dc.contributorOspina Sánchez, Sonia Amparo
dc.creatorGarcía Salazar, Nelsi
dc.date.accessioned2020-03-16T15:28:42Z
dc.date.available2020-03-16T15:28:42Z
dc.date.created2020-03-16T15:28:42Z
dc.date.issued2020-02-12
dc.identifierGarcía, Salazar, Nelsi. (2020). Producción e inmovilización de la enzima dextransacarasa (DS) producida por Leuconostoc mesenteroides para la biosíntesis de dextrano. (Tesis de Maestría). Universidad Nacional de Colombia, Bogotá, Colombia.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/76091
dc.description.abstractThe Biopolymers and Biofunctionals group of the Biotechnology Institute has worked to optimize the conditions for the production of the enzyme dextransucrase used for the production of dextran. Dextran is a polysaccharide formed by D-glucose molecules, linked primarily by α- (1 → 6) bonds and in the branched chain by α- (1 → 2), α- (1 → 3), α- (1 → 4). The objective of this work was to evaluate the production and immobilization of the enzyme dextransucrase (DS), produced by a native Colombian strain of Leuconstoc mesenteroides IBUN 91.2.98 by fermentation using a 6% sucrose medium, with a concentration of 0.1 M phosphates, pH 7.2 not controlled, temperature of 30 ° C, stirring 150 r.p.m and a fermentation time of 4 hours. The enzymatic activity was evaluated by determination of reducing sugars by the DNS (3,5 Dinitrosalicylic acid) method and glucose by the glucose oxidase method, obtaining a hydrolytic activity of 4.8 to 7.3 U / ml and the transfer of 4.3 to 7 U / ml. The approximate molecular weight of the enzyme was determined by protein electrophoresis (SDS-PAGE) from 178 to 180 kDa. The DS was immobilized by two methods: adsorption in Sephadex G-100 and covalent binding to Eupergit CM, obtaining a low hydrolytic activity of 0.051 U / ml for Sephadex G-100 and 0.052 U / ml for Eupergit CM. Transfer activity could not be determined.
dc.description.abstractEl grupo de Biopolímeros y Biofuncionales del Instituto de Biotecnología ha trabajado en optimizar las condiciones para la producción de la enzima dextransacarasa empleada para la producción del dextrano. El objetivo de este trabajo consistió en evaluar la producción e inmovilización de la enzima dextransacarasa (DS), producida por una cepa nativa colombiana de Leuconostoc mesenteroides IBUN 91.2.98 por fermentación empleando un medio modificado de sacarosa al 6%, con una concentración de fosfatos 0,1 M, pH 7,2 no controlado, temperatura de 30°C, agitación 150 r.p.m y a un tiempo de fermentación de 4 horas. La actividad enzimática se evaluó mediante la determinación de azúcares reductores por el método DNS (ácido 3,5 Dinitrosalicílico) y glucosa por el método de glucosa oxidasa, obteniéndose una actividad hidrolítica de 4,8 a 7,3 U/ml y de transferencia de 4,3 a 7 U/ml. El peso molecular aproximado de la enzima determinada por electroforesis de proteínas (SDS-PAGE) fue aproximadamente de 178 a 180 kDa. La DS se inmovilizó mediante dos métodos: adsorción en Sephadex G-100 y unión covalente a Eupergit CM, obteniendo una actividad hidrolítica baja de 0,051 U/ml para Sephadex G-100 y 0,052 U/ml para el Eupergit CM. La actividad de transferencia no se pudo determinar.
dc.languagespa
dc.publisherInstituto de Ciencia y Tecnología de Alimentos -ICTA-
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAgyei, D., Shanbhag, B. K., & He, L. (2015). [11] Enzyme engineering (immobilization) for food applications. In Improving and Tailoring Enzymes for Food Quality and Functionality (pp. 213-235). Woodhead Publishing. Doi: 10.1016/B978-1-78242-285-3.00011-9. Ahmad, R., & Sardar, M. (2015). Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochemistry and Analytical Biochemistry, 4(2), 1-8. Doi:10.4172/2161-1009.1000178. Ahmed, Z., & Ahmad, A. (2017). [8] Biopolymer Produced by the Lactic Acid Bacteria: Production and Practical Application. In Microbial Production of Food Ingredients and Additives (pp. 217-257). Academic Press. Doi: 10.1016/B978-0-12-811520-6.00008-8. Alcalde, M., Plou, F. J., De Segura, A. G., Remaud-Simeon, M., Willemot, R. M., Monsan, P., & Ballesteros, A. (1999). Immobilization of native and dextran-free dextransucrases from Leuconostoc mesenteroides NRRL B-512F for the synthesis of glucooligosaccharides. Biotechnology techniques, 13(11), 749-755. Doi: 10.1023/A:1008966213425. Al-doori A. S. Aboud, a. H. Sedrah, Z, T. (2015). Optimization and characterization of dextransucrase production by local Leuconostoc mesenteroides. International Journal of Scientific Engineering and Applied Science,1 (6), 476-483. Alsop R. M. (1983). Industrial production of dextrans. In Bushell (Ed.), Prog. Industrial Biotechnology (pp. 1–42). Elseiver. Aman, A., Siddiqui, N. N., & Qader, S. A. U. (2012). Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohydrate polymers, 87(1), 910-915. Doi: 10.1016/j.carbpol.2011.08.094. Ansari, S. A., & Husain, Q. (2012). Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae β galactosidase. Food and Bioproducts processing, 90(2), 351-359. Doi: 10.1016/j.fbp.2011.07.003. Argüello-Morales, M., Sánchez-González, M., Canedo, M., Quirasco, M., Farrés, A., & López-Munguía, A. (2005). Proteolytic modification of Leuconostoc mesenteroides B512F dextransucrase. Antonie van Leeuwenhoek, 87(2), 131-141. Doi: 10.1007/s10482-004-2042-4. Aslan, Y., Handayani, N., Stavila, E., & Loos, K. (2014). Covalent immobilization of Pseudomonas fluorescens lipase onto Eupergit CM. Int. J. Curr. Res, 6(2), 5225- 5228. Bhavani, A. L., & Nisha, J. (2010). Dextran—the polysaccharide with versatile uses. Int J PharmBiol Sci, 1(4), 569-573. Baines, D. (2001). Analysis of purity. Protein purification techniques. Oxford University Press New York. 27-49. Baker, R. W. (2004). [6] Ultrafiltration. In Membrane technology and applications Functionality (pp. 240-241). John Wiley & Sons. Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Torres, R., Rodrigues, R. C., & FernandezLafuente, R. (2015). Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33(5), 435-456. Doi: 10.1016/j.biotechadv.2015.03.006. Baruah, R., Das, D., & Goyal, A. (2016). Heteropolysaccharides from lactic acid bacteria: current trends and applications. J Prob Health, 4(141), 2. Doi: 10.4172/2329-8901.1000141. Berensmeier, S., Ergezinger, M., Bohnet, M., & Buchholz, K. (2004). Design of immobilised dextransucrase for fluidised bed application. Journal of biotechnology, 114(3), 255- 267. Doi: 10.1016/j.jbiotec.2004.04.009. Betancor, L., López-Gallego, F., Alonso-Morales, N., Dellamora, G., Mateo, C., FernandezLafuente, R., & Guisan, J. M. (2006). Glutaraldehyde in protein immobilization. In Immobilization of enzymes and cells (pp. 57-64). Humana Press. Bilal, M., & Iqbal, H. M. (2019). Naturally-derived biopolymers: Potential platforms for enzyme immobilization. International journal of biological macromolecules.130, 462- 482. Doi: 10.1016/j.ijbiomac.2019.02.152. Bisswanger, H. (2011). [3] Practical enzymology (pp. 248-249). Weinheim, Germany. Wiley-Blackwell. Boller, T., Meier, C., & Menzler, S. (2002). EUPERGIT oxirane acrylic beads: how to make enzymes fit for biocatalysis. Organic Process Research & Development, 6(4), 509- 519. Doi: 10.1021/op015506w. Brady, D., & Jordaan, J. (2009). Advances in enzyme immobilisation. Biotechnology letters, 31(11), 1639-1650. Doi: 10.1007/s10529-009-0076-4. Brena, B., González-Pombo, P., & Batista-Viera, F. (2013). [2] Immobilization of enzymes: a literature survey. In Immobilization of enzymes and cells (pp. 15-31). Humana Press, Totowa, NJ. Buchholz, K., & Monsan, P. (2003). [47] Dextransucrase. In Handbook of Food Enzymology, JR Whitaker, AGJ Voragen, DWS Wong. M. Buitrago Hurtado, G., Villamil Porras, W. A., Vargas Sepúlveda, D. J., Otálvaro Alvarez, A., & Flórez, G. Y. (2013). Evaluating the effect of the number of generations in IBUN 91.2. 98 Leuconostoc mesenteroides cultures on enzyme extract production. Ingeniería e Investigación, 33(1), 66-70. Cao, L. (2006). Adsorption based immobilization. In Carrier bound immobilization Enzymes (53-168). Netherlands: John Wiley & Sons. Chen, J., Zhang, J., Han, B., Li, Z., Li, J., & Feng, X. (2006). Synthesis of cross-linked enzyme aggregates (CLEAs) in CO2-expanded micellar solutions. Colloids and Surfaces B: Biointerfaces, 48(1), 72-76. Doi: 10.1016/j.colsurfb.2006.01.010. Chibata, I., Tosa, T., Sato, T., & Mori, T. (1976). [51] Production of l-amino acids by aminoacylase adsorbed on DEAE-sephadex. In Methods in enzymology (Vol. 44, pp. 746-759). Academic Press. Corbatón Báguena, M. J. (2015). Limpieza de membranas de ultrafiltración aplicadas en la industria alimentaria por medio de técnicas no convencionales y caracterización del ensuciamiento de las membranas (Tesis doctoral). Universidad Politécnica de Valencia, Valencia, España. Daniel, M. B., Stuart, J. E. (1993). [5] Gel electrophoresis under nondenaturing conditions. In Protein methods, (pp95-115). Wiley, New York. Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1), 1-9. Doi: 10.1007/s13205-012-0071-7. David, A. E., Yang, A. J., & Wang, N. S. (2011). [6] Enzyme stabilization and immobilization by sol-gel entrapment. In Enzyme Stabilization and Immobilization (pp. 49-66). Humana Press, Totowa, NJ. Del moral, S. T. (2004). Degradación proteolítica de la dextransacarasa de Leuconostoc mesenteroides NRRL 512F. (Tesis de Maestría). Universidad Nacional Autónoma de México. Cuernavaca, México. DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42(15). Doi: 6437-6474. 10.1039/c3cs35506c. Dols, M., Chraibi, W., Remaud-Simeon, M., Lindley, N. D., & Monsan, P. F. (1997). Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Appl. Environ. Microbiol, 63(6), 2159-2165. Dols, M., Remaud-Simeon, M., & Monsan, P. F. (1997). Dextransucrase production by Leuconostoc mesenteroides NRRL B-1299. Comparison with L. mesenteroides NRRL B-512F. Enzyme and microbial technology, 20(7), 523-530. Doi: 10.1016/S0141-0229(96)00189-5. El-Mansi, E. M. T., Bryce, C. F., Hartley, B. S., & Demain, A. L. (2012). [1] Fermentation microbiology and biotechnology: an historical perspective. In Fermentation Microbiology and Biotechnology. 2nd ed. London, UK: Taylor & Francis, pp. 1-9. Escobar, M, Nancy, Paola. (2012). Evaluación Del Comportamiento De La Fibra Soluble Como Compuesto Bioactivo, Adicionada En Productos Horneados De Panadería Y Bizcochería (Tesis de Maestría). Universidad Nacional de Colombia. Bogotá, Colombia. Evans, D. R., Romero, J. K., & Westoby, M. (2009). [9] Concentration of proteins and removal of solutes. In Methods in enzymology, (Vol. 463, pp. 97-120). Academic Press. Fernandes, P. (2010). Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme research. Doi: 10.4061/2010/862537. Flórez, G. Glaehter. Yhon. (2014). Estudio de la enzima dextransacarasa (DS) producida por Leuconostoc mesenteroides cepa IBUN 91.2. 98 (Tesis Doctoral). Universidad Nacional de Colombia, Bogotá, Colombia. Flórez, G. Glaehter. Yhon. Hurtado, G. B., & Ospina, S. A. (2018). New dextransucrase purification process of the enzyme produced by Leuconostoc mesenteroides IBUN 91.2. 98 based on binding product and dextranase hydrolysis. Journal of biotechnology, 265, 8-14. Fonseca, F. (2006). Cryopreservation of lactic acid bacteria: effect of linear cooling rates. Cryobiology, 53, 395-396. Doi: 10.1016/j.cryobiol.2006.10.067. Funane, K., Yamada, M., Shiraiwa, M., Takahara, H., Yamamoto, N., Ichishima, E., & Kobayashi, M. (1995). Aggregated form of dextransucrases from Leuconostoc mesenteroides NRRL B-512F and its constitutive mutant. Bioscience, biotechnology, and biochemistry, 59(5), 776-780. Doi: 10.1080/bbb.59.776. Garcia‐Galan, C., Berenguer‐Murcia, Á., Fernandez‐Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis, 353(16), 2885-2904. Doi: 10.1002/adsc.201100534. Garibay, M. G., Ramírez, R. Q., & López-Munguía, A. (Eds.). (2004). Biotecnología alimentaria. Limusa. México. Garriga, M., Almaraz, M., & Marchiaro, A. (2017). Determination of reducing sugars in extracts of Undaria pinnatifida (harvey) algae by UV-visible spectrophotometry (DNS method). Actas de Ingeniería, 3, 173-179. Gaudreau, H., Champagne, C. P., Conway, J., & Degré, R. (1999). Effect of ultrafiltration of yeast extracts on their ability to promote lactic acid bacteria growth. Canadian journal of microbiology, 45(11), 891-897. Doi: 10.1139/w99-089. Ge, S. J., & Zhang, L. X. (1993). Predigestion of soybean proteins with immobilized trypsin for infant formula. Applied biochemistry and biotechnology, 43(3), 199-209. Gea, S. J., Bai, H., Yuan, H. S., & Zhang, L. X. (1996). Continuous production of high degree casein hydrolysates by immobilized proteases in column reactor. Journal of biotechnology, 50, 161-170. Doi: 10.1016/0168-1656(96)01561-1. Gómez de Segura, A., Alcalde, M., J. Plou, F., Remaud-simeon, M., Monsan, P., & Ballesteros, A. (2003). Encapsulation in LentiKats of dextransucrase from Leuconostoc mesenteroides NRRL B-1299, and its effect on product selectivity. Biocatalysis and Biotransformation, 21(6), 325-331. Doi: 10.1080/10242420310001630191. Gómez de Segura, A., Alcalde, M., Yates, M., Rojas‐Cervantes, M. L., López‐Cortés, N., Ballesteros, A., & Plou, F. J. (2004). Immobilization of Dextransucrase from Leuconostoc mesenteroides NRRL B‐512F on Eupergit C Supports. Biotechnology progress, 20(5), 1414-1420. Doi: 10.1021/bp0400083. Gonzáles de Buitrago J. M. (2010). [14] Cromatografía. En Técnicas y Métodos de Laboratorio Clínico (pp. 191-210). Barcelona: Elsevier. Goto, M., Hatanaka, C., & Goto, M. (2005). Immobilization of surfactant–lipase complexes and their high heat resistance in organic media. Biochemical engineering journal, 24(1), 91-94. Doi: 10.1016/j.bej.2005.01.027. Goyal, A., & Katiyar, S. S. (1997). Effect of certain nutrients on the production of dextransucrase from Leuconostoc mesenteroides NRRL B‐512F. Journal of basic microbiology, 37(3), 197-204. Doi: 10.1002/jobm.3620370308. Goyal, A., & Katiyar, S. S. (1998). Studies on the inactivation of Leuconostoc mesenteroides NRRL B-512F dextransucrase by o-phthalaldehyde: evidence for the presence of an essential lysine residue at the active site. Journal of enzyme inhibition, 13(2), 147-160. Doi: 10.3109/14756369809035833. Goyal, A., Nigam, M., & Katiyar, S. S. (1995). Optimal conditions for production of dextransucrase from Leuconostoc mesenteroides NRLL B‐512F and its properties. Journal of basic microbiology, 35(6), 375-384. Doi: 10.1002/jobm.3620350604. Groenwall, A. and Ingelman, B. (1948) ‘Manufacture of infusion and injection fluids.’ U.S. Guerrand, D. (2018). [26] Economics of food and feed enzymes: Status and prospectives. In Enzymes in Human and Animal Nutrition (pp. 487-514). Academic Press. Han, N. S., Kang, S. Y., Lee, S. B., & Robyt, J. F. (2005). Affinity immobilization of dextransucrase on dextran-based support and the production of leucrose. Food Science and Biotechnology, 14(3), 317-322. Harju, M., Kallioinen, H., & Tossavainen, O. (2012). Lactose hydrolysis and other conversions in dairy products: Technological aspects. International Dairy Journal, 22(2), 104-109. Doi: 10.1016/j.idairyj.2011.09.011. Holland, R. and Liu, S. (2011) ‘Leuconostoc spp.’, In Encyclopedia of Dairy Sciences. Elseiver. Doi: 10.1016/B978-0-08-100596-5.00859-3. Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an update. Journal of chemical biology, 6(4), 185-205. Doi: 10.1007/s12154-013-0102-9. Invitrogen. (2010). Qubit Assays. Julio de 2019, de Life Technologies Corporation Sitio web: https://www.ieg.uu.se/digitalAssets/176/c_176882-l_3-k_qubitquickrefcard.pdf. Jensen, V. J., & Rugh, S. (1987). [33] Industrial-scale production and application of immobilized glucose isomerase. In Methods in enzymology. (Vol. 136, pp. 356-370). Academic Press. Jesionowski, T., Zdarta, J., & Krajewska, B. (2014). Enzyme immobilization by adsorption: A review. Adsorption, 20, 801-821.Doi: 10.1007/s10450-014-9623-y. Ju, S. Y., Kim, J. H., & Lee, P. C. (2016). Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production. Biotechnology for biofuels, 9, 1-12. Doi: 10.1186/s13068-016-0662-3. Kawakita, H., Hamamoto, K., Seto, H., Ohto, K., Harada, H., & Inoue, K. (2009). Porosity estimation of a membrane filled with dextran produced by immobilized dextransucrase. AIChE journal, 55(1), 275-278.Doi: 10.1002/aic.11654. Kim, D., & Robyt, J. F. (1994a). Production and selection of mutants of Leuconostoc mesenteroides constitutive for glucansucrases. Enzyme and microbial technology, 16, 659-664. Doi: 10.1016/0141-0229(94)90086-8. Kim, D., & Robyt, J. F. (1994b). Properties of Leuconostoc mesenteroides B-512FMC constitutive dextransucrase. Enzyme and microbial technology, 16(12), 1010-1015. Doi: 10.1016/0141-0229(94)90134-1. Kobayashi, M., & Matsuda, K. (1976). Purification and properties of the extracellular dextransucrase from Leuconostoc mesenteroides NRRL B-1299. The Journal of Biochemistry, 79(6), 1301-1308. Doi: 10.1093/oxfordjournals.jbchem.a131184. Kobayashi, M., & Matsuda, K. (1980). Characterization of the multiple forms and main component of dextransucrase from Leuconostoc mesenteroides NRRL B512F. Biochimica et Biophysica Acta (BBA)-Enzymology, 614(1), 46-62. Doi: 10.1016/0005-2744(80)90166-7. Kongo, JM. Malcata, FX. (2016). Acidophilus Milk. In Encyclopedia of food and health (pp. 6-14). Oxford: Elseiver. Kothari, Damini. Das Deeplina, Patel Seema, Goyal Arun. (2015). [25] Dextran and Food Application. In Polysaccharides (pp. 735-748). Switzerland: Springer. Kubik, C., Sikora, B., & Bielecki, S. (2004). Immobilization of dextransucrase and its use with soluble dextranase for glucooligosaccharides synthesis. Enzyme and microbial technology, 34, 555-560. Doi: 10.1016/j.enzmictec.2003.11.022. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. Doi: 10.1038/227680a0. Lamas, E. M., Barros, R. M., Balcão, V. M., & Malcata, F. X. (2001). Hydrolysis of whey proteins by proteases extracted from Cynara cardunculus and immobilized onto highly activated supports. Enzyme and Microbial Technology, 28(7-8), 642-652. Doi: 10.1016/S0141-0229(01)00308-8. Lazić, M. L., Veljković, V. B., Vučetić, J. I., & Vrvić, M. M. (1993). Effect of pH and aeration on dextran production by Leuconostoc mesenteroides. Enzyme and microbial technology, 15, 334-338. Doi: 10.1016/0141-0229(93)90160-4. Leroy, F., & De Vuyst, L. (2016). Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. Journal of dairy science, 99(4), 3229-3238. Doi: 10.3168/jds.2015-9936. Li, C., Zhang, G., Liu, N., & Liu, L. (2015). Preparation and Properties of Rhizopus oryzae Lipase Immobilized Using an Adsorption-Crosslinking Method. International journal of food properties, 19(8), 1776-1785. Doi: 10.1080/10942912.2015.1107732. Life Technologies. (2015). Qubit® Protein Assay Kits. Julio 3 de 2019, de Thermofisher Sitio web: https://assets.thermofisher.com/TFS- Assets/LSG/manuals/Qubit_ Protein_ Assay_UG.pdf. Lim, Y. P., & Mohammad, A. W. (2012). Influence of pH and ionic strength during food protein ultrafiltration: Elucidation of permeate flux behavior, fouling resistance, and mechanism. Separation Science and Technology, 47, 446-454. Doi: 10.1080/01496395.2011.627907. Liu S-Q. (2016). Lactic Acid Bacteria: Leuconostoc spp. In Reference Module in Food Science (1-6). Melbourne: Elseiver. Liu, A., Jia, Y., Zhao, L., Gao, Y., Liu, G., Chen, Y., ... & Chen, H. (2018). Diversity of isolated lactic acid bacteria in Ya'an sourdoughs and evaluation of their exopolysaccharide production characteristics. LWT, 95, 17-22. Doi: 10.1016/j.lwt.2018.04.061. Liu, S. (2017). [7] Enzymes. In Bioprocess Engineering (pp. 297-373). New York: Elsevier. Lopez, A., & Monsan, P. (1980). Dextran synthesis by immobilized dextran sucrase. Biochimie, 62(5-6), 323-329. Doi: 10.1016/s0300-9084(80)80161-1. Lutz Herb. (2015). [1] Fundamentals EMD Millipore, Biomanufacturing Sciences Network. In Ultrafiltration for Bioprocessing (pp.1-205). Cambridge: Elseiver. Lynch, K. M., Zannini, E., Coffey, A., & Arendt, E. K. (2018). Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization, and health benefits. Annual Review of Food Science and Technology, 9, 155-176. Doi: 10.1146/annurev-food-030117-012537. Mayo, B., Aleksandrzak‐Piekarczyk, T., Fernández, M., Kowalczyk, M., Álvarez‐Martín, P., & Bardowski, J. (2010). [1] Updates in the metabolism of lactic acid bacteria. In Biotechnology of lactic acid bacteria: Novel applications, pp. 3-33. Mellano, E. (2009). Es la proteólisis de la dextransacarasa (DsrS) de Leuconostoc mesenteroides B512F un proceso autocatalítico? (Tesis de Maestría). Universidad Nacional Autónoma de México. Cuernavaca, México. Michelena, G. L., Martínez, A., Bell, A., Carrera, E., & Valencia, R. (2003). Scale-up of dextransucrase production by Leuconostoc mesenteroides in fed batch fermentation. Brazilian Archives of Biology and Technology, 46(3), 455-459. Doi: 10.1590/S1516-89132003000300017. Miljković, M. G., Davidović, S. Z., Kralj, S., Šiler-Marinković, S. S., Rajilić-Stojanović, M. D., & Dimitrijević-Branković, S. I. (2017). Characterization of dextransucrase from Leuconostoc mesenteroides T3, water kefir grains isolate. HEMIJSKA INDUSTRIJA, 71(4), 351-360. Doi: 10.2298/HEMIND160421046M. Miller, A. W., & Robyt, J. F. (1986). Functional molecular size and structure of dextransucrase by radiation inactivation and gel electrophoresis. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 870(2), 198- 203. Doi: 10.1016/0167-4838(86)90222-0. Miller, A. W., Eklund, S. H., & Robyt, J. F. (1986). Milligram to gram scale purification and characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydrate research, 147(1), 119-133. Doi: 10.1016/0008-6215(86)85011-x. Moncayo, D. (2013). Desarrollo de un recubrimiento comestible a partir de un biopolímero para prolongar la vida útil de frutas frescas. (Tesis de Maestría). Universidad Nacional de Colombia. Bogotá, Colombia. Monsan, P., Paul, F., Auriol, D., & Lopez, A. (1987). [23] Dextran synthesis using immobilized Leuconostoc mesenteroides dextransucrase. In Methods in enzymology (Vol. 136, pp. 239-254). Academic Press. Doi: 10.1016/S0076-6879(87)36025-2. Murase, N., Uetake, Y., Sato, Y., Irie, K., Ueno, Y., Hirauchi, T., ... & Hirai, M. (2018). Frozen State of Sephadex® Gels of Different Crosslink Density Analyzed by X-ray Computed Tomography and X-ray Diffraction. Gels, 4(44), 1-12. Doi: 10.3390/gels4020044. Naessens, M., Cerdobbel, A., Soetaert, W., & Vandamme, E. J. (2005). Leuconostoc dextransucrase and dextran: production, properties and applications. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80, 845-860. Doi: 10.1002/jctb.1322. Nigam, M., Goyal, A., & Katiyar, S. S. (2006). High yield purification of dextransucrase from Leuconostoc mesenteriodes NRRL B-512F by phase partitioning. Journal of food biochemistry, 30(1), 12-20. Doi: 10.1111/j.1745-4514.2005.00047.x. North, M. Beynon, R. (2001). [9] Prevention of unwanted proteolysis. In Proteolytic Enzymes (pp. 211-232). New York: Oxford. Novick, S. J., & Rozzell, J. D. (2005). [16] Immobilization of enzymes by covalent attachment. In Microbial enzymes and biotransformations (pp. 247-271). Humana Press. Nunes, J. C., de Amorim, M. T. P., Escobar, I. C., Queiroz, J. A., & Morão, A. M. (2014). Plasmid DNA/RNA separation by ultrafiltration: Modeling and application study. Journal of membrane science, 463, 1-10. Doi: 10.1016/j.memsci.2014.03.036. Ölçer, Z., & Tanriseven, A. (2010). Co-immobilization of dextransucrase and dextranase in alginate. Process Biochemistry, 45(10), 1645-1651. Doi: 10.1016/j.procbio.2010.06.011. Ovsejevi, K., Manta, C., & Batista-Viera, F. (2013). [7] Reversible covalent immobilization of enzymes via disulfide bonds. In Immobilization of Enzymes and Cells (pp. 89-116). Humana Press, Totowa, NJ. Paradossi, G., Cavalieri, F., Chiessi, E., Mondelli, C., & Telling, M. T. (2004). Structural fluctuations in cross-linked matrices with narrow pore size distribution. Chemical physics, 302(1-3), 143-148. Doi: 10.1016/j.chemphys.2004.04.004. Parlak, M., Ustek, D., & Tanriseven, A. (2013). A novel method for covalent immobilization of dextransucrase. Journal of Molecular Catalysis B: Enzymatic, 89, 52-60. Doi: 10.1016/j.molcatb.2012.12.013. Patel, A. K., Singhania, R. R., & Pandey, A. (2017). [2] Production, purification, and application of microbial enzymes. In Biotechnology of Microbial Enzymes (pp. 13-41). Academic Press. Polizzi, K. M., Bommarius, A. S., Broering, J. M., & Chaparro-Riggers, J. F. (2007). Stability of biocatalysts. Current opinion in chemical biology, 11(2), 220-225. Doi: 10.1016/j.cbpa.2007.01.685. Polo, L. M. (2015). [1] Introducción a la cromatografía. En Fundamentos de cromatografía (pp. 19-30). Madrid: Dextra. Popescu, A., & Doyle, R. J. (1996). The Gram stain after more than a century. Biotechnic & histochemistry, 71(3), 145-151. Doi: 10.3109/10520299609117151. Preciado, G. F. (2003). Optimización de una superficie de respuesta utilizando JMP. Mosaicos Matemáticos, 11, 17-23. Purama, R. K., & Goyal, A. (2007). Effect of nutrients by one variable at a time (OVAT) approach on the dextransucrase production from Leuconostoc mesenteroides NRRL B-640. Internet J. Microbiol, 5(1),1-9. Purama, R. K., & Goyal, A. (2008a). Identification, effective purification and functional characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-640. Bioresource technology, 99, 3635-3642. Doi: 10.1016/j.biortech.2007.07.044. Purama, R. K., & Goyal, A. (2008b). Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostoc mesenteroides NRRL B-640 using statistical approach. Bioresource technology, 99(15), 7108-7114. Doi: 10.1016/j.biortech.2008.01.032. Purama, R. K., & Goyal, A. (2009). Optimization of conditions of Leuconostoc mesenteroides NRRL B-640 for production of a dextransucrase and its assay. Journal of food biochemistry, 33(2), 218-231. Doi: 10.1111/j.1745-4514.2009.00219.x. Ren, Y., Liu, W., & Zhang, H. (2015). Identification of coccoidal bacteria in traditional fermented milk products from Mongolia, and the fermentation properties of the predominant species, Streptococcus thermophilus. Korean journal for food science of animal resources, 35(5), 683-691. Doi: 10.5851/kosfa.2015.35.5.683. Ristoff, M E. (2013). Determinación de carbohidratos en jugos de fruta con electrodos enzimáticos. (Tesis doctoral). Universidad Nacional del Sur. Bahia Blanca, Argentina Robyt, J. F., & Walseth, T. F. (1979). Production, purification, and properties of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydrate research, 68(1), 95-111. Doi: 10.1016/s0008-6215(00)84059-8. Robyt, J. F., Kimble, B. K., & Walseth, T. F. (1974). The mechanism of dextransucrase action: Direction of dextran biosynthesis. Archives of biochemistry and biophysics, 165(2), 634-640. Doi: 10.1016/0003-9861(74)90291-4. Rodrigues, S., Lona, L. M. F., & Franco, T. T. (2003). Effect of phosphate concentration on the production of dextransucrase by Leuconostoc mesenteroides NRRL B512F. Bioprocess and biosystems engineering, 26(1), 57-62. Doi: 10.1007/s00449-003-0330-4. Rodríguez, O. V., & Hanssen, H. (2007). Obtención de dextrano y fructosa, utilizando residuos agroindustriales con la cepa Leuconostoc mesenteroides NRRL B512-F. Revista EIA, (7), 159-172. Saenz, A. C., & Prado, M. (1998). Aislamiento de cepas nativas con actividad levansacarasa. BSc Bacteriology thesis, Universidad Colegio Mayor de Cundinamarca. Bogotá, Colombia. Sánchez, M. N. (2000). Origen y propiedades de las diversas formas observadas de la dextransacarasa de Leuconostoc mesenteroides B-512FMC. (Tesis doctoral). Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México. Sánchez, Ó. J., Montoya, S., & Vargas, L. M. (2015). [14] Polysaccharide production by submerged fermentation. In Polysaccharides: Bioactivity and Biotechnology, pp. 451- 473. Springer. Sánchez-González, M., Alagón, A., Rodríguez-Sotrés, R., & López-Munguía, A. (1999). Proteolytic processing of dextransucrase of Leuconostoc mesenteroides. FEMS microbiology letters, 181(1), 25-30. Doi: 10.1111/j.1574-6968.1999.tb08822.x. Santos, M., Teixeira, J., & Rodrigues, A. (2000). Production of dextransucrase, dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL B512 (f). Biochemical Engineering Journal, 4(3), 177-188. Doi: 10.1016/S1369-703X(99)00047-9. Sardar, M., & Gupta, M. N. (2005). Immobilization of tomato pectinase on Con A–Seralose 4B by bioaffinity layering. Enzyme and microbial technology, 37(3), 355-359. Doi: 10.1016/j.enzmictec.2005.03.007. Sarwat, F., Qader, S. A. U., Aman, A., & Ahmed, N. (2008). Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. International Journal of Biological Sciences, 4(6), 379-386. Doi: 10.7150/ijbs.4.379. Schoemaker, H. E., Mink, D., & Wubbolts, M. G. (2003). Dispelling the myths--biocatalysis in industrial synthesis. Science, 299(5613), 1694-1697. Doi: 10.1126/science.1079237. Schratter, P. (2004). [12] Purification and concentration by ultrafiltration. In Protein Purification Protocols. pp 101-116. Humana Press. Scopes Robert. (1982). Solution. In Protein Purification Principles and Practice (pp. 182- 183). New York: Springer. Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. In Advanced Synthesis & Catalysis, 349(8‐9), 1289-1307. Shukla, R., Iliev, I., & Goyal, A. (2010). Purification and characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-1149. Biotechnology & Biotechnological Equipment, 24(sup1), 576-580. Doi: 10.1080/13102818.2010.10817900. Singh, N., Srivastava, G., Talat, M., Raghubanshi, H., Srivastava, O. N., & Kayastha, A. M. (2014). Cicer α-galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food chemistry, 142, 430-438. Doi: 10.1016/j.foodchem.2013.07.079. Spagna, G., Barbagallo, R. N., Casarini, D., & Pifferi, P. G. (2001). A novel chitosan derivative to immobilize α-L-rhamnopyranosidase from Aspergillus niger for application in beverage technologies. Enzyme and microbial technology, 28(4-5), 427-438. Doi: 10.1016/s0141-0229(00)00340-9. SPINREACT. (2017). Glucose GOD-POD. Julio 7, 2019, Sitio web: http://www.spinreact.com/es/productos/buscador.html. Tanriseven, A., & Doğan, Ş. (2002). Production of isomalto-oligosaccharides using dextransucrase immobilized in alginate fibres. Process Biochemistry, 37(10), 1111- 1115. Doi: 10.1016/S0032-9592(01)00319-3. Terrasan, C. R.F. De Morais Junio, W. G. Contesini, F.J. (2019). Enzyme Immobilization for Oligosaccharide Production. En Encyclopedia of Food Chemistry (415-423). Brazil: Elseiver. Tsuchiya, H. M., Koepsell, H. J., Corman, J., Bryant, G., Bogard, M. O., Feger, V. H., & Jackson, R. W. (1952). The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteroides. Journal of bacteriology, 64(4), 521- 526. Ulbrich, K., & Kopeček, J. (1979). Cross‐linked copolymers of N, N‐diethylacrylamide with improved mechanical properties. Journal of Polymer Science: Polymer Symposia, 66 (1), 209-219. Doi: 10.1002/polc.5070660122. Veljković, V. B., Lazić, M. L., Rutić, D. J., Jovanović, S. M., & Skala, D. U. (1992). Effects of aeration on extracellular dextransucrase production by Leuconostoc mesenteroides. Enzyme and microbial technology, 14(8), 665-668. Doi: 10.1016/0141-0229(92)90044-O. Vieira, D. C., Lima, L. N., Mendes, A. A., Adriano, W. S., Giordano, R. C., Giordano, R. L., & Tardioli, P. W. (2013). Hydrolysis of lactose in whole milk catalyzed by βgalactosidase from Kluyveromyces fragilis immobilized on chitosan-based matrix. Biochemical engineering journal, 81, 54-64. Doi: 10.1016/j.bej.2013.10.007. Walker, J. M. (2002). [11] SDS polyacrylamide gel electrophoresis of proteins. In The protein protocols handbook (pp. 61-67). Humana Press. Willemot, R. M., Monsan, P., & Durand, G. (1988). Effects of dextran on the activity and stability of dextransucrase from mesenteroides. Annals of the New York Academy of sciences, 542(1), 169-172. Doi: 10.1111/j.1749-6632.1988.tb25823.x. Zafar, S. B., Siddiqui, N. N., Shahid, F., Qader, S. A. U., & Aman, A. (2018). Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria. Journal of Genetic Engineering and Biotechnology, 16(1), 1-6. Doi: 10.1016/j.jgeb.2017.10.015
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleProducción e inmovilización de la enzima dextransacarasa (DS) producida por Leuconostoc mesenteroides para la biosíntesis de dextrano.
dc.typeOtro


Este ítem pertenece a la siguiente institución