dc.relation | Agyei, D., Shanbhag, B. K., & He, L. (2015). [11] Enzyme engineering (immobilization) for
food applications. In Improving and Tailoring Enzymes for Food Quality and
Functionality (pp. 213-235). Woodhead Publishing. Doi: 10.1016/B978-1-78242-285-3.00011-9.
Ahmad, R., & Sardar, M. (2015). Enzyme immobilization: an overview on nanoparticles as
immobilization matrix. Biochemistry and Analytical Biochemistry, 4(2), 1-8. Doi:10.4172/2161-1009.1000178.
Ahmed, Z., & Ahmad, A. (2017). [8] Biopolymer Produced by the Lactic Acid Bacteria:
Production and Practical Application. In Microbial Production of Food Ingredients and
Additives (pp. 217-257). Academic Press. Doi: 10.1016/B978-0-12-811520-6.00008-8.
Alcalde, M., Plou, F. J., De Segura, A. G., Remaud-Simeon, M., Willemot, R. M., Monsan,
P., & Ballesteros, A. (1999). Immobilization of native and dextran-free
dextransucrases from Leuconostoc mesenteroides NRRL B-512F for the synthesis of
glucooligosaccharides. Biotechnology techniques, 13(11), 749-755. Doi: 10.1023/A:1008966213425.
Al-doori A. S. Aboud, a. H. Sedrah, Z, T. (2015). Optimization and characterization of
dextransucrase production by local Leuconostoc mesenteroides. International
Journal of Scientific Engineering and Applied Science,1 (6), 476-483.
Alsop R. M. (1983). Industrial production of dextrans. In Bushell (Ed.), Prog. Industrial
Biotechnology (pp. 1–42). Elseiver.
Aman, A., Siddiqui, N. N., & Qader, S. A. U. (2012). Characterization and potential
applications of high molecular weight dextran produced by Leuconostoc
mesenteroides AA1. Carbohydrate polymers, 87(1), 910-915.
Doi: 10.1016/j.carbpol.2011.08.094.
Ansari, S. A., & Husain, Q. (2012). Lactose hydrolysis from milk/whey in batch and
continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae
β galactosidase. Food and Bioproducts processing, 90(2), 351-359.
Doi: 10.1016/j.fbp.2011.07.003.
Argüello-Morales, M., Sánchez-González, M., Canedo, M., Quirasco, M., Farrés, A., &
López-Munguía, A. (2005). Proteolytic modification of Leuconostoc mesenteroides B512F dextransucrase. Antonie van Leeuwenhoek, 87(2), 131-141.
Doi: 10.1007/s10482-004-2042-4.
Aslan, Y., Handayani, N., Stavila, E., & Loos, K. (2014). Covalent immobilization of
Pseudomonas fluorescens lipase onto Eupergit CM. Int. J. Curr. Res, 6(2), 5225-
5228.
Bhavani, A. L., & Nisha, J. (2010). Dextran—the polysaccharide with versatile uses. Int J
PharmBiol Sci, 1(4), 569-573.
Baines, D. (2001). Analysis of purity. Protein purification techniques. Oxford University
Press New York. 27-49.
Baker, R. W. (2004). [6] Ultrafiltration. In Membrane technology and applications
Functionality (pp. 240-241). John Wiley & Sons.
Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Torres, R., Rodrigues, R. C., & FernandezLafuente, R. (2015). Strategies for the one-step immobilization–purification of
enzymes as industrial biocatalysts. Biotechnology Advances, 33(5), 435-456.
Doi: 10.1016/j.biotechadv.2015.03.006.
Baruah, R., Das, D., & Goyal, A. (2016). Heteropolysaccharides from lactic acid bacteria:
current trends and applications. J Prob Health, 4(141), 2.
Doi: 10.4172/2329-8901.1000141.
Berensmeier, S., Ergezinger, M., Bohnet, M., & Buchholz, K. (2004). Design of immobilised
dextransucrase for fluidised bed application. Journal of biotechnology, 114(3), 255-
267. Doi: 10.1016/j.jbiotec.2004.04.009.
Betancor, L., López-Gallego, F., Alonso-Morales, N., Dellamora, G., Mateo, C., FernandezLafuente, R., & Guisan, J. M. (2006). Glutaraldehyde in protein immobilization. In
Immobilization of enzymes and cells (pp. 57-64). Humana Press.
Bilal, M., & Iqbal, H. M. (2019). Naturally-derived biopolymers: Potential platforms for
enzyme immobilization. International journal of biological macromolecules.130, 462-
482. Doi: 10.1016/j.ijbiomac.2019.02.152.
Bisswanger, H. (2011). [3] Practical enzymology (pp. 248-249). Weinheim, Germany.
Wiley-Blackwell.
Boller, T., Meier, C., & Menzler, S. (2002). EUPERGIT oxirane acrylic beads: how to make
enzymes fit for biocatalysis. Organic Process Research & Development, 6(4), 509-
519. Doi: 10.1021/op015506w.
Brady, D., & Jordaan, J. (2009). Advances in enzyme immobilisation. Biotechnology letters,
31(11), 1639-1650. Doi: 10.1007/s10529-009-0076-4.
Brena, B., González-Pombo, P., & Batista-Viera, F. (2013). [2] Immobilization of enzymes:
a literature survey. In Immobilization of enzymes and cells (pp. 15-31). Humana
Press, Totowa, NJ.
Buchholz, K., & Monsan, P. (2003). [47] Dextransucrase. In Handbook of Food
Enzymology, JR Whitaker, AGJ Voragen, DWS Wong. M.
Buitrago Hurtado, G., Villamil Porras, W. A., Vargas Sepúlveda, D. J., Otálvaro Alvarez, A.,
& Flórez, G. Y. (2013). Evaluating the effect of the number of generations in IBUN
91.2. 98 Leuconostoc mesenteroides cultures on enzyme extract production.
Ingeniería e Investigación, 33(1), 66-70.
Cao, L. (2006). Adsorption based immobilization. In Carrier bound immobilization Enzymes
(53-168). Netherlands: John Wiley & Sons.
Chen, J., Zhang, J., Han, B., Li, Z., Li, J., & Feng, X. (2006). Synthesis of cross-linked
enzyme aggregates (CLEAs) in CO2-expanded micellar solutions. Colloids and
Surfaces B: Biointerfaces, 48(1), 72-76. Doi: 10.1016/j.colsurfb.2006.01.010.
Chibata, I., Tosa, T., Sato, T., & Mori, T. (1976). [51] Production of l-amino acids by
aminoacylase adsorbed on DEAE-sephadex. In Methods in enzymology (Vol. 44, pp.
746-759). Academic Press.
Corbatón Báguena, M. J. (2015). Limpieza de membranas de ultrafiltración aplicadas en la
industria alimentaria por medio de técnicas no convencionales y caracterización del
ensuciamiento de las membranas (Tesis doctoral). Universidad Politécnica de
Valencia, Valencia, España.
Daniel, M. B., Stuart, J. E. (1993). [5] Gel electrophoresis under nondenaturing conditions.
In Protein methods, (pp95-115). Wiley, New York.
Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview
on techniques and support materials. 3 Biotech, 3(1), 1-9.
Doi: 10.1007/s13205-012-0071-7.
David, A. E., Yang, A. J., & Wang, N. S. (2011). [6] Enzyme stabilization and immobilization
by sol-gel entrapment. In Enzyme Stabilization and Immobilization (pp. 49-66).
Humana Press, Totowa, NJ.
Del moral, S. T. (2004). Degradación proteolítica de la dextransacarasa de Leuconostoc
mesenteroides NRRL 512F. (Tesis de Maestría). Universidad Nacional Autónoma de
México. Cuernavaca, México.
DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of
immobilized enzymes. Chemical Society Reviews, 42(15). Doi: 6437-6474.
10.1039/c3cs35506c.
Dols, M., Chraibi, W., Remaud-Simeon, M., Lindley, N. D., & Monsan, P. F. (1997). Growth
and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of
various sugars and their consequences for dextransucrase production. Appl. Environ.
Microbiol, 63(6), 2159-2165.
Dols, M., Remaud-Simeon, M., & Monsan, P. F. (1997). Dextransucrase production by
Leuconostoc mesenteroides NRRL B-1299. Comparison with L. mesenteroides
NRRL B-512F. Enzyme and microbial technology, 20(7), 523-530.
Doi: 10.1016/S0141-0229(96)00189-5.
El-Mansi, E. M. T., Bryce, C. F., Hartley, B. S., & Demain, A. L. (2012). [1] Fermentation
microbiology and biotechnology: an historical perspective. In Fermentation
Microbiology and Biotechnology. 2nd ed. London, UK: Taylor & Francis, pp. 1-9.
Escobar, M, Nancy, Paola. (2012). Evaluación Del Comportamiento De La Fibra Soluble
Como Compuesto Bioactivo, Adicionada En Productos Horneados De Panadería Y
Bizcochería (Tesis de Maestría). Universidad Nacional de Colombia. Bogotá,
Colombia.
Evans, D. R., Romero, J. K., & Westoby, M. (2009). [9] Concentration of proteins and
removal of solutes. In Methods in enzymology, (Vol. 463, pp. 97-120). Academic
Press.
Fernandes, P. (2010). Enzymes in food processing: a condensed overview on strategies
for better biocatalysts. Enzyme research. Doi: 10.4061/2010/862537.
Flórez, G. Glaehter. Yhon. (2014). Estudio de la enzima dextransacarasa (DS) producida
por Leuconostoc mesenteroides cepa IBUN 91.2. 98 (Tesis Doctoral). Universidad
Nacional de Colombia, Bogotá, Colombia.
Flórez, G. Glaehter. Yhon. Hurtado, G. B., & Ospina, S. A. (2018). New dextransucrase
purification process of the enzyme produced by Leuconostoc mesenteroides IBUN
91.2. 98 based on binding product and dextranase hydrolysis. Journal of
biotechnology, 265, 8-14.
Fonseca, F. (2006). Cryopreservation of lactic acid bacteria: effect of linear cooling
rates. Cryobiology, 53, 395-396. Doi: 10.1016/j.cryobiol.2006.10.067.
Funane, K., Yamada, M., Shiraiwa, M., Takahara, H., Yamamoto, N., Ichishima, E., &
Kobayashi, M. (1995). Aggregated form of dextransucrases from Leuconostoc
mesenteroides NRRL B-512F and its constitutive mutant. Bioscience, biotechnology,
and biochemistry, 59(5), 776-780. Doi: 10.1080/bbb.59.776.
Garcia‐Galan, C., Berenguer‐Murcia, Á., Fernandez‐Lafuente, R., & Rodrigues, R. C.
(2011). Potential of different enzyme immobilization strategies to improve enzyme
performance. Advanced Synthesis & Catalysis, 353(16), 2885-2904.
Doi: 10.1002/adsc.201100534.
Garibay, M. G., Ramírez, R. Q., & López-Munguía, A. (Eds.). (2004). Biotecnología
alimentaria. Limusa. México.
Garriga, M., Almaraz, M., & Marchiaro, A. (2017). Determination of reducing sugars in
extracts of Undaria pinnatifida (harvey) algae by UV-visible spectrophotometry (DNS
method). Actas de Ingeniería, 3, 173-179.
Gaudreau, H., Champagne, C. P., Conway, J., & Degré, R. (1999). Effect of ultrafiltration
of yeast extracts on their ability to promote lactic acid bacteria growth. Canadian
journal of microbiology, 45(11), 891-897. Doi: 10.1139/w99-089.
Ge, S. J., & Zhang, L. X. (1993). Predigestion of soybean proteins with immobilized trypsin
for infant formula. Applied biochemistry and biotechnology, 43(3), 199-209.
Gea, S. J., Bai, H., Yuan, H. S., & Zhang, L. X. (1996). Continuous production of high
degree casein hydrolysates by immobilized proteases in column reactor. Journal of
biotechnology, 50, 161-170. Doi: 10.1016/0168-1656(96)01561-1.
Gómez de Segura, A., Alcalde, M., J. Plou, F., Remaud-simeon, M., Monsan, P., &
Ballesteros, A. (2003). Encapsulation in LentiKats of dextransucrase from
Leuconostoc mesenteroides NRRL B-1299, and its effect on product selectivity.
Biocatalysis and Biotransformation, 21(6), 325-331.
Doi: 10.1080/10242420310001630191.
Gómez de Segura, A., Alcalde, M., Yates, M., Rojas‐Cervantes, M. L., López‐Cortés, N.,
Ballesteros, A., & Plou, F. J. (2004). Immobilization of Dextransucrase from
Leuconostoc mesenteroides NRRL B‐512F on Eupergit C Supports. Biotechnology
progress, 20(5), 1414-1420. Doi: 10.1021/bp0400083.
Gonzáles de Buitrago J. M. (2010). [14] Cromatografía. En Técnicas y Métodos de
Laboratorio Clínico (pp. 191-210). Barcelona: Elsevier.
Goto, M., Hatanaka, C., & Goto, M. (2005). Immobilization of surfactant–lipase complexes
and their high heat resistance in organic media. Biochemical engineering journal,
24(1), 91-94. Doi: 10.1016/j.bej.2005.01.027.
Goyal, A., & Katiyar, S. S. (1997). Effect of certain nutrients on the production of
dextransucrase from Leuconostoc mesenteroides NRRL B‐512F. Journal of basic
microbiology, 37(3), 197-204. Doi: 10.1002/jobm.3620370308.
Goyal, A., & Katiyar, S. S. (1998). Studies on the inactivation of Leuconostoc
mesenteroides NRRL B-512F dextransucrase by o-phthalaldehyde: evidence for the
presence of an essential lysine residue at the active site. Journal of enzyme inhibition,
13(2), 147-160. Doi: 10.3109/14756369809035833.
Goyal, A., Nigam, M., & Katiyar, S. S. (1995). Optimal conditions for production of
dextransucrase from Leuconostoc mesenteroides NRLL B‐512F and its properties.
Journal of basic microbiology, 35(6), 375-384. Doi: 10.1002/jobm.3620350604.
Groenwall, A. and Ingelman, B. (1948) ‘Manufacture of infusion and injection fluids.’ U.S.
Guerrand, D. (2018). [26] Economics of food and feed enzymes: Status and prospectives.
In Enzymes in Human and Animal Nutrition (pp. 487-514). Academic Press.
Han, N. S., Kang, S. Y., Lee, S. B., & Robyt, J. F. (2005). Affinity immobilization of
dextransucrase on dextran-based support and the production of leucrose. Food
Science and Biotechnology, 14(3), 317-322.
Harju, M., Kallioinen, H., & Tossavainen, O. (2012). Lactose hydrolysis and other
conversions in dairy products: Technological aspects. International Dairy Journal,
22(2), 104-109. Doi: 10.1016/j.idairyj.2011.09.011.
Holland, R. and Liu, S. (2011) ‘Leuconostoc spp.’, In Encyclopedia of Dairy Sciences.
Elseiver. Doi: 10.1016/B978-0-08-100596-5.00859-3.
Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an
update. Journal of chemical biology, 6(4), 185-205.
Doi: 10.1007/s12154-013-0102-9.
Invitrogen. (2010). Qubit Assays. Julio de 2019, de Life Technologies Corporation Sitio
web: https://www.ieg.uu.se/digitalAssets/176/c_176882-l_3-k_qubitquickrefcard.pdf.
Jensen, V. J., & Rugh, S. (1987). [33] Industrial-scale production and application of
immobilized glucose isomerase. In Methods in enzymology. (Vol. 136, pp. 356-370).
Academic Press.
Jesionowski, T., Zdarta, J., & Krajewska, B. (2014). Enzyme immobilization by adsorption:
A review. Adsorption, 20, 801-821.Doi: 10.1007/s10450-014-9623-y.
Ju, S. Y., Kim, J. H., & Lee, P. C. (2016). Long-term adaptive evolution of Leuconostoc
mesenteroides for enhancement of lactic acid tolerance and production.
Biotechnology for biofuels, 9, 1-12. Doi: 10.1186/s13068-016-0662-3.
Kawakita, H., Hamamoto, K., Seto, H., Ohto, K., Harada, H., & Inoue, K. (2009). Porosity
estimation of a membrane filled with dextran produced by immobilized
dextransucrase. AIChE journal, 55(1), 275-278.Doi: 10.1002/aic.11654.
Kim, D., & Robyt, J. F. (1994a). Production and selection of mutants of Leuconostoc
mesenteroides constitutive for glucansucrases. Enzyme and microbial technology,
16, 659-664. Doi: 10.1016/0141-0229(94)90086-8.
Kim, D., & Robyt, J. F. (1994b). Properties of Leuconostoc mesenteroides B-512FMC
constitutive dextransucrase. Enzyme and microbial technology, 16(12), 1010-1015.
Doi: 10.1016/0141-0229(94)90134-1.
Kobayashi, M., & Matsuda, K. (1976). Purification and properties of the extracellular
dextransucrase from Leuconostoc mesenteroides NRRL B-1299. The Journal of
Biochemistry, 79(6), 1301-1308. Doi: 10.1093/oxfordjournals.jbchem.a131184.
Kobayashi, M., & Matsuda, K. (1980). Characterization of the multiple forms and main
component of dextransucrase from Leuconostoc mesenteroides NRRL B512F. Biochimica et Biophysica Acta (BBA)-Enzymology, 614(1), 46-62.
Doi: 10.1016/0005-2744(80)90166-7.
Kongo, JM. Malcata, FX. (2016). Acidophilus Milk. In Encyclopedia of food and health (pp.
6-14). Oxford: Elseiver.
Kothari, Damini. Das Deeplina, Patel Seema, Goyal Arun. (2015). [25] Dextran and Food
Application. In Polysaccharides (pp. 735-748). Switzerland: Springer.
Kubik, C., Sikora, B., & Bielecki, S. (2004). Immobilization of dextransucrase and its use
with soluble dextranase for glucooligosaccharides synthesis. Enzyme and microbial
technology, 34, 555-560. Doi: 10.1016/j.enzmictec.2003.11.022.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of
bacteriophage T4. Nature, 227(5259), 680-685. Doi: 10.1038/227680a0.
Lamas, E. M., Barros, R. M., Balcão, V. M., & Malcata, F. X. (2001). Hydrolysis of whey
proteins by proteases extracted from Cynara cardunculus and immobilized onto
highly activated supports. Enzyme and Microbial Technology, 28(7-8), 642-652.
Doi: 10.1016/S0141-0229(01)00308-8.
Lazić, M. L., Veljković, V. B., Vučetić, J. I., & Vrvić, M. M. (1993). Effect of pH and aeration
on dextran production by Leuconostoc mesenteroides. Enzyme and microbial
technology, 15, 334-338. Doi: 10.1016/0141-0229(93)90160-4.
Leroy, F., & De Vuyst, L. (2016). Advances in production and simplified methods for
recovery and quantification of exopolysaccharides for applications in food and health.
Journal of dairy science, 99(4), 3229-3238. Doi: 10.3168/jds.2015-9936.
Li, C., Zhang, G., Liu, N., & Liu, L. (2015). Preparation and Properties of Rhizopus oryzae
Lipase Immobilized Using an Adsorption-Crosslinking Method. International journal
of food properties, 19(8), 1776-1785. Doi: 10.1080/10942912.2015.1107732.
Life Technologies. (2015). Qubit® Protein Assay Kits. Julio 3 de 2019, de Thermofisher
Sitio web: https://assets.thermofisher.com/TFS- Assets/LSG/manuals/Qubit_
Protein_ Assay_UG.pdf.
Lim, Y. P., & Mohammad, A. W. (2012). Influence of pH and ionic strength during food
protein ultrafiltration: Elucidation of permeate flux behavior, fouling resistance, and
mechanism. Separation Science and Technology, 47, 446-454.
Doi: 10.1080/01496395.2011.627907.
Liu S-Q. (2016). Lactic Acid Bacteria: Leuconostoc spp. In Reference Module in Food
Science (1-6). Melbourne: Elseiver.
Liu, A., Jia, Y., Zhao, L., Gao, Y., Liu, G., Chen, Y., ... & Chen, H. (2018). Diversity of
isolated lactic acid bacteria in Ya'an sourdoughs and evaluation of their
exopolysaccharide production characteristics. LWT, 95, 17-22.
Doi: 10.1016/j.lwt.2018.04.061.
Liu, S. (2017). [7] Enzymes. In Bioprocess Engineering (pp. 297-373). New York: Elsevier.
Lopez, A., & Monsan, P. (1980). Dextran synthesis by immobilized dextran sucrase.
Biochimie, 62(5-6), 323-329. Doi: 10.1016/s0300-9084(80)80161-1.
Lutz Herb. (2015). [1] Fundamentals EMD Millipore, Biomanufacturing Sciences Network.
In Ultrafiltration for Bioprocessing (pp.1-205). Cambridge: Elseiver.
Lynch, K. M., Zannini, E., Coffey, A., & Arendt, E. K. (2018). Lactic acid bacteria
exopolysaccharides in foods and beverages: isolation, properties, characterization,
and health benefits. Annual Review of Food Science and Technology, 9, 155-176.
Doi: 10.1146/annurev-food-030117-012537.
Mayo, B., Aleksandrzak‐Piekarczyk, T., Fernández, M., Kowalczyk, M., Álvarez‐Martín, P.,
& Bardowski, J. (2010). [1] Updates in the metabolism of lactic acid bacteria. In
Biotechnology of lactic acid bacteria: Novel applications, pp. 3-33.
Mellano, E. (2009). Es la proteólisis de la dextransacarasa (DsrS) de Leuconostoc
mesenteroides B512F un proceso autocatalítico? (Tesis de Maestría). Universidad
Nacional Autónoma de México. Cuernavaca, México.
Michelena, G. L., Martínez, A., Bell, A., Carrera, E., & Valencia, R. (2003). Scale-up of
dextransucrase production by Leuconostoc mesenteroides in fed batch fermentation.
Brazilian Archives of Biology and Technology, 46(3), 455-459.
Doi: 10.1590/S1516-89132003000300017.
Miljković, M. G., Davidović, S. Z., Kralj, S., Šiler-Marinković, S. S., Rajilić-Stojanović, M. D.,
& Dimitrijević-Branković, S. I. (2017). Characterization of dextransucrase from
Leuconostoc mesenteroides T3, water kefir grains isolate. HEMIJSKA INDUSTRIJA,
71(4), 351-360. Doi: 10.2298/HEMIND160421046M.
Miller, A. W., & Robyt, J. F. (1986). Functional molecular size and structure of
dextransucrase by radiation inactivation and gel electrophoresis. Biochimica et
Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 870(2), 198-
203. Doi: 10.1016/0167-4838(86)90222-0.
Miller, A. W., Eklund, S. H., & Robyt, J. F. (1986). Milligram to gram scale purification and
characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F.
Carbohydrate research, 147(1), 119-133. Doi: 10.1016/0008-6215(86)85011-x.
Moncayo, D. (2013). Desarrollo de un recubrimiento comestible a partir de un biopolímero
para prolongar la vida útil de frutas frescas. (Tesis de Maestría). Universidad
Nacional de Colombia. Bogotá, Colombia.
Monsan, P., Paul, F., Auriol, D., & Lopez, A. (1987). [23] Dextran synthesis using
immobilized Leuconostoc mesenteroides dextransucrase. In Methods in enzymology
(Vol. 136, pp. 239-254). Academic Press. Doi: 10.1016/S0076-6879(87)36025-2.
Murase, N., Uetake, Y., Sato, Y., Irie, K., Ueno, Y., Hirauchi, T., ... & Hirai, M. (2018). Frozen
State of Sephadex® Gels of Different Crosslink Density Analyzed by X-ray Computed
Tomography and X-ray Diffraction. Gels, 4(44), 1-12. Doi: 10.3390/gels4020044.
Naessens, M., Cerdobbel, A., Soetaert, W., & Vandamme, E. J. (2005). Leuconostoc
dextransucrase and dextran: production, properties and applications. Journal of
Chemical Technology & Biotechnology: International Research in Process,
Environmental & Clean Technology, 80, 845-860. Doi: 10.1002/jctb.1322.
Nigam, M., Goyal, A., & Katiyar, S. S. (2006). High yield purification of dextransucrase from
Leuconostoc mesenteriodes NRRL B-512F by phase partitioning. Journal of food
biochemistry, 30(1), 12-20. Doi: 10.1111/j.1745-4514.2005.00047.x.
North, M. Beynon, R. (2001). [9] Prevention of unwanted proteolysis. In Proteolytic
Enzymes (pp. 211-232). New York: Oxford.
Novick, S. J., & Rozzell, J. D. (2005). [16] Immobilization of enzymes by covalent
attachment. In Microbial enzymes and biotransformations (pp. 247-271). Humana
Press.
Nunes, J. C., de Amorim, M. T. P., Escobar, I. C., Queiroz, J. A., & Morão, A. M. (2014).
Plasmid DNA/RNA separation by ultrafiltration: Modeling and application study.
Journal of membrane science, 463, 1-10. Doi: 10.1016/j.memsci.2014.03.036.
Ölçer, Z., & Tanriseven, A. (2010). Co-immobilization of dextransucrase and dextranase in
alginate. Process Biochemistry, 45(10), 1645-1651.
Doi: 10.1016/j.procbio.2010.06.011.
Ovsejevi, K., Manta, C., & Batista-Viera, F. (2013). [7] Reversible covalent immobilization
of enzymes via disulfide bonds. In Immobilization of Enzymes and Cells (pp. 89-116).
Humana Press, Totowa, NJ.
Paradossi, G., Cavalieri, F., Chiessi, E., Mondelli, C., & Telling, M. T. (2004). Structural
fluctuations in cross-linked matrices with narrow pore size distribution. Chemical
physics, 302(1-3), 143-148. Doi: 10.1016/j.chemphys.2004.04.004.
Parlak, M., Ustek, D., & Tanriseven, A. (2013). A novel method for covalent immobilization
of dextransucrase. Journal of Molecular Catalysis B: Enzymatic, 89, 52-60.
Doi: 10.1016/j.molcatb.2012.12.013.
Patel, A. K., Singhania, R. R., & Pandey, A. (2017). [2] Production, purification, and
application of microbial enzymes. In Biotechnology of Microbial Enzymes (pp. 13-41).
Academic Press.
Polizzi, K. M., Bommarius, A. S., Broering, J. M., & Chaparro-Riggers, J. F. (2007). Stability
of biocatalysts. Current opinion in chemical biology, 11(2), 220-225.
Doi: 10.1016/j.cbpa.2007.01.685.
Polo, L. M. (2015). [1] Introducción a la cromatografía. En Fundamentos de cromatografía
(pp. 19-30). Madrid: Dextra.
Popescu, A., & Doyle, R. J. (1996). The Gram stain after more than a century. Biotechnic
& histochemistry, 71(3), 145-151. Doi: 10.3109/10520299609117151.
Preciado, G. F. (2003). Optimización de una superficie de respuesta utilizando JMP.
Mosaicos Matemáticos, 11, 17-23.
Purama, R. K., & Goyal, A. (2007). Effect of nutrients by one variable at a time (OVAT)
approach on the dextransucrase production from Leuconostoc mesenteroides NRRL
B-640. Internet J. Microbiol, 5(1),1-9.
Purama, R. K., & Goyal, A. (2008a). Identification, effective purification and functional
characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-640.
Bioresource technology, 99, 3635-3642. Doi: 10.1016/j.biortech.2007.07.044.
Purama, R. K., & Goyal, A. (2008b). Screening and optimization of nutritional factors for
higher dextransucrase production by Leuconostoc mesenteroides NRRL B-640 using
statistical approach. Bioresource technology, 99(15), 7108-7114.
Doi: 10.1016/j.biortech.2008.01.032.
Purama, R. K., & Goyal, A. (2009). Optimization of conditions of Leuconostoc
mesenteroides NRRL B-640 for production of a dextransucrase and its assay. Journal
of food biochemistry, 33(2), 218-231. Doi: 10.1111/j.1745-4514.2009.00219.x.
Ren, Y., Liu, W., & Zhang, H. (2015). Identification of coccoidal bacteria in traditional
fermented milk products from Mongolia, and the fermentation properties of the
predominant species, Streptococcus thermophilus. Korean journal for food science of
animal resources, 35(5), 683-691. Doi: 10.5851/kosfa.2015.35.5.683.
Ristoff, M E. (2013). Determinación de carbohidratos en jugos de fruta con electrodos
enzimáticos. (Tesis doctoral). Universidad Nacional del Sur. Bahia Blanca, Argentina
Robyt, J. F., & Walseth, T. F. (1979). Production, purification, and properties of
dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydrate
research, 68(1), 95-111. Doi: 10.1016/s0008-6215(00)84059-8.
Robyt, J. F., Kimble, B. K., & Walseth, T. F. (1974). The mechanism of dextransucrase
action: Direction of dextran biosynthesis. Archives of biochemistry and biophysics,
165(2), 634-640. Doi: 10.1016/0003-9861(74)90291-4.
Rodrigues, S., Lona, L. M. F., & Franco, T. T. (2003). Effect of phosphate concentration on
the production of dextransucrase by Leuconostoc mesenteroides NRRL B512F.
Bioprocess and biosystems engineering, 26(1), 57-62.
Doi: 10.1007/s00449-003-0330-4.
Rodríguez, O. V., & Hanssen, H. (2007). Obtención de dextrano y fructosa, utilizando
residuos agroindustriales con la cepa Leuconostoc mesenteroides NRRL B512-F.
Revista EIA, (7), 159-172.
Saenz, A. C., & Prado, M. (1998). Aislamiento de cepas nativas con actividad
levansacarasa. BSc Bacteriology thesis, Universidad Colegio Mayor de
Cundinamarca. Bogotá, Colombia.
Sánchez, M. N. (2000). Origen y propiedades de las diversas formas observadas de la
dextransacarasa de Leuconostoc mesenteroides B-512FMC. (Tesis doctoral).
Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
Sánchez, Ó. J., Montoya, S., & Vargas, L. M. (2015). [14] Polysaccharide production by
submerged fermentation. In Polysaccharides: Bioactivity and Biotechnology, pp. 451-
473. Springer.
Sánchez-González, M., Alagón, A., Rodríguez-Sotrés, R., & López-Munguía, A. (1999).
Proteolytic processing of dextransucrase of Leuconostoc mesenteroides. FEMS
microbiology letters, 181(1), 25-30. Doi: 10.1111/j.1574-6968.1999.tb08822.x.
Santos, M., Teixeira, J., & Rodrigues, A. (2000). Production of dextransucrase, dextran and
fructose from sucrose using Leuconostoc mesenteroides NRRL B512 (f). Biochemical
Engineering Journal, 4(3), 177-188. Doi: 10.1016/S1369-703X(99)00047-9.
Sardar, M., & Gupta, M. N. (2005). Immobilization of tomato pectinase on Con A–Seralose
4B by bioaffinity layering. Enzyme and microbial technology, 37(3), 355-359.
Doi: 10.1016/j.enzmictec.2005.03.007.
Sarwat, F., Qader, S. A. U., Aman, A., & Ahmed, N. (2008). Production & characterization
of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713.
International Journal of Biological Sciences, 4(6), 379-386. Doi: 10.7150/ijbs.4.379.
Schoemaker, H. E., Mink, D., & Wubbolts, M. G. (2003). Dispelling the myths--biocatalysis
in industrial synthesis. Science, 299(5613), 1694-1697.
Doi: 10.1126/science.1079237.
Schratter, P. (2004). [12] Purification and concentration by ultrafiltration. In Protein
Purification Protocols. pp 101-116. Humana Press.
Scopes Robert. (1982). Solution. In Protein Purification Principles and Practice (pp. 182-
183). New York: Springer.
Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. In
Advanced Synthesis & Catalysis, 349(8‐9), 1289-1307.
Shukla, R., Iliev, I., & Goyal, A. (2010). Purification and characterization of dextransucrase
from Leuconostoc mesenteroides NRRL B-1149. Biotechnology & Biotechnological
Equipment, 24(sup1), 576-580. Doi: 10.1080/13102818.2010.10817900.
Singh, N., Srivastava, G., Talat, M., Raghubanshi, H., Srivastava, O. N., & Kayastha, A. M.
(2014). Cicer α-galactosidase immobilization onto functionalized graphene
nanosheets using response surface method and its applications. Food chemistry,
142, 430-438. Doi: 10.1016/j.foodchem.2013.07.079.
Spagna, G., Barbagallo, R. N., Casarini, D., & Pifferi, P. G. (2001). A novel chitosan
derivative to immobilize α-L-rhamnopyranosidase from Aspergillus niger for
application in beverage technologies. Enzyme and microbial technology, 28(4-5),
427-438. Doi: 10.1016/s0141-0229(00)00340-9.
SPINREACT. (2017). Glucose GOD-POD. Julio 7, 2019, Sitio web:
http://www.spinreact.com/es/productos/buscador.html.
Tanriseven, A., & Doğan, Ş. (2002). Production of isomalto-oligosaccharides using
dextransucrase immobilized in alginate fibres. Process Biochemistry, 37(10), 1111-
1115. Doi: 10.1016/S0032-9592(01)00319-3.
Terrasan, C. R.F. De Morais Junio, W. G. Contesini, F.J. (2019). Enzyme Immobilization
for Oligosaccharide Production. En Encyclopedia of Food Chemistry (415-423).
Brazil: Elseiver.
Tsuchiya, H. M., Koepsell, H. J., Corman, J., Bryant, G., Bogard, M. O., Feger, V. H., &
Jackson, R. W. (1952). The effect of certain cultural factors on production of
dextransucrase by Leuconostoc mesenteroides. Journal of bacteriology, 64(4), 521-
526.
Ulbrich, K., & Kopeček, J. (1979). Cross‐linked copolymers of N, N‐diethylacrylamide with
improved mechanical properties. Journal of Polymer Science: Polymer Symposia, 66
(1), 209-219. Doi: 10.1002/polc.5070660122.
Veljković, V. B., Lazić, M. L., Rutić, D. J., Jovanović, S. M., & Skala, D. U. (1992). Effects
of aeration on extracellular dextransucrase production by Leuconostoc
mesenteroides. Enzyme and microbial technology, 14(8), 665-668.
Doi: 10.1016/0141-0229(92)90044-O.
Vieira, D. C., Lima, L. N., Mendes, A. A., Adriano, W. S., Giordano, R. C., Giordano, R. L.,
& Tardioli, P. W. (2013). Hydrolysis of lactose in whole milk catalyzed by βgalactosidase from Kluyveromyces fragilis immobilized on chitosan-based matrix.
Biochemical engineering journal, 81, 54-64. Doi: 10.1016/j.bej.2013.10.007.
Walker, J. M. (2002). [11] SDS polyacrylamide gel electrophoresis of proteins. In The
protein protocols handbook (pp. 61-67). Humana Press.
Willemot, R. M., Monsan, P., & Durand, G. (1988). Effects of dextran on the activity and
stability of dextransucrase from mesenteroides. Annals of the New York Academy of
sciences, 542(1), 169-172. Doi: 10.1111/j.1749-6632.1988.tb25823.x.
Zafar, S. B., Siddiqui, N. N., Shahid, F., Qader, S. A. U., & Aman, A. (2018). Bioprospecting
of indigenous resources for the exploration of exopolysaccharide producing lactic acid
bacteria. Journal of Genetic Engineering and Biotechnology, 16(1), 1-6.
Doi: 10.1016/j.jgeb.2017.10.015 | |