Artículo de revista
Una comparativa entre redes neuronales artificiales y métodos clásicos para la predicción de la movilidad entre zonas de transporte. Aplicación práctica en el Campo de Gibraltar, España
Fecha
2017-01-01Registro en:
ISSN: 2346-2183
Autor
Rodríguez-Rueda, Pedro J.
Turias-Domínguez, Ignacio J.
Institución
Resumen
Los problemas de tráfico son cada vez más frecuentes debido al gran desarrollo tecnológico de la humanidad siendo, además, esencial su control para optimizar la infraestructura y el transporte público. Para lograr este objetivo, es necesario hacer una estimación de la demanda de los viajeros. Un método alternativo basado en redes neuronales artificiales (RNAs) se analiza en este trabajo, en comparación con las técnicas de predicción tradicionales. El objetivo es obtener un procedimiento de estimación usando variables de entrada sencillas y económicas, que son fáciles de encontrar. A diferencia de los modelos tradicionales, el modelo alternativo funciona mejor con los datos de entrada utilizados, ajustando mejor los resultados esperados. Los resultados son altamente prometedores y por tanto se demuestra la capacidad de las redes neuronales artificiales para realizar una estimación de la movilidad entre zonas. Traffic issues are more common every day due to the great technological development of humanity. Therefore, the control is essential to optimize infrastructure and public transport. To achieve this goal, it is necessary to make an estimate of the demand of the mobility. An alternative method, based on Artificial Neural Networks (ANNs), has been analyzed in this work comparing to traditional prediction techniques. The aim is to obtain an estimation procedure using simple, economical input variables which are easy to find. Unlike traditional models. These new models are able to perform a better fitting of input-output mapping. The results are encouraging and therefore the ability of ANNs is shown to estimate mobility between zones.