dc.contributorVilla Garzón, Fernán Alonso
dc.creatorGarcía Alzate, Daniel
dc.date.accessioned2022-09-16T18:44:54Z
dc.date.available2022-09-16T18:44:54Z
dc.date.created2022-09-16T18:44:54Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82298
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn el presente trabajo se aborda la problemática de violencia feminicida cómo la máxima expresión de violencia contra la mujer. Se presentan los antecedentes alrededor de este flagelo en Colombia y cómo ha evolucionado en los años recientes. A partir de ello, se llega a la premisa de que la primera forma de abordar una problemática de esta índole es con una adecuada visibilización. Para lograr una correcta visibilización primero se debe hacer una caracterización y dicha caracterización se nutre de un cuidadoso proceso de extracción de información. De esta manera, en este trabajo final de Maestría se propone un modelo de minería de texto que inicia con la integración de fuentes de información alrededor de la problemática de violencia feminicida en Colombia entre julio de 2017 y diciembre de 2021. Luego, se adecúa la información extraída para identificar señales clave mediante técnicas cómo bolsa de palabras, dendograma, reconocimiento de entidades y clusterización o agrupamiento. A partir de las técnicas previamente mencionadas se realiza una caracterización de los casos de violencia feminicida y se validan los resultados a la luz de la fuente principal de información y datos oficiales de la Fiscalía General de la Nación. Se encuentra que el modelo propuesto ofrece buenos resultados y puede contribuir positivamente al proceso inicial de mitigación de la problemática. Adicionalmente, se plantean algunas fortalezas replicables a otros estudios y algunos aspectos a mejorar en análisis futuros. (tomado de la fuente)
dc.description.abstractIn the present work the problem of femicide violence is addressed as the maximum expression of violence against women. It is presented background around this scourge in Colombia and how it has evolved in recent years. From this, is reached the premise that the first way to address a problem of this nature is with adequate visibility. To achieve correct visibility a characterization must be made first and this characterization is nourished by a careful process of information extraction. In this way, in this final Master's project, is proposed a text mining model that begins with the integration of information sources around the problem of femicide violence in Colombia between July 2017 and December 2021. Then, the extracted information is adequated to identify key signals through techniques such as bag of words, dendrogram, entity recognition and clustering or grouping. Based on the previously mentioned techniques, a characterization of the cases of femicide violence is carried out and the results are validated in light of the main source of information and official data of the General Attorney of the Nation. It is found that the proposed model offers good results and can contribute positively to the initial process of mitigating the problem. Additionally, some strengths that can be replicated in other studies and some aspects to improve in future analyzes are proposed.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Analítica
dc.publisherDepartamento de la Computación y la Decisión
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbbasi, A., & Chen, H. (2007). Affect intensity analysis of dark web forums. ISI 2007: 2007 IEEE Intelligence and Security Informatics, 282–288. https://doi.org/10.1109/isi.2007.379486
dc.relationAllister Simanjuntak, D., & Satriyo Nugroho, A. (2010). Text Classification Techniques used to facilitate Cyber Terrorism Investigation. IEEE Computer Society.
dc.relationAlsaif, H., & Alotaibi, T. (2019). Arabic Text Classification using Feature-Reduction Techniques for Detecting Violence on Social Media.
dc.relationAmrit, C., Paauw, T., Aly, R., & Lavric, M. (2017). Identifying child abuse through text mining and machine learning. Expert Systems with Applications, 88, 402–418. https://doi.org/10.1016/j.eswa.2017.06.035
dc.relationÁrevalo Mutiz, P. L. (2018, March 2). Feminicidio en Colombia: avances y retos. https://www.urosario.edu.co/Periodico-NovaEtVetera/Sociedad/Feminicidio-en-Colombia-avances-y-retos/
dc.relationAsik, G. A., & Nas Ozen, E. (2021). It takes a curfew: The effect of Covid-19 on female homicides. Economics Letters, 200, 109761. https://doi.org/10.1016/j.econlet.2021.109761
dc.relationAyuda en Acción. (2018, July 5). Tipos de violencia contra las mujeres | Violencia de género. https://ayudaenaccion.org/ong/blog/mujer/tipos-violencia-mujeres/
dc.relationBusso, L., Combei, C. R., & Tordini, O. (2021). Narrating Gender Violence A Corpus-Based Study on the Representation of Gender-Based Violence in Italian Media. Language, Gender and Hate Speech A Multidisciplinary Approach, 39–58. https://doi.org/10.30687/978-88-6969-478-3/002
dc.relationCamelot: PDF Table Extraction for Humans — Camelot 0.10.1 documentation. (n.d.). Retrieved May 12, 2022, from https://camelot-py.readthedocs.io/en/master/
dc.relationChoi, Y. J., Jeon, B. J., & Kim, H. W. (2020). Identification of key cyberbullies: A text mining and social network analysis approach. Telematics and Informatics, June, 101504. https://doi.org/10.1016/j.tele.2020.101504
dc.relationCongreso de la República, C. (2008). Ley 1257 de 2008.
dc.relationCrimen de líder campesino Álvaro Narváez junto a su familia en el Cauca - Otras Ciudades - Colombia - ELTIEMPO.COM. (n.d.). Retrieved May 29, 2022, from https://www.eltiempo.com/colombia/otras-ciudades/crimen-de-lider-campesino-alvaro-narvaez-junto-a-su-familia-en-el-cauca-490528
dc.relationCronología de las masacres en Colombia durante el año 2020 (Enero a Agosto) DIPAZ. (n.d.). Retrieved May 29, 2022, from https://dipazcolombia.org/masacres-colombia-2020-enero-agosto/
dc.relationE. Perron, B., G. Victor, B., Bushman, G., Moore, A., P. Ryan, J., Jiahong Lu, A., & K. Piellusch, E. (2019). Detecting substance-related problems in narrative investigation summaries of child abuse and neglect using text mining and machine learning. Child Abuse & Neglect.
dc.relationEl Ansari, O., Jihad, Z., & Hajar, M. (2020). A dataset to support sexist content detection in arabic text. In Lecture Notes in Computer Science: Vol. 12119 LNCS. Springer International Publishing. https://doi.org/10.1007/978-3-030-51935-3_14
dc.relationEl Tiempo. (2020, July 7). CreanSistema de Prevención Temprana de violencias contra las mujeres - Gobierno - Política - ELTIEMPO.COM. https://www.eltiempo.com/politica/gobierno/gobierno-anuncia-sistema-de-prevencion-de-violencia-contra-las-mujeres-515256
dc.relationFiscalía General de la Nación. (n.d.). Retrieved January 9, 2021, from https://www.fiscalia.gov.co/colombia/
dc.relationGil, V. D., Betancur, J. D., Puerta, I. C., Montoya, L. M., & Sepulveda, J. M. (2018). the Femicide in Colombia and Mexico: a Text Mining Analysis. The Turkish Online Journal of Design, Art and Communication, 2018(March), 170–177. https://doi.org/10.7456/1080mse/021
dc.relationGreenawald, B., Liu, Y., Wert, G., Al Boni, M., & Brown, D. E. (n.d.). A Comparison of Language-Dependent and Language-Independent Models for Violence Prediction.
dc.relationGupta, V., & Lehal Professor, G. S. (2009). A Survey of Text Mining Techniques and Applications. www.alerts.yahoo.com
dc.relationHam, E., & Jeong, S. (2021). an Analysis of Korea Newspaper Reporting on Intimate Partner Violence. 58(October 2020), 2692–2700.
dc.relationHearst, M. (2003). What Is Text Mining?
dc.relationHenshaw, A. (2020). ‘ Peace with a Woman ’ s Face ’: Women , Social Media and the Colombian Peace Process. 42(3), 515–538.
dc.relationHernández, J., Jiménez, D., Zagal, R., Mata, F., & Borges, J. A. L. (2021). Analysis of the Level of Geographic Criminal Risk Oriented to Women. In Communications in Computer and Information Science: Vol. 1430 CCIS. Springer International Publishing. https://doi.org/10.1007/978-3-030-89586-0_19
dc.relationHome Page - Portal OCM. (n.d.). Retrieved January 9, 2021, from http://www.observatoriomujeres.gov.co/
dc.relationHumberto, F., Murillo, S., Chica, J., Rodríguez, A., & Cortázar, G. De. (2018). The spatial heterogeneity of factors of feminicide : The case of Antioquia- Colombia. Applied Geography, 92(November 2016), 63–73. https://doi.org/10.1016/j.apgeog.2018.01.006
dc.relationIezzi, D. (2013). Italian Women In The New Millennium: Emancipated Or Violated? An Analysis Of Webmining On Fatal Domestic Violence. Rivista Italiana Di Economia Demografia e Statistica, LXVII(1992). http://www.sieds.it/listing/RePEc/journl/2013LXVII_N2_09_IEZZI.pdf
dc.relationInicio - Instituto Nacional de Medicina Legal y Ciencias Forenses. (n.d.). Retrieved January 9, 2021, from https://www.medicinalegal.gov.co/
dc.relationjaro-winkler · PyPI. (n.d.). Retrieved May 20, 2022, from https://pypi.org/project/jaro-winkler/
dc.relationKADIC, N. (2019). TWITTER RESISTANCE AND DIGITAL TESTIMONIO(S) IN 140 CHARACTERS: RESTORING THE COMPLEXITY OF MEXICO’S HASHTAG FEMINISM. In Copyright by NEIRA KADIC 2019 (Vol. 3). UNIVERSITY OF OKLAHOMA.
dc.relationKarami, A., White, C. N., Ford, K., Swan, S., & Spinel, M. Y. (2020). Unwanted advances in higher education:Uncovering sexual harassment experiences in academia with text mining. Elsevier.
dc.relationKarystianis, G., Adily, A., Schofield, P., Knight, L., Galdon, C., Greenberg, D., Jorm, L., Nenadic, G., & Butler, T. (2019). Automatic Extraction of Mental Health Disorders From Domestic Violence Police Narratives : Text Mining Study. Journal of Medical Internet Research, 20(9), 1–16. https://doi.org/10.2196/11548
dc.relationKarystianis, G., Adily, A., Schofield, P. W., Greenberg, D., Jorm, L., Nenadic, G., & Butler, T. (2019). Automated Analysis of Domestic Violence Police Reports to Explore Abuse Types and Victim Injuries : Text Mining Study. Journal of Medical Internet Research, 21, 1–12. https://doi.org/10.2196/13067
dc.relationKarystianis, G., Simpson, A., Adily, A., Schofield, P., Greenberg, D., Wand, H., Nenadic, G., & Butler, T. (2020). Prevalence of Mental Illnesses in Domestic Violence Police Records : Text Mining Study. Journal of Medical Internet Research, 22. https://doi.org/10.2196/23725
dc.relationKhandokar, I. A., Mamun, I., Chadni, T. I. A., Anas, Z. A., & Shatabda, S. (2020). Event Detection and Knowledge Mining from Unlabelled Bengali News Articles. ETCCE 2020 - International Conference on Emerging Technology in Computing, Communication and Electronics. https://doi.org/10.1109/ETCCE51779.2020.9350891
dc.relationLi, J., & Dong, D. (2019). Keyword Analysis and Topic Extraction of Hospital Violence News. Computer Science & Education.
dc.relationMohan, V. (n.d.). Preprocessing Techniques for Text Mining-An Overview Privacy Preserving Data Mining View project. Retrieved November 29, 2020, from https://www.researchgate.net/publication/339529230
dc.relationMouhssine, E., & Khalid, C. (2019). Social Big Data Mining Framework for Extremist Content Detection in Social Networks. International Symposium on Advanced Electrical and Communication Technologies, ISAECT 2018 - Proceedings. https://doi.org/10.1109/ISAECT.2018.8618726
dc.relationNaciones Unidas. (1993). Declaración sobre la Eliminación de la Violencia contra la Mujer.
dc.relationNiklander, S., & Niklander, G. (2017). Combining sentimental and content analysis for recognizing and interpreting human affects. Communications in Computer and Information Science, 713, 465–468. https://doi.org/10.1007/978-3-319-58750-9_64
dc.relationO’halloran, K. L., Tan, S., Wignell, P., Bateman, J. A., Pham, D. S., Grossman, M., & Vande Moere, A. (2016). Interpreting text and image relations in violent extremist discourse: A mixed methods approach for big data analytics. Terrorism and Political Violence, 31(3), 454–474. https://doi.org/10.1080/09546553.2016.1233871
dc.relationObservatorio Feminicidios Colombia. (n.d.). Retrieved January 9, 2021, from https://observatoriofeminicidioscolombia.org/
dc.relationONU. (n.d.-a). Cómo trabajamos: Eliminación de la violencia contra las mujeres | ONU Mujeres – Colombia. Retrieved November 14, 2020, from https://colombia.unwomen.org/es/como-trabajamos/violencia-contra-las-mujeres
dc.relationONU. (n.d.-b). Feminicidio | ONU Mujeres – Colombia. Retrieved October 25, 2020, from https://colombia.unwomen.org/es/como-trabajamos/violencia-contra-las-mujeres/feminicidio
dc.relationONU. (2017). Colombia se unió para decir basta al feminicidio: Ni Una Menos | ONU Mujeres – Colombia. https://colombia.unwomen.org/es/noticias-y-eventos/articulos/2017/11/exposicionfem
dc.relationÖztürk, N., & Ayvaz, S. (2018). Sentimental analysis on Twitter: A text mining approach to the Syrian refugee crisis. Telematics and Informatics, 136–147.
dc.relationPaulino da Costa, J., Barbosa dos Santos, T. A. M., Carvalho da Mata, E., Silva da Silva, M., & Lisboa Francês, C. R. (2019). DEEP LEARNING : APPLICATION OF THE LSTM MODEL IN THE CATEGORIZATION OF TWEETS ON VIOLENCE IN THE CITY OF BELÉM. ResearchGate, July 2020. https://doi.org/10.33965/bigdaci2019
dc.relationpdfminer.six. (n.d.). Converting a PDF file to text. Retrieved April 23, 2022, from https://pdfminersix.readthedocs.io/en/latest/topic/converting_pdf_to_text.html
dc.relationPedraza, G., & María Rodríguez, A. (2016). EL CORTO RECORRIDO DEL FEMINICIDIO EN COLOMBIA. In UNA Revista de Derecho (Vol. 1).
dc.relationPoelmans, J., Elzinga, P., Viaene, S., & Dedene, G. (2011). Formally analysing the concepts of domestic violence. Expert Systems With Applications, 38(4), 3116–3130. https://doi.org/10.1016/j.eswa.2010.08.103
dc.relationPoelmans, J., M. Van Hulle, M., Viaene, S., Elzinga, P., & Dedene, G. (2011). Text mining with emergent self organizing maps and multi-dimensional scaling: A comparative study on domestic violence. Applied Soft Computing.
dc.relationPolicía Nacional de Colombia. (n.d.). Retrieved January 9, 2021, from https://www.policia.gov.co/
dc.relationPyPDF2 · PyPI. (n.d.). Retrieved May 12, 2022, from https://pypi.org/project/PyPDF2/
dc.relationSabbah, T., Selamat, A., Ibrahim, R., & Fujita, H. (2016). Neurocomputing Hybridized term-weighting method for Dark Web classification. 173, 1908–1926. https://doi.org/10.1016/j.neucom.2015.09.063
dc.relationscikit-learn: machine learning in Python — scikit-learn 1.1.1 documentation. (n.d.). Retrieved May 21, 2022, from https://scikit-learn.org/stable/
dc.relationSecretaría Distrital de la Mujer. (n.d.). Tres años de la Ley de Feminicidio. | Secretaría Distrital de la Mujer. Retrieved October 25, 2020, from http://www.sdmujer.gov.co/noticias/tres-años-la-ley-feminicidio
dc.relationSistema Integrado de Información de Violencias de Género. (n.d.). Retrieved January 9, 2021, from http://onviolenciasgenero.minsalud.gov.co/Paginas/sivige.aspx
dc.relationspaCy · Industrial-strength Natural Language Processing in Python. (n.d.). Retrieved May 21, 2022, from https://spacy.io/
dc.relationSukanya, M., & Biruntha, S. (2012). Techniques on text mining. Proceedings of 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies, ICACCCT 2012, 978, 269–271. https://doi.org/10.1109/ICACCCT.2012.6320784
dc.relationtabula-py · PyPI. (n.d.). Retrieved May 12, 2022, from https://pypi.org/project/tabula-py/
dc.relationUl Rehman, Z., Abbas, S., Khan, M. A., Mustafa, G., Fayyaz, H., Hanif, M., & Saeed, M. A. (2020). Understanding the language of ISIS: An empirical approach to detect radical content on twitter using machine learning. Computers, Materials and Continua, 66(2), 1075–1090. https://doi.org/10.32604/cmc.2020.012770
dc.relationVanguardia. (2020, June 27). Ocho medidas del Estado para proteger a las mujeres | Vanguardia.com. https://www.vanguardia.com/colombia/ocho-medidas-del-estado-para-proteger-a-las-mujeres-YE2547634
dc.relationVarela, N., Gálvez Valega, J. A., & Pineda Lezama, O. B. (2020). Analysis of behavior of automatic learning algorithms to identify criminal messages. Procedia Computer Science, 175, 114–119. https://doi.org/10.1016/j.procs.2020.07.019
dc.relationViceColombia. (2020, June 26). Gobierno arrecia medidas para frenar violencia contra las mujeres. https://mlr.vicepresidencia.gov.co/Paginas/prensa/2020/Gobierno-arrecia-medidas-para-frenar-violencia-contra-las-mujeres.aspx
dc.relationWang, S. H., Ding, Y., Zhao, W., Huang, Y. H., Perkins, R., Zou, W., & Chen, J. J. (2016). Text mining for identifying topics in the literatures about adolescent substance use and depression. BMC Public Health, 16(1), 4–11. https://doi.org/10.1186/s12889-016-2932-1
dc.relationWatts, C., & Zimmerman, C. (2002). Violence against women: Global scope and magnitude. In Lancet (Vol. 359, Issue 9313, pp. 1232–1237). https://doi.org/10.1016/S0140-6736(02)08221-1
dc.relationWilson, M., Spike, E., Karystianis, G., & Butler, T. (2021). Nonfatal Strangulation During Domestic Violence Events in New South Wales: Prevalence and Characteristics Using Text Mining Study of Police Narratives. Violence Against Women. https://doi.org/10.1177/10778012211025993
dc.relationwordcloud · PyPI. (n.d.). Retrieved May 21, 2022, from https://pypi.org/project/wordcloud/
dc.relationXuan Koh, J., & Ming Liew, T. (2020). How loneliness is talked about in social media during COVID-19 pandemic: Text mining of 4,492 Twitter feeds. Journal of Psychiatric Research.
dc.relationXue, J., Chen, J., & Gelles, R. (2019). Using Data Mining Techniques to Examine Domestic Violence Topics on Twitter. Violence and Gender, 6(2), 105–114. https://doi.org/10.1089/vio.2017.0066
dc.relationYe In Hwang, J., Zheng, L., Karystiansis, G., Gibbs, V., Sharp, K., & Butler, T. (2020). Domestic violence events involving autism: a text mining study of police records in New South Wales, 2005-2016. Research in Autism Spectrum Disorders.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleSeguimiento de casos de feminicidio en Colombia mediante técnicas de minería de texto
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución