Colombia | Otro
dc.contributorVargas Navas, José Alberto
dc.creatorMorales Ospina, Victor Hugo
dc.date.accessioned2020-10-19T17:36:45Z
dc.date.available2020-10-19T17:36:45Z
dc.date.created2020-10-19T17:36:45Z
dc.date.issued2020-08-21
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78546
dc.description.abstractThe temporary aggregation of data is a procedure that occurs frequently in various areas and for different reasons, among which are a better handling of high-frequency data or simplicity in the monitoring processes. Many aggregation procedures are done on discrete data, and in particular, on counting data based on exposed populations that do not change over time, so in such cases, process monitoring can be done properly through its average. The effect that the aggregation of this type of observations has on the monitoring of the processes, has been studied by some authors, however, the effect of the aggregation of counting data when the sizes of the exposed populations vary over time, not it has been studied so far. These types of situations are very common, for example, in health surveillance, where populations of people exposed to a certain adverse event generally vary over time. The records that are obtained from this type of situation, correspond mostly to univariate counting data. However, there are other applications that generate multivariate counting data that depend on a covariate, such as when in a certain time interval, the number of cases of cancer deaths discriminated according to the age of the patients is counted. In this case, the records obtained correspond to vectors of counts that depend on the age covariate. In this situation, the covariate is a factor whose values do not change from one observation interval to another. However, in some cases this assumption is not true, which generates data with a special characteristic that must be taken into account. This dissertation studies the effect of the aggregation of counting data (univariate and multivariate), when the size of the exposed populations changes over time. In addition, a methodology is introduced to aggregate and monitor processes that generate this type of data. This methodology allows to keep the rate of adverse events constant, regardless of the level of aggregation used. Through simulation processes and the use of real data, we determine the effect that aggregation has on the monitoring of this type of process. At the end of the document the conclusions of our study are presented, as well as ideas for future research.
dc.description.abstractLa agregación temporal de datos es un procedimiento que ocurre con frecuencia en diversas áreas y por distintas razones, entre las que se encuentran un mejor manejo de datos de alta frecuencia o simplicidad en los procesos de monitoreo. Muchos procedimientos de agregación se hacen sobre datos discretos, y en particular, sobre datos de conteo obtenidos a partir de poblaciones expuestas que no cambian en el tiempo, por lo que en tales casos, el monitoreo del proceso puede hacerse adecuadamente a través de la media de éste. El efecto que la agregación de este tipo de observaciones tiene sobre el monitoreo de los procesos, ha sido estudiado por algunos autores, sin embargo, el efecto de la agregación de datos de conteo cuando los tamaños de las poblaciones expuestas varían en el tiempo, no ha sido estudiado aún. Este tipo de situaciones son muy comunes, por ejemplo, en vigilancia de la salud, donde las poblaciones de personas expuestas a un determinado evento adverso, generalmente varían en el tiempo. Los registros que se obtienen a partir de este tipo de situaciones, corresponden en su gran mayoría, a datos de conteo univariados. Sin embargo, existen otras aplicaciones que generan datos de conteo multivariados que dependen de una covariable, como por ejemplo, cuando en un determinado intervalo de tiempo se cuenta el número de casos de muertes por cáncer discriminadas de acuerdo con la edad de los pacientes. En este caso los registros que se obtienen corresponden a vectores de conteos que depende de la covariable edad. En esta situación la covariable es un factor cuyos valores no cambian de un intervalo de observación a otro. Sin embargo, en algunos casos este supuesto sobre la covariable no puede asumirse, lo que genera datos con una característica especial que debe ser tenida en cuenta. En esta disertación se estudia el efecto de la agregación de datos de conteo (univariados y multivariados), cuando el tamaño de las poblaciones expuestas cambia en el tiempo. Además, se introduce una metodología para agregar y monitorear procesos que generan este tipo de datos. Esta metodología permite mantener constante la tasa de ocurrencias del evento de interés, independientemente del nivel de agregación utilizado. A través de procesos de simulación y del uso de datos reales, determinamos el efecto que la agregación tiene en el monitoreo de este tipo de procesos. Al final del documento se presentan las conclusiones de nuestro estudio, así como ideas para futuras investigaciones.
dc.languagespa
dc.publisherBogotá - Ciencias - Doctorado en Ciencias - Estadística
dc.publisherDepartamento de Estadística
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationM Aguilera, Estimacion penalizada con datos funcionales, Universidad de Granada (2009), Master thesis.
dc.relationA Amiri, M Koosha, and J Azhdari, Profile monitoring for Poisson responses, International Conference on Industrial Engineering and Engineering Management(IEEM), 2011 IEEM International conference (2011), 1481-1484.
dc.relationS Askoy, C Weihs, and R Haralick, Feature normalization and likelihood-based similarity measures for image retrieval, Tech. report, University of Washington, 2000.
dc.relationD Ayma, Smooth generalized linear models for aggregated data, Universidad Carlos III de Madrid (2016), Doctoral thesis.
dc.relationH. S Burkom, Y Elbert, A Feldman, and J Lin, Role of data aggregation in biosurveillance detection strategies with applications from essence, Morbidity and mortality weekly report 53 (2004), 67-73.
dc.relationC Camarda, Mortalitysmooth: An r package for smoothing Poisson counts with p-splines, Journal of Statistical Software, 50 (2012), no. 1, 1-24.
dc.relationD Ding, F Tsung, and J Li, Ordinal profile monitoring with random explanatory variables, International Journal of Production Research 55 (2017), no. 3, 736-749.
dc.relationY Dong, A Hedayat, and B Sinha, Surveillance strategies for detecting changepoint in incidence rate based on exponentially weighted moving average methods, Journal of the American Statistical Association 103 (2008), no. 482, 843-853.
dc.relationA Dubrawski and X Zhang, The role of data aggregation in public health and food safety surveillance, Biosurveillance: Methods and Case Studies (2010), 161-179.
dc.relationM Durban, Metodos de suavizado eficiente con p-splines, Simposio Internacional de Estadistica (2015), Armenia-Colombia.
dc.relationPHC Eilers and BD Marx, Flexible smoothing with b-splines and penalties, Statistical Science 11 (1996), 89-121.
dc.relationR Fraiman and G Muniz, Trimmed means for functional data, Test 10 (2001), no. 2, 419-440.
dc.relationF. F Gan, Design of optimal exponential CUSUM control charts, Journal of Quality Technology 26 (1994), no. 2, 109-124.
dc.relationM Gaston, T Leon, and F Mallor, Functional data analysis for non homogeneous Poisson processes, Proceedings - Winter Simulation Conference (2008), 337-343.
dc.relationP Hackl and J Ledolter, A control chart based on ranks, Journal of Quality Technology 23 (1991), no. 2, 117-124.
dc.relationC Hamurkaroglu, M Mert, and Y Saykan, Nonparametric control charts based on Mahalanobis depth, Quality control and applied statistics 33 (2004), 57-67.
dc.relationR Hogg, J McKean, and A Craig, Introduction to Mathematical Statistics, Pearson, 2005.
dc.relationL Kang and S Albin, On-line monitoring when the process yields a linear profile, Journal of Quality Technology 43 (2000), 196-208.
dc.relationA Kunoth, G Sangalli, and Stefano Serra Capizzano, Splines and PDEs: from approximation theory to numerical linear algebra, Springer, 2017.
dc.relationZ Li, Y Dai, and Z Wang, Multivariate change point control chart based on data depth for phase I analysis, Communications in Statistics - Simulation and Computation 43 (2014), no. 6, 1490-1507.
dc.relationS Lopez and J Romo, On the concept of depth for functional data, Journal of the American Statistical Association 104 (2009), no. 486, 718-734.
dc.relationM Mahmoud and WH Woodall, Phase I analysis of linear profiles with calibration applications, Technometrics 46 (2004), 380-391.
dc.relationM.R. Maleki, A Amiri, A.R Taheriyoun, and P Castagliola, Phase I monitoring and change point estimation of autocorrelated Poisson regression profiles, Communications in statistics-Theory and Methods 47 (2018), no. 24, 5885-5903.
dc.relationA Messaoud, C Weihs, and F Hering, Nonparametric multivariate control chart based on data depth, Tech. report, Universitat Dortmund, 2004.
dc.relationV.H Morales and J.A Vargas, The effect of aggregating multivariate count data using Poisson profiles, Communications in Statistics - Simulation and Computation (2019), DOI: 10.1080/03610918.2019.1699570.
dc.relationN Mostajeran, N Iranpanah, and R Noorossana, A new bootstrap based algorithm for Hotelling's T2 multivariate control chart, Journal of Sciences, Islamic Republic of Iran 27 (2016), no. 3, 269-278.
dc.relationN. N. Narisetty and V. N Nair, Extremal depth for functional data and applications, Journal of the American Statistical Association 111 (2016), no. 516, 1705-1714.
dc.relationR Noorossana, Saghaei A, and Amiri A, Statistical analysis of profile monitoring, John Wiley & Sons, Inc., 2011.
dc.relationR Noorossana, S Fatemi, and Y Zerehsaz, Phase II monitoring of simple linear profiles with random explanatory variables, The International Journal of Advanced Manufacturing Technology 76 (2015), 779-787.
dc.relationT Optiz, P Tramini, and N Molinari, Spline regression for zero-inflated models, JP Journal of Biostatistics 9 (2013), 53-66.
dc.relationP Phaladiganon, S King, V Chen, J Baeg, and S Park, Bootstrap-based T2 multivariate control chart, Communications in statistics-Simulation and Computation 40 (2011), no. 5, 645-662.
dc.relationD Qi, Z Wang, X Xi, and Z Li, Phase II monitoring of generalized linear profiles using weighted likelihood ratio charts, Computers & Industrial Engineering 94 (2016), 178-187.
dc.relationP Qiu and C Zou, Control chart for monitoring nonparametrics profiles with arbitrary design, Statistica Sinica 20 (2010), 1655-1682.
dc.relationM. R Reynolds and Z. G Stoumbos, A general approach to modeling CUSUM charts for a proportion, IIE Transactions 32 (2000), no. 6, 515-535.
dc.relationM R Reynolds and Z G Stoumbos, Control charts and the efficient allocation of sampling resources, Technometrics 46 (2004), no. 2, 200-214.
dc.relationM.R Reynolds and Z. G Stoumbos, Should observations be grouped for effective process monitoring? Journal of Quality Technology 36 (2004), no. 4, 343-366.
dc.relationA. G Ryan and W. H Woodall, Control charts for Poisson count data with varying sample sizes, Journal of Quality Technology 42 (2010), no. 3, 260-275.
dc.relationA Schuh, W. H Woodall, and J. A Camelio, The effect of aggregating data when monitoring a Poisson process, Quality control and applied statistics 45 (2013), no. 3, 260-272.
dc.relationA Shabbak and H Midi, An improvement of the hotelling statistic in monitoring multivariate quality characteristics, Mathematical Problems in Engineering (2012).
dc.relationY Shang, F Tsung, and C Zou, Profile monitoring with binary data and random predictors, Journal of Quality Technology 43 (2011), 196-208.
dc.relationX Shen, C Zou, F Tsung, and W Jiang, Monitoring Poisson count data with probability control limits when sample sizes are time varying, Naval Research Logistics (NRL) 60 (2013), no. 8, 625-636.
dc.relationJ Williams, W.H Woodall, and J.B Birch, Statistical monitoring of nonlinear product and process quality profiles, Quality and Reliability Engineering International 23 (2007), 925-941.
dc.relationWei Xu, Interval-valued data regression, PhD dissertation, University of Georgia, 2010.
dc.relationM. J. Zhao, A. R. Driscoll, S. Sengupta, N. T. Stevens, R. D. Fricker Jr, and W. H. Woodall, The effect of data aggregation level in social network monitoring., Submitted for publication (2018).
dc.relationC Zou, P Qiu, and D Hawkins, Nonparametric control chart for monitoring profiles using the change point formulation, Statistica Sinica 19 (2009), 1337-1357.
dc.relationC Zou, F Tsung, and Z Wang, Monitoring general linear profiles using multivariate EWMA schemes, Technometrics 49 (2007), 395-408.
dc.relationI. M Zwetsloot and W. H Woodall, A review of some sampling and aggregation strategies for basic statistical process monitoring, Journal of Quality Technology (2019), 1481-1484, DOI: 10.1080/00224065.2019.1611354.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleMonitoreo de perfiles para respuesta discreta agregada
dc.typeOtro


Este ítem pertenece a la siguiente institución