dc.contributor | Ortiz Triviño, Jorge Eduardo | |
dc.contributor | TLÖN - Grupo de Investigación en Redes de Telecomunicaciones Dinámicas y Lenguajes de Programación Distribuidos | |
dc.creator | Triana Correa, Juan Sebastián | |
dc.date.accessioned | 2021-07-29T16:36:34Z | |
dc.date.available | 2021-07-29T16:36:34Z | |
dc.date.created | 2021-07-29T16:36:34Z | |
dc.date.issued | 2021-06-28 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79866 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | TLÖN es un sistema de cómputo propuesto por el grupo de investigación en redes de Telecomunicaciones Dinámicas y lenguajes de programación distribuidos de la Universidad Nacional de Colombia. El modelo que propone TLÖN es un sistema de cómputo distribuido que intenta resolver la necesidad de adaptarse a condiciones adversas en recursos, conectividad y existencia de nodos, abstraídos al plano de virtualización de una red inalámbrica tipo Ad-Hoc colaborativa de elementos móviles que comparten recursos sobre una capa física. El presente trabajo se encuentra en el marco de desarrollo de la capa de virtualización de recursos de procesamiento del sistema TLÖN. A continuación, se presenta el diseño, implementación y resultados del subsistema de virtualización de recursos de procesamiento, estableciendo los modelos y criterios de evaluación que se utilizaran para las fases de Resource Broadcasting, Matching y Scheduling teniendo en cuenta las condiciones inherentes de una red inalámbrica Ad Hoc. (Texto tomado de la fuente) | |
dc.description.abstract | TLÖN is a computing system proposed by the research group in Dynamic Telecommunication networks and distributed programming languages of the Universidad Nacional de Colombia. The model proposed by TLÖN is a distributed computing system that has the aim to solve the need to adapt to adverse conditions in resources, connectivity and existence of nodes, abstracted from the virtualization plane of a collaborative Ad-Hoc wireless network of mobile elements that share resources on a physical layer. This work is framed under the development of the virtualization layer of the processing resources of the TLÖN system. In the following chapters you will find the design, implementation, and results of the processing resources virtualization subsystem, setting the models and evaluation criteria to be used for the Resource Broadcasting, Matching, and Scheduling phases taking into account the inherent conditions of an Ad Hoc wireless network. (Text taken from source) | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | |
dc.publisher | Departamento de Ingeniería de Sistemas e Industrial | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Miorandi, D., Sicari, S., & Pellegrini, F. D. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks. | |
dc.relation | Kiess, W., & Mauve, M. (2007). A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks . | |
dc.relation | Patel, K. N., & Jhaveri, R. h. (2015). A Survey on Emulation Testbeds for Mobile Ad-hoc Networks . Procedia Computer Science. | |
dc.relation | Boukerche, A., & Turgut, B. (2011). Routing protocols in ad hoc networks: A survey. Computer Networks. | |
dc.relation | Marinescu, D., Marinescu, G., Ji, Y., Boloni, L., & Siegel, H. (2013). Ad hoc grids: communication and computing in a power. Workshop on Energy-Efficient Wireless. | |
dc.relation | Gaynor, M., Welsh, M., Moulton, S., Rowan, A., LaCombe, E., & Wynne, J. (2004). Integrating wireless sensor networks with the grid. IEEE Internet Computing. | |
dc.relation | Fitzek, F. H., & Katz, M. D. (2014). Mobile Clouds: Exploiting Distributed Resources in Wireless, Mobile and Social Networks. Inglaterra: John Wiley & Sons, Ltd. | |
dc.relation | Basney, J., & Livny, M. (2012). Deploying a High Throughput Computing Cluster. High Performance Cluster Computing: Architectures and Systems. | |
dc.relation | Yue-Jiao Gong, W.-N. C. (2015). Distributed evolutionary algorithms and their models: A survey of the state-of-the-art. China: Applied Soft Computing. | |
dc.relation | Anderson, T., Culler, D., & Patterson, D. (2005). A Case for NOW (Networks of Workstations). IEEE Micro. | |
dc.relation | Abbas, A. (2013). Grid Computing: Practical Guide To Technology & Applications (Programming Series). Charles River Media. | |
dc.relation | McKnight, L., Howison, J., & Bradne, S. (2004). Wireless grids: Distributed resource sharing by mobile, nomadic, and fixed devices. IEEE Internet Computing. | |
dc.relation | Czajkowski, K., Fitzgerald, S., Foster, I., & Kesselman, C. (2001). Grid information services for distributed resource sharing. Proc. of the 10th IEEE International Symposium on High-Performance Distributed Computing. | |
dc.relation | Frank, C., & Karl, H. (2014). Consistency challenges of service discovery in mobile ad-hoc networks. Proc. of the 7th ACM Int. symposium on modelling, analysis and simulation of wireless and mobile systems. | |
dc.relation | Helal, S., Desai, N., V. Verma, C. L., & Konark. (2003). A Service Discovery and Delivery Protocol for Ad-hoc Networks. Proc.of the Third IEEE Conference on Wireless Communication Networks (WCNC). | |
dc.relation | Bluetooth Interest Group. (2001). Service discovery protocol Version 1.1 Parte E. | |
dc.relation | Villela, D. (2010). Minimizing the average completion time for concurrent grid applications. Grid Comput 8. | |
dc.relation | Chang, R. (2009). An ant algorithm for balanced job scheduling in grids. Journal of future generation computer system. | |
dc.relation | Hummel, K., & Jelleschitz, G. (2007). Robust de-centralized job scheduling approach for mobile peers in ad hoc networks. 7th IEEE Int. Symp. on Cluster Computing and the grid. | |
dc.relation | Li, C., & Li, L. (2009). Utility-based scheduling for grid computing under constraints of energy budget and deadline. Comput. Stand. Inter. | |
dc.relation | Liu, H., Roeder, T., Walsh, K., Barr, R., & Sirer, E. (2015). Design and implementation of a single system image operating system for ad hoc networksroc. Proc 3rd Int. Conf. on Mobile Systems. | |
dc.relation | Gomes, A. (2007). DICHOTOMY: a resource discovery and scheduling protocol for multihop ad hoc mobile grids. 7th IEEE Int. Symp. on Cluster Computing and the Grid. | |
dc.relation | Selvi, V., Sharfraz, S., & Parthasarathi, R. (2007). Mobile ad hoc grid using trace based mobility model. GPC. | |
dc.relation | Chtepen, M., Flip, H., & Turck, F. D. (2008). Scheduling of dependant grid jobs in absence of exact job length information. International Workshop NGNM. | |
dc.relation | Shah, S. C., & Nizamani, Q.-U.-A. (2012). An effective and robust two-phase resource allocation scheme for interdependent tasks in mobile ad hoccomputational Grids. Journal of Parallel and Distributed Computing. | |
dc.relation | Amin, K., Laszewski, G., & Mikler, A. (2014). Toward an architecture for ad hoc. Proc. of the IEEE 12th Int. Conf. on Advanced Computing and Communications. | |
dc.relation | Koodli, R., & Perkins, C. (2012). Service discovery in on-demand ad hoc networks. IETF Internet Draft. | |
dc.relation | Moreno-Vozmediano, R. (2009). A hybrid mechanism for resource/service discovery in ad-hoc grids. Future generation computer system. | |
dc.relation | Qian Kang, X. L., & Yao, Y. (2016). Efficient authentication and access control of message dissemination over vehicular ad hoc network. Neurocomputing. | |
dc.relation | Subba, B., Biswas, S., & Karmakar, S. (2015). Intrusion detection in Mobile Ad-hoc Networks: Bayesian game formulation. Engineering Science and Technology, an International Journal. | |
dc.relation | Lorch, M., & Kafura, D. (2002). Supporting secure ad-hoc user collaboration in grid enviroments. Proc. 3rd Int. Workshop on Grid Computing. | |
dc.relation | Liao, L., & Manulis, M. (2007). Tree-based group key agreement framework for mobile ad-hoc networks. Future Generation Computer Systems. | |
dc.relation | Marinescu, D., & Marinescu, G. (2013). Ad hoc grids: Communication and computing in a power constrained enviroment. Proc. 22nd Int. Performance, Computing. | |
dc.relation | P. Jamshidi, C. P. (2018). Microservices: the journey so far and challenges ahead. IEEE Softw. | |
dc.relation | Kallergis D, G. Z. (2020). CAPODAZ: a containerised authorisation and policy‐driven architecture using microservices. Ad Hoc Networks. | |
dc.relation | Zimmermann, O. (2017). Microservices tenets. Comput. Sci.-Res. Dev. | |
dc.relation | Muhammad W., P. L. (2020). A Systematic Mapping Study on Microservices Architecture in DevOps. Journal of Systems and Software Volume 170. | |
dc.relation | S.A. Alabady, M. S.-T. (2018). LCPC error correction code for IoT applications. Sustainable Cities and Society. | |
dc.relation | A. Al-Fuqaha, M. G. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials. | |
dc.relation | C. Mouradian, D. N. (2017). A comprehensive survey on fog computing: State-ofthe- art and research challenges. IEEE Communications Surveys & Tutorials. | |
dc.relation | I. Stojmenovic, S. W. (2014). The fog computing paradigm: Scenarios and security issues. Federated Conference on Computer Science and Information Systems. | |
dc.relation | M. Aazam, S. Z. (2018). Fog computing architecture, evaluation, and future research directions. IEEE Communications Magazine. | |
dc.relation | INTEL. (2020). Intel 64 and ia-32 architectures developer’s manual: Vol. 3a. | |
dc.relation | Debadatta Mishra, P. K. (2018). A survey of memory management techniques in virtualized systems. Computer Science Review Volume 29. | |
dc.relation | Barham P., D. B. (2003). Xen and the art of virtualization. SIGOPS Oper. Syst. Rev. 37. | |
dc.relation | Robin J.S., I. C. (2000). Analysis of the intel pentium’s ability to support a secure virtual machine monitor. Proceedings of the 9th conference on USENIX Security Symposium. | |
dc.relation | Gerald J. Popek, R. P. (1974). Formal Requirements for Virtualizable Third Generation Architectures. Communications of the ACM. | |
dc.relation | Rosenblum M., G. T. (2005). Virtual machine monitors: Current technology and future trends. Computer. | |
dc.relation | Daley R.C., D. J. (1966). Virtual memory, processes, and sharing in multics. Commun. ACM. | |
dc.relation | Diane Barrett, G. K. (2010). How Virtualization Happens. Virtualization and Forensics. | |
dc.relation | Nathan F.Saraiva de Sousa, D. A. (2019). Network Service Orchestration: A survey. Computer Communications. | |
dc.relation | Biswas A., M. K. (2013). Los métodos de optimización desempeñan un papel vital en la solución de problemas de ingeniería. Debido a que los métodos de optimización deterministas han mostrado no ser eficientes computacionalmente en la resolución de problemas complejos no lineales y. J. Optim. | |
dc.relation | Ferreira, N. a. (2013). An agent model for the appraisal of normative events based in in-group and out-group relations. | |
dc.relation | Vanhèe, L. (2013). Artificial culture in artificial societies. International Foundation for Autonomous Agents and Multiagent Systems. | |
dc.relation | Degens, N. a. (2014). Creating a world for socio-cultural agents. Emotion Modeling, 27--43. | |
dc.relation | Hofstede, G. J. (2015). Gender differences: the role of nature, nurture, social identity and self-organization. Multi-Agent-Based Simulation XV, 72--87. | |
dc.relation | Liang, C., & Yu, F. R. (2015). Wireless Network Virtualization: A Survey, Some Research Issues and Challenges. IEEE Communications Surveys & Tutorials. | |
dc.relation | Fernandez-Baca, D. (1989). Allocating modules to processors in a distributed system. IEEE Trans. Software Eng, 427. | |
dc.relation | Coffman, E. (1976). Computer and Job-Shop Scheduling Theory. New York: Wiley. | |
dc.relation | Shivle, S., Siegel, H., Maciejewski, A. A., & Sugavanam, P. (2010). Static allocation of resources to communicating subtasks in a heterogeneous ad hoc grid environment. Journal of parallel and distributed computing. | |
dc.relation | Pengyao, W., & Jianqin, W. (2018). Rapid processing of remote sensing images based on cloud computing. Future Generation Computer Systems. | |
dc.relation | Qiwan, W., & Ruyin, C. (2020). E-commerce brand marketing based on FPGA and machine learning. Microprocessors and Microsystems. | |
dc.relation | Zhenjie, Z., & Yuanming, Z. (2020). A novel complex manufacturing business process decomposition approach in cloud manufacturing. Computers & Industrial Engineering. | |
dc.relation | Simmhan, Y., Cao, B., & Giakkoupis, M. (2011). Adaptive rate stream processing for smart grid applications on clouds. International Workshop on Scientific Cloud Computing. | |
dc.relation | Elazhary, H. (2018). Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms: Disambiguation and research directions. Journal of Network and Computer Applications. | |
dc.relation | Nanne, A. J., & Antheunis, M. L. (2020). The Use of Computer Vision to Analyze Brand-Related User Generated Image Content. Journal of Interactive Marketing. | |
dc.relation | Bilal, K., & Khalid, O. (2017). Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers. Computer Networks. | |
dc.relation | Gener, F., & Syst., C. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Gener. Comput. Syst. | |
dc.relation | Assunção, M. d., & Veith, A. S. (2018). Distributed data stream processing and edge computing: A survey on resource elasticity and future directions. Journal of Network and Computer Applications. | |
dc.relation | Goethals, T., & Sebrechts, M. (2018). Unikernels vs Containers: An In-Depth Benchmarking Study in the Context of Microservice Applications. 2018 IEEE 8th International Symposium on Cloud and Service Computing (SC2). | |
dc.relation | Ceballos, H. Z. (2018). Diseño de un Sub-Sistema de Cómputo Distribuido que permita implementar virtualización inalámbrica para gestionar recursos (Procesamiento, memoria, almacenamiento y dispositivos E/S) distribuidos en una Red Ad Hoc, mediante el modelo de pseudo Estado. Universidad Nacional de Colombia. | |
dc.relation | Yu, D., & Ying, Y. (2020). Balanced scheduling of distributed workflow tasks based on clustering. Knowledge-Based Systems. | |
dc.relation | Carroll, T. E., & Grosu, D. (2012). An incentive-based distributed mechanism for scheduling divisible loads in tree networks. Journal of Parallel and Distributed Computing. | |
dc.relation | C.S.Xavier, T., & L.Santos, I. (2020). Collaborative resource allocation for Cloud of Things systems. Journal of Network and Computer Applications. | |
dc.relation | Xu, L., & Li, Y.-p. (2015). Proportional fair resource allocation based on hybrid ant colony optimization for slow adaptive OFDMA system. Information Sciences. | |
dc.relation | Khalila, K., & Elgazzar, K. (2020). Resource discovery techniques in the internet of things: A review. Internet of Things. | |
dc.relation | Venanzi, R., & Kantarci, B. (2018). MQTT-driven sustainable node discovery for internet of things-fog environments. Proceedings of the IEEE International Conference on Communications. | |
dc.relation | S., M., & M., M. (2019). Using machine learning for handover optimization in vehicular fog computing. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. | |
dc.relation | Morabito, R., Cozzolino, V., & Ding, A. Y. (2018). Consolidate IoT edge computing with lightweight virtualization. IEEE Netw. | |
dc.relation | Mansouri, Y., & Babar, M. A. (2021). A review of edge computing: Features and resource virtualization. Journal of Parallel and Distributed Computing. | |
dc.relation | Herlihy, M., & Shavit, N. (2020). Foundations of shared memory. The Art of Multiprocessor Programming. | |
dc.relation | Hong, B., & Prasanna, V. (2014). Distributed adaptive task allocation in heterogeneous computing environments to maximize throughput. Proc. 18th Int. Parallel and Distributed Processing Symposium. | |
dc.relation | McClatchey, R. (2017). Dara intensive and network aware (DIANA) grid scheduling. Grid Comput 5. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados al autor, 2021 | |
dc.title | Implementación del subsistema de virtualización inalámbrica de recursos de procesamiento para una red ad-hoc | |
dc.type | Trabajo de grado - Maestría | |