L., & Klein, R. (2004). Retinopathy in Diabetes. Diabetes Care, 27(suppl 1), s84-s87. https://doi.org/10.2337/diacare.27.2007.S84
dc.relationGaldran, A., Dolz, J., Chakor, H., Lombaert, H., & Ayed, I. B. (2020). Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye Fundus Images. arXiv:2010.00291 [cs]. http://arxiv.org/abs/2010.00291
dc.relationHemanth, D. J., Deperlioglu, O., & Kose, U. (2020). An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Computing and Applications, 32(3), 707-721. https://doi.org/10.1007/s00521-018-03974-0
dc.relationKeras: The Python deep learning API. (s. f.). Recuperado 14 de febrero de 2022, de https://keras.io/
dc.relationKumar, S., Adarsh, A., Kumar, B., & Singh, A. K. (2020). An automated early diabetic retinopathy detection through improved blood vessel and optic disc segmentation. Optics & Laser Technology, 121, 105815. https://doi.org/10.1016/j.optlastec.2019.105815
dc.relationLahmiri, S. (2020). Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina. Biomedical Signal Processing and Control, 60, 101978. https://doi.org/10.1016/j.bspc.2020.101978
dc.relationLois, N., Cook, J. A., Wang, A., Aldington, S., Mistry, H., Maredza, M., McAuley, D., Aslam, T., Bailey, C., Chong, V., Ganchi, F., Scanlon, P., Sivaprasad, S., Steel, D. H., Styles, C., Azuara-Blanco, A., Prior, L., Waugh, N., Saad, A., … Chong, V. (2021). Evaluation of a New Model of Care for People with Complications of Diabetic Retinopathy: The EMERALD Study. Ophthalmology, 128(4), 561-573. https://doi.org/10.1016/j.ophtha.2020.10.030
dc.relationLokuarachchi, D., Gunarathna, K., Muthumal, L., & Gamage, T. (2019). Automated Detection of Exudates in Retinal Images. 2019 IEEE 15th International Colloquium on Signal Processing Its Applications (CSPA), 43-47. https://doi.org/10.1109/CSPA.2019.8696052
dc.relationLyu, K., Li, Y., & Zhang, Z. (2020). Attention-Aware Multi-Task Convolutional Neural Networks. IEEE Transactions on Image Processing, 29, 1867-1878. https://doi.org/10.1109/TIP.2019.2944522
dc.relationMajumder, S., & Kehtarnavaz, N. (2021). Multitasking Deep Learning Model for Detection of Five Stages of Diabetic Retinopathy. arXiv:2103.04207 [cs, eess]. http://arxiv.org/abs/2103.04207
dc.relationMathews, M. R., & Anzar, S. M. (s. f.). A comprehensive review on automated systems for severity grading of diabetic retinopathy and macular edema. International Journal of Imaging Systems and Technology, n/a(n/a). https://doi.org/10.1002/ima.22574
dc.relationPires, R., Avila, S., Wainer, J., Valle, E., Abramoff, M. D., & Rocha, A. (2019). A data-driven approach to referable diabetic retinopathy detection. Artificial Intelligence in Medicine, 96, 93-106. https://doi.org/10.1016/j.artmed.2019.03.009
dc.relationPratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90, 200-205. https://doi.org/10.1016/j.procs.2016.07.014
dc.relationRao, M., Zhu, M., & Wang, T. (2020). Conversion and Implementation of State-of-the-Art Deep Learning Algorithms for the Classification of Diabetic Retinopathy. arXiv:2010.11692 [cs]. http://arxiv.org/abs/2010.11692
dc.relationReed, R., & MarksII, R. J. (1999). Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. MIT Press
dc.relationShah, P., Mishra, D. K., Shanmugam, M. P., Doshi, B., Jayaraj, H., & Ramanjulu, R. (2020). Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy – Artificial intelligence versus clinician for screening. Indian Journal of Ophthalmology, 68(2), 398-405. https://doi.org/10.4103/ijo.IJO_966_19
dc.relationSri, R. M., Jyothirmai, J., & Swetha, D. (s. f.). Analysis of Retinal Blood Vessel Segmentation in different types of Diabetic Retinopathy. 8(2), 4.
dc.relationZhang, W., Zhong, J., Yang, S., Gao, Z., Hu, J., Chen, Y., & Yi, Z. (2019). Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowledge-Based Systems, 175, 12-25. https://doi.org/10.1016/j.knosys.2019.03.016
dc.relationZhu, J., Zhang, E., & Rio-Tsonis, K. D. (2012). Eye Anatomy. En ELS. American Cancer Society. https://doi.org/10.1002/9780470015902.a0000108.pub2
dc.relationjdramirezs. (2022). Regularizaci-n_de_redes_neuronales_artificiales_para_la_clasificacion_de_imagenes_de_retinopatia [Jupyter Notebook]. https://github.com/jdramirezs/Regularizaci-n_de_redes_neuronales_artificiales_para_la_clasificacion_de_imagenes_de_retinopatia (Original work published 2022)
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleRegularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución