dc.contributor | Rendón Arbelaez, Leonardo | |
dc.creator | Beltrán Lizarazo, José David | |
dc.date.accessioned | 2021-01-19T22:05:05Z | |
dc.date.available | 2021-01-19T22:05:05Z | |
dc.date.created | 2021-01-19T22:05:05Z | |
dc.date.issued | 2020-11-04 | |
dc.identifier | Beltrán, J. (2020). Global lipschitz continuous solutions for a linear damped p-system | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78832 | |
dc.description.abstract | In this proposal we present an alternative point of view for the mathematical treatment
of a linearly damped p-system through a variant of the vanishing viscosity method and the
use of the theory of compensated compactness. We prove the existence of a weak global
Lipschitz continuous solution for the Cauchy problem
$$
\begin{cases}
v_{t}-u_x = 0 & (x,t) \in \mathbb{R} \times (0,\infty)\\
u_t+p(v)_x = -\alpha u,
\end{cases} $$
with $\alhpa > 0$, and $p$ a smooth function subject to suitable conditions.
The solution is constructed as the limit of global smooth solutions of parabolic perturbations
of the system and its Lipschitz continuity is obtained trough classical embedding theorems
of Sobolev spaces. | |
dc.description.abstract | En esta propuesta presentamos un punto de vista alternativo para el tratamiento matemático de un p-sistema linealmente amortiguado mediante una variante del método de la viscosidad nula y el uso de la teoría de compacidad compensada. Probamos la existencia de una solución débil global, Lipschitz continua para el problema de Cauchy
$$
\begin{cases}
v_{t}-u_x = 0 & (x,t) \in \mathbb{R} \times (0,\infty)\\
u_t+p(v)_x = -\alpha u,
\end{cases} $$
con $\alpha>0$, y $p$ una función suave sujeta a condiciones apropiadas. La solución es construida como el límite de soluciones suaves globales de perturbaciones parabólicas del sistema y la Lipschitz-continuidad es obtenida a través de teoremas clásicos de inmersión en espacios de Sobolev. | |
dc.language | eng | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | |
dc.publisher | Departamento de Matemáticas | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Adams, R. (1975). Sobolev Spaces. Academic Press, Pure and Applied Mathematics,
New York-San Francisco-London. | |
dc.relation | Brezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential
Equations. Springer, New York. | |
dc.relation | Dacorogna, B. (1982). Weak Continuity and Weak Lower Semi-
Continuity of Non-Linear Functionals. Springer Verlag, New York. | |
dc.relation | DiPerna, R. (1983). Convergence of Approximate Solutions to Conservation
Laws. Arch. Rat. Mech. Anal. 82. | |
dc.relation | Evans, L. (1988). Weak Convergence Methods for Nonlinear Partial Differential
Equations. Conference Board of the Mathematical Sciences-American Mathematical
Society, Providence, Rhode Island. | |
dc.relation | Evans, L. (1999). Partial Differential Equations. American Mathematical
Society, Berkeley, California. | |
dc.relation | Frid, H. (1993). Compacidade Compensada aplicada as leis de conservacao. 19
Coloquio Brasileiro de Matemática, Rio de Janeiro. | |
dc.relation | Godlewski, E. and Raviart, P. (1996). Numerical Approximation
of Hyperbolic Systems of Conservation Laws. Springer-Verlag. Applied Mathematical
Sciences 118, New York. | |
dc.relation | Hsiao, L. and Liu, T. (1992). Convergence to nonlinear diffusion waves
for solutions of a system of hyperbolic conservation laws with damping. 4, Communications
in Mathematical Physics, Springer Verlag: 45-51. | |
dc.relation | Hsiao, L. and Serre, D. (1996). Global existence of solutions for
the system of compressible adiabatic
flow through porous media. 4, SIAM. J. Math.
Analysis : 70-77. | |
dc.relation | Jiang, M., Li, D., and Ruan, L. (2013). Existence of a global smooth
solution to the initial boundary-value problem for the p-system with nonlinear damping.
143, Proceedings of the Royal Society of Edinburgh : 1243-1253. | |
dc.relation | Kesavan, S. (1989.). Topics in Functional Analysis and Applications. New
Age International Publishers, Bangalore, India. | |
dc.relation | Kesavan, S. (2009). Functional Analysis. Hindustian Book Agency, New
Delhi, India. | |
dc.relation | Lax, P. (1957a). Asymptotic solutions of oscillatory initial value problems. 24,
Duke Math Journal: 169 - 176. | |
dc.relation | Lax, P. (1957.b). Hyperbolic Systems of Conservation Laws II. Comm. Pure
Appl. Math. vol 10. | |
dc.relation | Lax, P. (1971). Shock Waves and Entropy. Contributions to non-linear functional
analysis. Academic Press, New York. | |
dc.relation | Lu, Y. (1993). The global holder solution of isentropic gas dynamics. 123, Proceedings
of the Royal Society of Edinburgh: 231-238. | |
dc.relation | Lu, Y. (2003.). Hyperbolic Conservation Laws and The Compensated Compactness
Method. Chapman and Hall/CRC. Monographs and Surveys in Pure and Applied
Mathematics 128, Boca Raton - London - New York - Washington D.C. | |
dc.relation | Lukkassen, D. and Wall, P. (2002). On weak convergence of
locally periodic functions. 1, Journal of Nonlinear Mathematical Physics Vol. 9. | |
dc.relation | Murat, F. (1978). Compacite par Compensation. Ann. Scuola Norm. Sup.
Pisa Sci. Math, Pissa. | |
dc.relation | Malek, J., Necas, J., Rokyta, M., and Ruzicka, M. (1996). Weak and
Measure-valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical
Computations 13. Chapman and Hall, New York. | |
dc.relation | Nishida, T. (1978). Nonlinear Hyperbolic Equations and Related Topics in
Fluid Dynamics. Publications Mathematiques D'orsay, France. | |
dc.relation | Rudin, W. (1991). Functional Analysis. Mc Graw-Hill International Editions,
Singapore. | |
dc.relation | Smoller, J. (1994). Shock Waves and Reaction - Diffusion Equations. Springer
Verlag, New York. | |
dc.relation | Smoller, J., Chueh, K., and Conley, C. (1977). Positively invariant
regions for systems of nonlinear diffusion equations. 26, Indiana University Mathematics
Journal. | |
dc.relation | Smoller, J. and Hoff, D. (1985). Solutions in the large for certain
nonlinear parabolic systems. 2, Annales de l'institut Henri Poincaré - Analyse non
lineare: 213-235. | |
dc.relation | Tartar, L. (1979). Compensated Compactness and Applications to Differential
Partial Equations. Heriot-Watt Symmposium Vol. 4 - Pitman Press, New York. | |
dc.relation | Wang, H. and Li, C. (1988). Global regularity and formation of singularities
of solutions for quasilinear hyperbolic systems with dissipation. 9, Chin. Ann.
Math.: 509-523. | |
dc.relation | Yang, T. and Longwei, L. (1991). Existence and Nonexistence of
Global Smooth Solutions for Damped p-System with "Really Large" Initial Data. 4, J.
Part. Diff. Eq.: 45-51. | |
dc.relation | Yang, T. and Wang, W. (2003). Pointwise Estimates and Lp Convergence
Rates to DiffusionWaves for p-System with Damping. 187, Journal of Differential
Equations: 310-336. | |
dc.relation | Zheng, Y. and Longwei, L. (1988). Existence and Non-existence
of Global Smooth Solutions for Quasilinear Hyperbolic Systems. 9, Chin. Ann. Math.
Series B.: 372-377. | |
dc.relation | Zhu, C. and Jiang, M. (2009). Convergence to strong nonlinear diffusion
waves for solutions to p-system with damping on quadrant. 246, Journal of Differential
Equations: 50-77. | |
dc.relation | Zhu, C., Zhao, H., and Xu, X. (1999). Global smooth solution for nonlinearly
damped p-system with large initial data. 73, Applicable Analysis: An International
Journal: 507-522. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | Acceso abierto | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Global lipschitz continuous solutions for a linear damped p-system | |
dc.type | Otro | |