dc.contributorRendón Arbelaez, Leonardo
dc.creatorBeltrán Lizarazo, José David
dc.date.accessioned2021-01-19T22:05:05Z
dc.date.available2021-01-19T22:05:05Z
dc.date.created2021-01-19T22:05:05Z
dc.date.issued2020-11-04
dc.identifierBeltrán, J. (2020). Global lipschitz continuous solutions for a linear damped p-system
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78832
dc.description.abstractIn this proposal we present an alternative point of view for the mathematical treatment of a linearly damped p-system through a variant of the vanishing viscosity method and the use of the theory of compensated compactness. We prove the existence of a weak global Lipschitz continuous solution for the Cauchy problem $$ \begin{cases} v_{t}-u_x = 0 & (x,t) \in \mathbb{R} \times (0,\infty)\\ u_t+p(v)_x = -\alpha u, \end{cases} $$ with $\alhpa > 0$, and $p$ a smooth function subject to suitable conditions. The solution is constructed as the limit of global smooth solutions of parabolic perturbations of the system and its Lipschitz continuity is obtained trough classical embedding theorems of Sobolev spaces.
dc.description.abstractEn esta propuesta presentamos un punto de vista alternativo para el tratamiento matemático de un p-sistema linealmente amortiguado mediante una variante del método de la viscosidad nula y el uso de la teoría de compacidad compensada. Probamos la existencia de una solución débil global, Lipschitz continua para el problema de Cauchy $$ \begin{cases} v_{t}-u_x = 0 & (x,t) \in \mathbb{R} \times (0,\infty)\\ u_t+p(v)_x = -\alpha u, \end{cases} $$ con $\alpha>0$, y $p$ una función suave sujeta a condiciones apropiadas. La solución es construida como el límite de soluciones suaves globales de perturbaciones parabólicas del sistema y la Lipschitz-continuidad es obtenida a través de teoremas clásicos de inmersión en espacios de Sobolev.
dc.languageeng
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisherDepartamento de Matemáticas
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAdams, R. (1975). Sobolev Spaces. Academic Press, Pure and Applied Mathematics, New York-San Francisco-London.
dc.relationBrezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York.
dc.relationDacorogna, B. (1982). Weak Continuity and Weak Lower Semi- Continuity of Non-Linear Functionals. Springer Verlag, New York.
dc.relationDiPerna, R. (1983). Convergence of Approximate Solutions to Conservation Laws. Arch. Rat. Mech. Anal. 82.
dc.relationEvans, L. (1988). Weak Convergence Methods for Nonlinear Partial Differential Equations. Conference Board of the Mathematical Sciences-American Mathematical Society, Providence, Rhode Island.
dc.relationEvans, L. (1999). Partial Differential Equations. American Mathematical Society, Berkeley, California.
dc.relationFrid, H. (1993). Compacidade Compensada aplicada as leis de conservacao. 19 Coloquio Brasileiro de Matemática, Rio de Janeiro.
dc.relationGodlewski, E. and Raviart, P. (1996). Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer-Verlag. Applied Mathematical Sciences 118, New York.
dc.relationHsiao, L. and Liu, T. (1992). Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. 4, Communications in Mathematical Physics, Springer Verlag: 45-51.
dc.relationHsiao, L. and Serre, D. (1996). Global existence of solutions for the system of compressible adiabatic flow through porous media. 4, SIAM. J. Math. Analysis : 70-77.
dc.relationJiang, M., Li, D., and Ruan, L. (2013). Existence of a global smooth solution to the initial boundary-value problem for the p-system with nonlinear damping. 143, Proceedings of the Royal Society of Edinburgh : 1243-1253.
dc.relationKesavan, S. (1989.). Topics in Functional Analysis and Applications. New Age International Publishers, Bangalore, India.
dc.relationKesavan, S. (2009). Functional Analysis. Hindustian Book Agency, New Delhi, India.
dc.relationLax, P. (1957a). Asymptotic solutions of oscillatory initial value problems. 24, Duke Math Journal: 169 - 176.
dc.relationLax, P. (1957.b). Hyperbolic Systems of Conservation Laws II. Comm. Pure Appl. Math. vol 10.
dc.relationLax, P. (1971). Shock Waves and Entropy. Contributions to non-linear functional analysis. Academic Press, New York.
dc.relationLu, Y. (1993). The global holder solution of isentropic gas dynamics. 123, Proceedings of the Royal Society of Edinburgh: 231-238.
dc.relationLu, Y. (2003.). Hyperbolic Conservation Laws and The Compensated Compactness Method. Chapman and Hall/CRC. Monographs and Surveys in Pure and Applied Mathematics 128, Boca Raton - London - New York - Washington D.C.
dc.relationLukkassen, D. and Wall, P. (2002). On weak convergence of locally periodic functions. 1, Journal of Nonlinear Mathematical Physics Vol. 9.
dc.relationMurat, F. (1978). Compacite par Compensation. Ann. Scuola Norm. Sup. Pisa Sci. Math, Pissa.
dc.relationMalek, J., Necas, J., Rokyta, M., and Ruzicka, M. (1996). Weak and Measure-valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computations 13. Chapman and Hall, New York.
dc.relationNishida, T. (1978). Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics. Publications Mathematiques D'orsay, France.
dc.relationRudin, W. (1991). Functional Analysis. Mc Graw-Hill International Editions, Singapore.
dc.relationSmoller, J. (1994). Shock Waves and Reaction - Diffusion Equations. Springer Verlag, New York.
dc.relationSmoller, J., Chueh, K., and Conley, C. (1977). Positively invariant regions for systems of nonlinear diffusion equations. 26, Indiana University Mathematics Journal.
dc.relationSmoller, J. and Hoff, D. (1985). Solutions in the large for certain nonlinear parabolic systems. 2, Annales de l'institut Henri Poincaré - Analyse non lineare: 213-235.
dc.relationTartar, L. (1979). Compensated Compactness and Applications to Differential Partial Equations. Heriot-Watt Symmposium Vol. 4 - Pitman Press, New York.
dc.relationWang, H. and Li, C. (1988). Global regularity and formation of singularities of solutions for quasilinear hyperbolic systems with dissipation. 9, Chin. Ann. Math.: 509-523.
dc.relationYang, T. and Longwei, L. (1991). Existence and Nonexistence of Global Smooth Solutions for Damped p-System with "Really Large" Initial Data. 4, J. Part. Diff. Eq.: 45-51.
dc.relationYang, T. and Wang, W. (2003). Pointwise Estimates and Lp Convergence Rates to DiffusionWaves for p-System with Damping. 187, Journal of Differential Equations: 310-336.
dc.relationZheng, Y. and Longwei, L. (1988). Existence and Non-existence of Global Smooth Solutions for Quasilinear Hyperbolic Systems. 9, Chin. Ann. Math. Series B.: 372-377.
dc.relationZhu, C. and Jiang, M. (2009). Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant. 246, Journal of Differential Equations: 50-77.
dc.relationZhu, C., Zhao, H., and Xu, X. (1999). Global smooth solution for nonlinearly damped p-system with large initial data. 73, Applicable Analysis: An International Journal: 507-522.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleGlobal lipschitz continuous solutions for a linear damped p-system
dc.typeOtro


Este ítem pertenece a la siguiente institución