dc.contributorPérez Pérez, León Darío
dc.contributorMacromoléculas
dc.creatorPosada rubiano, Nestor camilo
dc.date.accessioned2022-06-07T16:45:57Z
dc.date.available2022-06-07T16:45:57Z
dc.date.created2022-06-07T16:45:57Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81524
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEsta investigación está basada en la síntesis de policaprolactona (PCL) y copolímeros de la misma, mediante la polimerización por apertura de anillo incorporando enzimas de tipo lipasa como catalizadores. En principio la síntesis de PCL se ha centrado en la acción de catalizadores químicos y altas demandas experimentales, que se contraponen a la salud ambiental y humana, haciendo evidente que se requieren alternativas que favorezcan la síntesis del poliéster y sus copolímeros, además del cuidado ambiental. Es por ello que se reconoce que la polimerización enzimática por apertura de anillo (eROP) empleando lipasas junto condiciones “suaves” de reacción, constituye la síntesis de copolímeros funcionalizados de PCL como un proceso amigable con el medio ambiente. La eROP a la fecha, aborda aspectos como los tipos de enzimas y su origen, además de los efectos de las condiciones experimentales (solvente, temperatura, iniciadores, etc.) sobre las propiedades del polímero y la estabilidad de las lipasas; es necesario recalcar que dichas exploraciones se centran en polímeros lineales y telequélicos, mientras que se demandan estructuras más versátiles y funcionales, siendo este un campo menos abordado por la polimerización enzimática. Inicialmente se comparó la actividad enzimática sobre la eROP de la caprolactona (ℇ-CL) a partir de dos lipasas con diferente origen y disposición, siendo la primera la lipasa Candida antartica tipo B (CALB) (N-435) y la segunda la lipasa pancreática porcina (PPL). Ambas enzimas en la eROP permitieron la apertura del anillo de ℇ-CL, la PPL evidenció una conversión del 26% y la formación de especies ácidas y oligómeros de tipo dímero y trímero en más de 36 horas de reacción, mientras que la conversión del 100% del monómero fue generado por la N-435 en 4 horas de reacción, con una PCL de alto peso molecular (Mn: 14,1 kDa). En este sentido, la N-435 demostró control de la polimerización y una mejor eficiencia frente la PPL, concordando con la mayor actividad demostrada en la hidrolisis de tri y monoglicéridos. Igualmente, la N-435 en micrografías SEM, exhibe que el soporte de la enzima se ve afectado mecánicamente y puede influir en la reutilización del catalizador. Posteriormente, las condiciones de reacción “suaves” que permitieron la síntesis de PCL con la N-435 y con altos rendimientos en su peso molecular y grados de conversión, fueron establecidas bajo comparación de variaciones en la temperatura, solventes y concentraciones con el catalizador. Se estipuló que la reacción a 70ºC, en tolueno y con una concentración del 10% de N-435 respecto el monómero, permiten el 100% de conversión de la ℇ-CL, buenas propiedades en la PCL y menores exigencias energéticas respecto los catalizadores químicos. Igualmente se señalan los efectos que tiene la variación de la temperatura, solventes y concentraciones, sobre el rendimiento de la reacción, hallando entre estas, alta polidispersión (Ð), disminución de los pesos moleculares y las conversiones. Con el compendio de las condiciones de reacción “suaves” y la alta actividad de la N-435, se obtuvo el copolímero α-azido-ε-caprolactona-co-caprolactona (Poli (α-N3-CL-co-CL)) a dos diferentes pesos moleculares (Mn: 14,7 y 9,5 kDa) y un 100% de conversión, demostrando el control de la N-435 sobre la polimerización. Este copolímero exhibió un comportamiento térmico diferente a la PCL pura, pues la presencia de grupos azida en la cadena de polímero, disminuye las temperaturas de fusión y por ende la cristalización. A causa de este efecto se estima que los cristales del copolímero son de menor tamaño y diferente forma, además del aumento en los dominios amorfos en el polímero, donde se centra la biodegradación del material. Por otro lado, mediante las reacciones de cicloadición (clic), se logró la conjugación de biomoléculas como el colesterol, ácido linoleico y oleico con el copolímero obtenido. Estas biomoléculas fueron adecuadas con grupos alquino para permitir la reacción con los grupos pendientes azido del copolímero; cada biomolécula requirió de halogenación y amidación. Los productos obtenidos fueron caracterizados por FTIR y RMN-1H constatando la presencia de la biomolécula y el copolímero. Finalmente bajó la técnica de nanoprecipitación se sintetizaron partículas cargadas de curcumina (curcuminoides), encontrando que estas poseen un tamaño entre 160 y 450nm y una estabilidad electrostática en solución, además de una concentración entre 10-30% de curcumina. También, se enuncian los efectos de la interacción entre el copolímero, las biomoléculas y la curcumina, proponiendo un modelo esférico injertado para estas preparaciones, que mostraron actividad antibacteriana en microorganismos Gram negativos y positivos. (Texto tomado de la fuente)
dc.description.abstractThis research is based on the synthesis of polycaprolactone (PCL) and copolymers thereof, by means of ring-opening polymerization incorporating lipase-type enzymes as catalysts. In principle, the synthesis of PCL has been focused on the action of chemical catalysts and high experimental demands, which are opposed to environmental and human health, making it evident that alternatives that favor the synthesis of polyester and its copolymers, in addition to environmental care, are required. That is why it is recognized that the enzymatic ring-opening polymerization (eROP) using lipases together with "mild" reaction conditions, constitutes the synthesis of functionalized copolymers of PCL as an environmentally friendly process. To date, eROP addresses aspects such as the types of enzymes and their origin, as well as the effects of experimental conditions (solvent, temperature, initiators, etc.) on polymer properties and lipase stability; it is necessary to emphasize that these explorations are focused on linear and telechelic polymers, while more versatile and functional structures are in demand, this being a field less addressed by enzymatic polymerization. Initially, the enzymatic activity on eROP of caprolactone (ℇ -CL) from two lipases with different origin and disposition were compared, the first being Candida antarctica type B lipase (CALB) (N-435) and the second porcine pancreatic lipase (PPL). Both enzymes in eROP allowed the opening of the ℇ-CL ring, PPL evidenced a 26% conversion and the formation of acidic species and dimer and trimer type oligomers in more than 36 hours of reaction, while 100% conversion of the monomer was generated by N-435 in 4 hours of reaction, with a high molecular weight PCL (Mn: 14.1 kDa). In this sense, N-435 showed control of polymerization and better efficiency versus PPL, agreeing with the higher activity demonstrated in the hydrolysis of tri- and monoglycerides. Likewise, N-435 in SEM micrographs, exhibits that the enzyme support is mechanically affected and can influence the reusability of the catalyst. Subsequently, the "mild" reaction conditions that allowed the synthesis of PCL with N-435 and with high yields in its molecular weight and degrees of conversion, were established under comparison of variations in temperature, solvents and concentrations with the catalyst. It was stipulated that the reaction at 70ºC, in toluene and with a 10% concentration of N-435 with respect to the monomer, allow 100% conversion of ℇ-CL, good properties in PCL and lower energy requirements with respect to chemical catalysts. The effects that the variation of temperature, solvents and concentrations have on the reaction performance are also pointed out, finding among these, high polydispersion (Ð), decrease of molecular weights and conversions. With the compendium of the "mild" reaction conditions and the high activity of N-435, the copolymer α-azido-ε-caprolactone-co-caprolactone (Poly (α-N3-CL-co-CL)) was obtained at two different molecular weights (Mn: 14.7 and 9.5 kDa) and 100% conversion, demonstrating the control of N-435 on polymerization. This copolymer exhibited a different thermal behavior than pure PCL, since the presence of azide groups in the polymer chain decreases the melting temperatures and therefore the crystallization. Because of this effect, it is estimated that the crystals of the copolymer are smaller in size and different in shape, in addition to the increase in the amorphous domains in the polymer, where the biodegradation of the material is centered. On the other hand, by means of cycloaddition reactions (click), the conjugation of biomolecules such as cholesterol, linoleic and oleic acid with the obtained copolymer was achieved. These biomolecules were fit with alkyne groups to allow reaction with the outstanding azido groups of the copolymer; each biomolecule required halogenation and aminolysis. The obtained products were characterized by FTIR and 1H-NMR confirming the presence of the biomolecule and the copolymer. Finally, using the nanoprecipitation technique, curcumin charged particles (curcuminoids) were synthesized, finding that they have a size between 160 and 450 nm and an electrostatic stability in solution, in addition to a concentration between 10-30% of curcumin. Also, the effects of the interaction between the copolymer, biomolecules and curcumin are enunciated, proposing a spherical grafted model for these preparations, which showed antibacterial activity in Gram negative and positive microorganisms.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAjiboye, A. L., Trivedi, V., & Mitchell, J. C. (2018). Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions. Drug Delivery and Translational Research, 8(6), 1790–1796. https://doi.org/10.1007/s13346-017-0422-3 Alippilakkotte, S., & Sreejith, L. (2018). Pectin mediated synthesis of curcumin loaded poly(lactic acid) nanocapsules for cancer treatment [Elsevier B.V.]. In Journal of Drug Delivery Science and Technology (Vol. 48). https://doi.org/10.1016/j.jddst.2018.09.001
dc.relationAlippilakkotte, S., & Sreejith, L. (2018). Pectin mediated synthesis of curcumin loaded poly(lactic acid) nanocapsules for cancer treatment [Elsevier B.V.]. In Journal of Drug Delivery Science and Technology (Vol. 48). https://doi.org/10.1016/j.jddst.2018.09.001
dc.relationAlmeida, B. C., Figueiredo, P., & Carvalho, A. T. P. (2019). Polycaprolactone Enzymatic Hydrolysis: A Mechanistic Study [Research-article]. ACS Omega, 4(4), 6769–6774. https://doi.org/10.1021/acsomega.9b00345
dc.relationAngarita, A. (UNAL). (2020). SÍNTESIS DE COPOLÍMEROS DIBLOQUE BIODEGRADABLES CONJUGADOS CON BIOMOLÉCULAS COMO PLATAFORMA DE ADMINISTRACIÓN DE FÁRMACOS. Universidad Nacional de Colombia.
dc.relationArumugasamy, S., & Ahmad, Z. (2009). Candida antarctica as catalyst for polycaprolactone synthesis: effect of temperature and solvents. Technology, 17, 743–753. https://doi.org/10.1002/apj.583
dc.relationBarros, M., Fleuri, L. F., & Macedo, G. A. (2010). SEED LIPASES: SOURCES, APPLICATIONS AND PROPERTIES-A REVIEW. 27(01), 15–29. www.abeq.org.br/bjche
dc.relationBartnikowski, M., Dargaville, T. R., Ivanovski, S., & Hutmacher, D. W. (2019). Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 96, 1–20. https://doi.org/10.1016/j.progpolymsci.2019.05.004
dc.relationBenkaddour, A., Jradi, K., Robert, S., & Daneault, C. (2013). Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry. Nanomaterials, 3(1), 141–157. https://doi.org/10.3390/nano3010141
dc.relationBillmeyer Jr, F. W. (1984). Textbook of polymer science. In Textbook of polymer science. https://doi.org/10.1016/0032-3861(72)90126-7
dc.relationBommarius, A. S., & Riebel, B. R. (2005). Biocatalysis. In Biocatalysis. https://doi.org/10.1002/3527602364.fmatter
dc.relationBoskou, D., Blekas, G., & Tsimidou, M. (2006). Olive Oil Composition. In Olive Oil: Chemistry and Technology: Second Edition (Second Edi). AOCS Press. https://doi.org/10.1016/B978-1-893997-88-2.50008-0
dc.relationBrockman, H. L. (2013). Lipases. Encyclopedia of Biological Chemistry: Second Edition, 2, 729–732. https://doi.org/10.1016/B978-0-12-378630-2.00118-3
dc.relationCama, G., Mogosanu, D. E., Houben, A., & Dubruel, P. (2017). Synthetic biodegradable medical polyesters: Poly-σ-caprolactone. Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties, 79–105. https://doi.org/10.1016/B978-0-08-100372-5.00003-9
dc.relationCao, H., Han, H., Li, G., Yang, J., Zhang, L., Yang, Y., Fang, X., & Li, Q. (2012). Biocatalytic synthesis of poly(δ-Valerolactone) using a thermophilic esterase from archaeoglobus fulgidus as catalyst. International Journal of Molecular Sciences, 13(10), 12232–12241. https://doi.org/10.3390/ijms131012232
dc.relationChampagne, E., Strandman, S., & Zhu, X. X. (2016). Recent Developments and Optimization of Lipase-Catalyzed Lactone Formation and Ring-Opening Polymerization. Macromolecular Rapid Communications, 37(24), 1986–2004. https://doi.org/10.1002/marc.201600494
dc.relationChen, Y., Su, M., Li, Y., Gao, J., Zhang, C., Cao, Z., Zhou, J., Liu, J., & Jiang, Z. (2017). Enzymatic PEG-Poly(amine-co-disulfide ester) Nanoparticles as pH- and Redox-Responsive Drug Nanocarriers for Efficient Antitumor Treatment. ACS Applied Materials and Interfaces, 9(36), 30519–30535. https://doi.org/10.1021/acsami.7b10148
dc.relationChiaradia, V., Soares, N. S., Valério, A., de Oliveira, D., Araújo, P. H. H., & Sayer, C. (2016). Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles. Applied Biochemistry and Biotechnology, 180(3), 558–575. https://doi.org/10.1007/s12010-016-2116-6
dc.relationCoreño, J., & Méndez, M. T. (2010). Relationship between structure and properties of polymers. Educacion Quimica, 21(4), 291–299. https://doi.org/10.1016/s0187-893x(18)30098-3
dc.relationDalynn Biologicals. (2014). McFarland Srandard. McFarland Standards for in Vitro Use Only, 2. http://www.dalynn.com/dyn/ck_assets/files/tech/TM53.pdf
dc.relationDarcos, V., El Habnouni, S., Nottelet, B., El Ghzaoui, A., & Coudane, J. (2010). Well-defined PCL-graft-PDMAEMA prepared by ring-opening polymerisation and click chemistry. Polymer Chemistry, 1(3), 280–282. https://doi.org/10.1039/c0py00004c
dc.relationDe Geus, M., Van Der Meulen, I., Goderis, B., Van Hecke, K., Dorschu, M., Van Der Werff, H., Koning, C. E., & Heise, A. (2010). Performance polymers from renewable monomers: High molecular weight poly(pentadecalactone) for fiber applications. Polymer Chemistry, 1(4), 525–533. https://doi.org/10.1039/b9py00360f
dc.relationDeng, F., & Gross, R. A. (1999). Ring-opening bulk polymerization of ε-caprolactone and trimethylene carbonate catalyzed by lipase Novozym 435. International Journal of Biological Macromolecules, 25(1–3), 153–159. https://doi.org/10.1016/S0141-8130(99)00029-X
dc.relationDomb, A. J., Kost, J., Sheva, B., & Wiseman, D. M. (1997). Handbook Of Biodegradable Polymers (A. J. Domb, J. Kost, B. Sheva, & D. M. Wiseman (eds.); First Edit). Taylor & Francis Group.
dc.relationDos Santos, P., Rezende, C. A., & Martínez, J. (2016). Activity of immobilized lipase from Candida antarctica (Lipozyme 435) and its performance on the esterification of oleic acid in supercritical carbon dioxide. Journal of Supercritical Fluids, 107(Lipozyme 435), 170–178. https://doi.org/10.1016/j.supflu.2015.08.011
dc.relationElsässer, B., Schoenen, I., & Fels, G. (2013). Comparative theoretical study of the ring-opening polymerization of caprolactam vs caprolactone using QM/MM methods. ACS Catalysis, 3(6), 1397–1405. https://doi.org/10.1021/cs3008297
dc.relationEndo, T. (2009). General Mechanisms in Ring-Opening Polymerization. In Handbook of Ring-Opening Polymerization (pp. 53–63). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527628407.ch2
dc.relationEngel, S., Höck, H., Bocola, M., Keul, H., Schwaneberg, U., & Möller, M. (2016a). CaLB catalyzed conversion of ε-caprolactone in aqueous medium. Part 1: Immobilization of CaLB to microgels. Polymers, 8(10), 1–16. https://doi.org/10.3390/polym8100372
dc.relationFigueiredo, P., Almeida, B. C., & Carvalho, A. T. P. (2019). Enzymatic Polymerization of PCL-PEG Co-polymers for Biomedical Applications. Frontiers in Molecular Biosciences, 6(October), 1–7. https://doi.org/10.3389/fmolb.2019.00109
dc.relationFlory, P. J. (1953). Principles of Polymer Chemistry. http://www.amazon.com/Principles-Chemistry-Non-Resident-Lectureship-University/dp/0801401348
dc.relationGabirondo, E., Sangroniz, A., Etxeberria, A., Torres-Giner, S., & Sardon, H. (2020). Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: From polymerization to end-of-life options. Polymer Chemistry, 11(30), 4861–4874. https://doi.org/10.1039/d0py00088d
dc.relationGonzález Bacerio, J., Rodríguez Hernández, J., & Del Monte Martínez, A. (2010). Las lipasas: enzimas con potencial para el desarrollo de biocatalizadores inmovilizados por adsorción interfacial: [revisión]. Revista Colombiana de Biotecnología, 12(1), 113–140.
dc.relationGuarino, V., Gentile, G., Sorrentino, L., & Ambrosio, L. (2017). Polycaprolactone: Synthesis, Properties, and Applications. Encyclopedia of Polymer Science and Technology, 1–36. https://doi.org/10.1002/0471440264.pst658
dc.relationGulfam, M., Matini, T., Monteiroa, P. F., Riva, R., Collins, H., Keith Spriggs, a S. M. H., Jérômeb, C., & Alexander, C. (2017). Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells. Biomaterials Science. https://doi.org/10.1039/x0xx00000x
dc.relationHenderson, L. A., Svirkin, Y. Y., Gross, R. A., Kaplan, D. L., & Swift, G. (1996). Enzyme-catalyzed polymerizations of ε-caprolactone: Effects of initiator on product structure, propagation kinetics, and mechanism. Macromolecules, 29(24), 7759–7766. https://doi.org/10.1021/ma960821h
dc.relationHernández, A. R., Contreras, O. C., Acevedo, J. C., & Moreno, L. G. N. (2013). Poly(ε-caprolactone) degradation under acidic and alkaline conditions. American Journal of Polymer Science, 3(4), 70–75. https://doi.org/10.5923/j.ajps.20130304.02
dc.relationHerrera Kao, W. A. (2014). Síntesis enzimática y propiedades térmicas de Poli(lactonas) y sus copolímeros obtenidos vía polimerización por apertura de anillo [Centro de Investigación en Materiales Avanzados, S.C.]. https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/76/1/Tesis Wilberth Antonio Herrera Kao.pdf
dc.relationHeshmatnezhad, F., & Nazar, A. R. S. (2020). Synthesis of Polycaprolactone Nanoparticles through Flow-Focusing Microfluidic-Assisted Nanoprecipitation. Chemical Engineering and Technology, 43(10), 2073–2082. https://doi.org/10.1002/ceat.202000222
dc.relationHorkey, A. (2013). Rapid Analysis of Curcuminoids in Turmeric Extract Using the Agilent 1290 Infinity LC and STM Columns. In Agilent Technologies. https://www.agilent.com/cs/library/applications/5991-3340EN.pdf
dc.relationHuang, Y., Li, L., & Li, G. (2015). An enzyme-catalysed access to amphiphilic triblock copolymer of PCL-b-PEG-b-PCL: Synthesis, characterization and self-assembly properties. Designed Monomers and Polymers, 18(8), 799–806. https://doi.org/10.1080/15685551.2015.1078113
dc.relationHunsen, M., Abul, A., Xie, W., & Gross, R. A. (2008). Humicola insolens cutinase-catalyzed lactone ring-opening polymerizations: Kinetic and mechanistic studies. Biomacromolecules, 9(2), 518–522. https://doi.org/10.1021/bm701269p
dc.relationIllanes, A. (2008). Enzyme biocatalysis: Principles and applications. In Enzyme Biocatalysis: Principles and Applications. https://doi.org/10.1007/978-1-4020-8361-7
dc.relationJérôme, C., & Lecomte, P. (2008). Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Advanced Drug Delivery Reviews, 60(9), 1056–1076. https://doi.org/10.1016/j.addr.2008.02.008
dc.relationJohnson, P. M., Kundu, S., & Beers, K. L. (2011). Modeling enzymatic kinetic pathways for ring-opening lactone polymerization. Biomacromolecules, 12(9), 3337–3343. https://doi.org/10.1021/bm2009312
dc.relationKasinathan, N., Amirthalingam, M., Reddy, N. D., Jagani, H. V., Volety, S. M., & Rao, J. V. (2016). In-situ implant containing PCL-curcumin nanoparticles developed using design of experiments. Drug Delivery, 23(3), 1017–1025. https://doi.org/10.3109/10717544.2014.927021
dc.relationKhan, F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., & Wang, Y. (2017). The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontiers in Bioengineering and Biotechnology, 5(MAR), 1–13. https://doi.org/10.3389/fbioe.2017.00016
dc.relationKikuchi, H., Uyama, H., & Kobayashi, S. (2002). Lipase-catalyzed ring-opening polymerization of substituted lactones. Polymer Journal, 34(11), 835–840. https://doi.org/10.1295/polymj.34.835
dc.relationKnani, D. (1993). Enzymatic Polyesterification in Organic Media. Enzyme- Catalyzed Synthesis of Linear Polyesters. 1. Condensation Polymerization of linear Hydroxyesters. 31, 1221–1232.
dc.relationKnani, D., Macdonald, R. T., Pulapura, S. K., Svirkin, Y. Y., Gross, R. A., Kaplan, D. L., Akkara, J., Swift, G., Wolk, S., Nobes, G. A. R., Kazlauskas, R. J., Marchessault, R. H., Kobayashi, S., Takeya, K., Suda, S., Uyama, H., Polycaprolactone, L. B. C., Mei, Y., Kumar, A., … Möller, M. (1998). Enzymatic synthesis of poly(ε-caprolactone): Thermal properties, recovery, and reuse of lipase B from Candida antarctica immobilized on macroporous acrylic resin particles. Macromolecules, 70(10), 5530–5536. https://doi.org/10.3390/ijms131012232
dc.relationKobayashi, S. (2015). Enzymatic ring-opening polymerization and polycondensation for the green synthesis of polyesters. Polymers for Advanced Technologies, 26(7), 677–686. https://doi.org/10.1002/pat.3564
dc.relationKobayashi, S., Takeya, K., Suda, S., & Uyama, H. (1998). Lipase-catalyzed ring-opening polymerization of medium-size lactones to polyesters. Macromolecular Chemistry and Physics, 199(8), 1729–1736. https://doi.org/https://doi.org/10.1002/(SICI)1521-3935(19980801)199:8<1729::AID-MACP1729>3.0.CO;2-V
dc.relationKobayashi, S., Uyama, H., & Kadokawa, J. (2019). Enzymatic Polymerization towards Green Polymer Chemistry. Green Chemistry and Sustainable Technology, 2–14. https://doi.org/10.1007/978-981-13-3813-7
dc.relationKowsari, E., Beck, S., & Narain, R. (2011). Polymer synthesis. In Polymer Synthesis (pp. 21–85). https://doi.org/10.3139/9781569907269.005
dc.relationKumar, Ajay, & Gross, R. A. (2000). Candida antartica Lipase B Catalyzed Polycaprolactone Synthesis : Effects of Organic Media and Temperature. Macromolecules, 435, 133–138. https://doi.org/https://doi.org/10.1021/bm990510p
dc.relationKumar, Ashok, Dhar, K., Kanwar, S. S., & Arora, P. K. (2016). Lipase catalysis in organic solvents: Advantages and applications. Biological Procedures Online, 18(1), 1–11. https://doi.org/10.1186/s12575-016-0033-2
dc.relationKundu, S., Johnson, P. M., & Beers, K. L. (2012). Increasing molecular mass in enzymatic lactone polymerizations. ACS Macro Letters, 1(3), 347–351. https://doi.org/10.1021/mz2002005
dc.relationLabet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: A review. Chemical Society Reviews, 38(12), 3484–3504. https://doi.org/10.1039/b820162p
dc.relationLee, J. H., Park, S. Y., Choi, I. G., & Choi, J. W. (2020). Investigation of molecular size effect on the formation of lignin nanoparticles by nanoprecipitation. Applied Sciences (Switzerland), 10(14). https://doi.org/10.3390/app10144910
dc.relationLi, C., Tan, T., Zhang, H., & Feng, W. (2010). Analysis of the conformational stability and activity of Candida antarctica lipase B in organic solvents: Insight from molecular dynamics and quantum mechanics/simulations. Journal of Biological Chemistry, 285(37), 28434–28441. https://doi.org/10.1074/jbc.M110.136200
dc.relationLiang, L., & Astruc, D. (2011). The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coordination Chemistry Reviews, 255(23–24), 2933–2945. https://doi.org/10.1016/j.ccr.2011.06.028
dc.relationLoos, K. (2011). Biocatalysis in Polymer Chemistry.
dc.relationLu, Y., Lv, Q., Liu, B., & Liu, J. (2019). Immobilized Candida antarctica lipase B catalyzed synthesis of biodegradable polymers for biomedical applications. Biomaterials Science, 7(12), 4963–4983. https://doi.org/10.1039/c9bm00716d
dc.relationLü, Y., Sun, Q., Hu, B., Chen, X., Miao, R., & Fang, Y. (2016). Synthesis and sensing applications of a new fluorescent derivative of cholesterol. New Journal of Chemistry, 40(2), 1817–1824. https://doi.org/10.1039/c5nj02601f
dc.relationMacdonald, R. T., Pulapura, S. K., Svirkin, Y. Y., Gross, R. A., Kaplan, D. L., Akkara, J., Swift, G., & Wolk, S. (1995). Enzyme-Catalyzed E-Caprolactone Ring-Opening Polymerization. Macromolecules, 28, 73–78. https://doi.org/10.1021/ma00105a008
dc.relationMackness, M., & M, C. (1994). Esterases Lipases, and Phospholipases (pp. 160–167).
dc.relationMallakpour, S., & Rafiee, Z. (2012). Green Solvents Fundamental and Industrial Applications BT - Green Solvents I: Properties and Applications in Chemistry. https://doi.org/10.1007/978-94-007-1712-1_1
dc.relationMatos, T. D., King, N., Simmons, L., Walker, C., Mcclain, A. R., Mahapatro, A., Rispoli, F. J., Mcdonnell, K. T., & Shah, V. (2011). Microwave assisted lipase catalyzed solvent-free poly-ε-caprolactone synthesis. Green Chemistry Letters and Reviews, 4(1), 73–79. https://doi.org/10.1080/17518253.2010.501429
dc.relationMcmurry, J. (2008). Química orgánica 7 (S. Cervantes & T. García (eds.); Seven edit). Cengage LearningTM.
dc.relationMei, Y., Kumar, A., & Gross, R. (2003). Kinetics and mechanism of Candida antarctica lipase B catalyzed solution polymerization of ε-Caprolactone. Macromolecules, 36(15), 5530–5536. https://doi.org/10.1021/ma025741u
dc.relationMondal, D., Griffith, M., & Venkatraman, S. S. (2016). Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(5), 255–265. https://doi.org/10.1080/00914037.2015.1103241
dc.relationNelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The Essential Medicinal Chemistry of Curcumin. Journal of Medicinal Chemistry, 60(5), 1620–1637. https://doi.org/10.1021/acs.jmedchem.6b00975
dc.relationNobes, G. A. R., Kazlauskas, R. J., & Marchessault, R. H. (1996). Lipase-catalyzed ring-opening polymerization of lactones: a novel route to poly(hydroxyalkanoate)s. Macromolecules, 29(14), 4829–4833. https://doi.org/10.1021/ma951774g
dc.relationOdian, G. (2004). Principles of Polymerization (J. Wiley & & Sons (eds.); Fourth). Wiley-interscience.
dc.relationOpsteen, J. A., & Van Hest, J. C. M. (2005). Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chemical Communications, 1, 57–59. https://doi.org/10.1039/b412930j
dc.relationOrganic Syntheses. (2005). Oleoyl Chloride. In Organic Syntheses (Vol. 37, Issue September). https://doi.org/10.15227/orgsyn.037.0066
dc.relationOrtiz, C., Ferreira, M. L., Barbosa, O., Dos Santos, J. C. S., Rodrigues, R. C., Berenguer-Murcia, Á., Briand, L. E., & Fernandez-Lafuente, R. (2019). Novozym 435: The “perfect” lipase immobilized biocatalyst. Catalysis Science and Technology, 9(10), 2380–2420. https://doi.org/10.1039/c9cy00415g
dc.relationOzsagiroglu, E., Lyisan, B., & Avcibasi, Y. (2012). Effects of different reaction mediums on ring opening polymerization of poly(ε-caprolactone) by lipase. African Journal of Biotechnology, 11(63), 12688–12696. https://doi.org/10.5897/ajb12.1811
dc.relationPalmans, A. R. A., & Heise, A. (2010). Enzymatic Polymerisation. Advances in Polymer Science, 237, 158. https://doi.org/10.1007/978-3-642-16376-0
dc.relationPeeters, J. W., Van Leeuwen, O., Palmans, A. R. A., & Meijer, E. W. (2005). Lipase-catalyzed ring-opening polymerizations of 4-substituted ε-caprolactones: Mechanistic considerations. Macromolecules, 38(13), 5587–5592. https://doi.org/10.1021/ma050510j
dc.relationPérez, M., Tellez, M. M., Solorza, O., López, A., Castillo, E., & Juaristi, E. (2020). Thermal and Mechanical Stability of Immobilized Candida antarctica Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis. ChemCatChem, 12(3), 803–811. https://doi.org/10.1002/cctc.201901714
dc.relationPiotrowska, U., Sobczak, M., Oledzka, E., & Combes, C. (2016). Effect of ionic liquids on the structural, thermal, and in vitro degradation properties of poly(ε-caprolactone) synthesized in the presence of Candida antarctica lipase B. Journal of Applied Polymer Science, 133(31). https://doi.org/10.1002/app.43728
dc.relationPoojari, Y., Beemat, J. S., & Clarson, S. J. (2013). Enzymatic synthesis of poly(ε-caprolactone): Thermal properties, recovery, and reuse of lipase B from Candida antarctica immobilized on macroporous acrylic resin particles. Polymer Bulletin, 70(5), 1543–1552. https://doi.org/10.1007/s00289-013-0916-1
dc.relationPoojari, Y., & Clarson, S. J. (2013). Thermal stability of Candida antarctica lipase B immobilized on macroporous acrylic resin particles in organic media. Biocatalysis and Agricultural Biotechnology, 2(1), 7–11. https://doi.org/10.1016/j.bcab.2012.10.002
dc.relationR.J; Young, & P.A; Lovell. (2001). Introduction to Polymers. In SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. (Vol. 2).
dc.relationRamos, R., Silveria, M., Araujo, I., Macedo, G., & Canedo, E. (2015). Melting and crystallization of poly(3-hydroxybutyrate)/carbon black compounds. Effect of heating and cooling cycles on phase transition. Journal of Materials Research, 30(21), 3211–3226. https://doi.org/10.1557/jmr.2015.287
dc.relationRedondo, F. L., Ninago, M. D., De Freitas, A. G. O., Giacomelli, C., Ciolino, A. E., & Villar, M. A. (2018). Tailor-made, linear, and “comb-like” polyester-based copolymers: Synthesis, characterization, and thermal behavior of potential 3D-printing/electrospinning candidates. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/8252481
dc.relationRiva, R., Lussis, P., Lenoir, S., Jérôme, C., Jérôme, R., & Lecomte, P. (2008). Contribution of “click chemistry” to the synthesis of antimicrobial aliphatic copolyester. Polymer, 49(8), 2023–2028. https://doi.org/10.1016/j.polymer.2008.03.008
dc.relationSalihu, A., & Alam, M. Z. (2015). Solvent tolerant lipases: A review. Process Biochemistry, 50(1), 86–96. https://doi.org/10.1016/j.procbio.2014.10.019
dc.relationSanda, F., & Endo, T. (2001). Radical Ring-Opening Polymerization. Journal of PolymerScience: Part A :Polymer Chemistry, 39, 265–276.
dc.relationSattayanon, C., Kungwan, N., & Punyodom, W. (2014). Theoretical investigation on the mechanism and kinetics of the ring-opening polymerization of ε -caprolactone initiated by tin ( II ) alkoxides. October 2013. https://doi.org/10.1007/s00894-013-2026-2
dc.relationShah, T. V., & Vasava, D. V. (2019). Self-dual Leonard pairs A glimpse of biodegradable polymers and biomedical applications. 385–410.
dc.relationSheldon, R. A., & Woodley, J. M. (2018). Role of Biocatalysis in Sustainable Chemistry. Chemical Reviews, 118(2), 801–838. https://doi.org/10.1021/acs.chemrev.7b00203
dc.relationSigma-Aldrich. (1999). Enzymatic Assay of LIPASE (EC 3.1.1.3) (Olive Oil as Substrate). 1–3.
dc.relationSilverstein, R. M., & Webster, F. X. (1996). Spectrometric Identification Of Organic Compounds. In John Wiley & Sons Ltd (Vol. 6).
dc.relationSingh, R. S., Singh, T., & Pandey, A. (2019). Microbial enzymes-an overview. In Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology. Elsevier B.V. https://doi.org/10.1016/B978-0-444-64114-4.00001-7
dc.relationSisson, A. L., Ekinci, D., & Lendlein, A. (2013). The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer, 54(17), 4333–4350. https://doi.org/10.1016/j.polymer.2013.04.045
dc.relationStrandman, S., Tsai, I. H., Lortie, R., & Zhu, X. X. (2013). Ring-opening polymerization of bile acid macrocycles by Candida antarctica lipase B. Polymer Chemistry, 4(16), 4312–4316. https://doi.org/10.1039/c3py00651d
dc.relationStridsberg, K. M., Ryner, M., & Albertsson, A.-C. (2014). Zinc Complexes with N-donor Ligands and Their Application as Catalysts in the Polymerisation of Cyclic Esters. Macromolecules, 52(10), 1–19. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Zinc+complexes+with+N-donor+ligands+and+their+application+as+catalysts+in+the+polymerisation+of+cyclic+esters#7%0Ahttp://dx.doi.org/10.1016/j.eurpolymj.2014.11.038%0Ahttp://dx.doi.org/10.1016/j
dc.relationThurecht, K. J., Heise, A., Degeus, M., Villarroya, S., Zhou, J., Wyatt, M. F., & Howdle, S. M. (2006). Kinetics of enzymatic ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules, 39(23), 7967–7972. https://doi.org/10.1021/ma061310q
dc.relationTrivedi, M. K., & Tallapragada, R. M. (2015). Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazole. Journal of Molecular Pharmaceutics & Organic Process Research, 03(02). https://doi.org/10.4172/2329-9053.1000128
dc.relationUmerska, A., Gaucher, C., Oyarzun-Ampuero, F., Fries-Raeth, I., Colin, F., Villamizar-Sarmiento, M. G., Maincent, P., & Sapin-Minet, A. (2018). Polymeric nanoparticles for increasing oral bioavailability of Curcumin. Antioxidants, 7(4), 1–18. https://doi.org/10.3390/antiox7040046
dc.relationUyama, H., Suda, S., Kikuchi, H., & Kobayashi, S. (1997). Extremely efficient catalysis of immobilized lipase in ring-opening polymerization of lactones. In Chemistry Letters (Issue 11, pp. 1109–1110). https://doi.org/10.1246/cl.1997.1109
dc.relationVillavicencio, J. D., Enríquez, L. E., Benítez, R., Martin, J., & Rojas, G. (2019). Lipasas en síntesis de polímeros: avances y contribución a la química verde de polímeros. Revista Colombiana de Biotecnología, 21(2), 98–108. https://doi.org/10.15446/rev.colomb.biote.v21n2.72362
dc.relationVrbata, D. (2011). Syntéza a polymerizace substituovaných derivátů kaprolaktonu. NIVERZITA KARLOVA V PRAZE.
dc.relationWarner, J. C., Cannon, A. S., & Dye, K. M. (2004). Green Chemistry. Encyclopedia of Toxicology: Third Edition, 24, 798–799. https://doi.org/10.1016/B978-0-12-386454-3.01020-4
dc.relationWebb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2013). Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers, 5(1), 1–18. https://doi.org/10.3390/polym5010001
dc.relationWojciechowski, K., & Klodzinska, E. (2015). Zeta potential study of biodegradable antimicrobial polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 204–208. https://doi.org/10.1016/j.colsurfa.2015.04.033
dc.relationWoodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Progress in Polymer Science (Oxford), 35(10), 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002
dc.relationWu, W. X., Qu, L., Liu, B. Y., Zhang, W. W., Wang, N., & Yu, X. Q. (2015). Lipase-catalyzed synthesis of acid-degradable poly(β-thioether ester) and poly(β-thioether ester-co-lactone) copolymers. Polymer, 59, 187–193. https://doi.org/10.1016/j.polymer.2015.01.002
dc.relationYang, Y., Yu, Y., Zhang, Y., Liu, C., Shi, W., & Li, Q. (2011). Lipase/esterase-catalyzed ring-opening polymerization: A green polyester synthesis technique. Process Biochemistry, 46(10), 1900–1908. https://doi.org/10.1016/j.procbio.2011.07.016
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleSíntesis de polímeros de caprolactona mediante polimerización por apertura de anillo enzimático implementando lipasas como proceso biocatalítico con enfoque en química verde
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución