Colombia
| Trabajo de grado - Doctorado
Modelado de la gestión de la calidad en cadenas de suministro usando un enfoque multi-etapas
dc.contributor | Correa Espinal, Alexander Alberto | |
dc.contributor | MODELAMIENTO PARA LA GESTIÓN DE OPERACIONES (GIMGO) | |
dc.creator | Cogollo Flórez, Juan Miguel | |
dc.date.accessioned | 2021-06-19T14:22:24Z | |
dc.date.available | 2021-06-19T14:22:24Z | |
dc.date.created | 2021-06-19T14:22:24Z | |
dc.date.issued | 2020 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79655 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | La investigación en el área de gestión de la calidad en cadenas de suministro evidencia falta de desarrollos enfocados en el análisis de estructuras relacionales para la toma de decisiones táctico-estratégicas. En esta tesis se propone un modelo analítico para la coordinación e integración de la gestión de la calidad en cadenas de suministro usando un enfoque multi-etapas. La metodología de modelado propuesta integra mapas cognitivos grises difusos multicapa para la configuración estructural y diseños factoriales fraccionados para validar el desempeño dinámico del modelo. Las variables que representan el desempeño global de la gestión de la calidad en cadenas de suministro están agrupadas en la capa principal. Las variables del desempeño en calidad en las tres etapas de la cadena de suministro están agrupadas en submapas en una segunda capa. La validación del modelo vía experimentos de simulación computacional permitió identificar los factores principales estadísticamente significativos en cada mapa y determinar la asignación de valores grises o concretos a los mismos. Finalmente, los aportes realizados en esta investigación constituyen un punto de partida para futuras aplicaciones en sectores específicos y la integración de otras técnicas cuantitativas. (Tomado de la fuente) | |
dc.description.abstract | Research in Supply Chain Quality Management lacks developments focused on the analysis of relational structures for tactical-strategic decision making. This doctoral thesis proposes an analytical model for Supply Chain Quality Management coordination and integration, by using a multi-stage approach. The proposed modeling methodology integrates Multi-layer Fuzzy Grey Cognitive Maps for the structural configuration and fractional factorial designs to validate the dynamic performance of the model. The variables that represent the overall performance of Supply Chain Quality Management are grouped in the main layer. The quality performance variables in the three stages of the supply chain are grouped into submaps in a second layer. The validation of the model via computational simulation experiments made it possible to identify statistically significant factors main in each map and to determine the assignment of gray or specific values to them. Finally, the contributions made in this research constitute a starting point for future applications in specific sectors and the integration of other quantitative techniques. (Tomado de la fuente) | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Minas - Doctorado en Ingeniería - Industria y Organizaciones | |
dc.publisher | Departamento de Ingeniería de la Organización | |
dc.publisher | Facultad de Minas | |
dc.publisher | Medellín | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Ajalli, M., & Mozaffari, M. M. (2018). Appraisal the key factors of SCQM using a combined approach of SWARA-FISM. International Journal of Supply Chain Management, 7(4), 13–21. | |
dc.relation | Amer, Y., Luong, L., & Lee, S. H. (2010). Case study: Optimizing order fulfillment in a global retail supply chain. International Journal of Production Economics, 127(2), 278–291. https://doi.org/10.1016/j.ijpe.2009.08.020 | |
dc.relation | Bautista-Santos, H., Martínez-Flores, L., Fernández-Lambert, G., Bernabé-Loranca, M. B., Sánchez-Galván, F., & Sablón-Cossío, N. (2015). Integration model of collaborative supply chain. Dyna, 82(193), 145–154. https://doi.org/10.15446/dyna.v82n193.47370 | |
dc.relation | Bayo-Moriones, A., Bello-Pintado, A., & Merino-Díaz-de-Cerio, J. (2011). Quality assurance practices in the global supply chain: the effect of supplier localisation. International Journal of Production Research, 49(1), 255–268. https://doi.org/10.1080/00207543.2010.508953 | |
dc.relation | Borner, K., Chen, C., & Boyack, K. (2003). Visualizing Knowledge Domains. Annual Review of Information Science and Technology, 37(1), 179–255. | |
dc.relation | Bowersox, D., Closs, D., Cooper, M., & Bowersox, J. (2020). Supply Chain Logistics Management (5th ed.). New York, NY: McGrawHill. | |
dc.relation | Brandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299–312. https://doi.org/10.1016/j.ejor.2013.09.032 | |
dc.relation | Bray, R. L., Serpa, J. C., & Colak, A. (2019). Supply Chain Proximity and Product Quality. Management Science, 65(9), 4079–4099. https://doi.org/10.1287/mnsc.2018.3161 | |
dc.relation | Çankaya, S. Y. (2020). The effects of strategic sourcing on supply chain strategies. Journal of Global Operations and Strategic Sourcing, 13(2), 129–148. https://doi.org/10.1108/JGOSS-01-2019-0002 | |
dc.relation | Carmignani, G. (2009). Supply chain and quality management: The definition of a standard to implement a process management system in a supply chain. Business Process Management Journal, 15(3), 395–407. https://doi.org/10.1108/14637150910960639 | |
dc.relation | Chaghooshi, A. J., Soltani-Neshan, M., & Moradi-Moghadam, M. (2015). Canonical correlation analysis between supply chain quality management and competitive advantages. Foundations of Management, 7(1), 83–92. | |
dc.relation | Chang, K. H., & Lin, G. (2015). Optimal design of hybrid renewable energy systems using simulation optimization. Simulation Modelling Practice and Theory, 52, 40–51. https://doi.org/10.1016/j.simpat.2014.12.002 | |
dc.relation | Chardine-Baumann, E., & Botta-Genoulaz, V. (2014). A framework for sustainable performance assessment of supply chain management practices. Computers and Industrial Engineering, 76, 138–147. https://doi.org/10.1016/j.cie.2014.07.029 | |
dc.relation | Chen, J., Fan, T., & Pan, F. (2021). Urban delivery of fresh products with total deterioration value. International Journal of Production Research, 59(7), 2218–2228. https://doi.org/10.1080/00207543.2020.1828638 | |
dc.relation | Cheung, K. L., & Leung, K. F. (2000). Coordinating replenishments in a supply chain with quality control considerations. Production Planing and Control, 11(7), 697–705. https://doi.org/10.1080/095372800432160 | |
dc.relation | Chiadamrong, N., & Wajcharapornjinda, P. (2012). Developing an economic cost model for quantifying supply chain costs. International Journal of Logistics Systems and Management, 13(4), 540–571. https://doi.org/10.1504/IJLSM.2012.050171 | |
dc.relation | Chinello, E., Lee Herbert-Hansen, Z. N., & Khalid, W. (2020). Assessment of the impact of inventory optimization drivers in a multi-echelon supply chain: Case of a toy manufacturer. Computers and Industrial Engineering, 141, 106232. https://doi.org/10.1016/j.cie.2019.106232 | |
dc.relation | Chopra, S. (2018). Supply Chain Management: Strategy, Planning, and Operation (7th ed.). New York: Pearson. | |
dc.relation | Choudhary, D., Shankar, R., Tiwari, M. K., & Purohit, A. K. (2016). VMI versus information sharing: an analysis under static uncertainty strategy with fill rate constraints. International Journal of Production Research, 54(13), 3978–3993. https://doi.org/10.1080/00207543.2016.1168943 | |
dc.relation | Christoforou, A., & Andreou, A. S. (2017). A framework for static and dynamic analysis of multi-layer fuzzy cognitive maps. Neurocomputing, 232, 133–145. https://doi.org/10.1016/j.neucom.2016.09.115 | |
dc.relation | Christova, N., Stylios, C., & Groumpos, P. (2003). Production Planning for Complex Plants using Fuzzy Cognitive Maps. IFAC Proceedings Volumes, 36(3), 81–86. https://doi.org/10.1016/S1474-6670(17)37739-X | |
dc.relation | Cogollo-Flórez, Juan M., & Correa-Espinal, A. A. (2019). Analytical modeling of supply chain quality management coordination and integration: A literature review. Quality Management Journal, 26(2), 72–83. https://doi.org/10.1080/10686967.2019.1580553 | |
dc.relation | Cogollo-Flórez, Juan M, & Correa-Espinal, A. A. (2017). Modeling Supply Chain Quality Management Performance. In Proceedings of the International Conference on Modeling and Applied Simulation 2017 (pp. 115–122). Barcelona, Spain. | |
dc.relation | Cogollo-Flórez, Juan Miguel, & Correa-Espinal, A. A. (2018). Rule-based Modeling of Supply Chain Quality Management. In A. Bruzzone, F. De Felice, C. Frydman, F. Longo, M. Massei, & A. Solis (Eds.), Proceedings of The International Conference on Modeling and Applied Simulation 2018 (pp. 120–125). Budapest, Hungary. | |
dc.relation | Cogollo Flórez, J. M., & Ruiz Vásquez, C. (2019). Prácticas de responsabilidad sostenible de cadenas de suministro: Revisión y propuesta. Revista Venezolana de Gerencia, 24(87), 668–683. | |
dc.relation | Cogollo, J., & Correa, A. (2019). Modeling Supply Chain Quality Management using Multi-Layer Fuzzy Cognitive Maps. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–6). New Orleans, LA: IEEE. https://doi.org/10.1109/FUZZ-IEEE.2019.8858995 | |
dc.relation | Cooper, M., Lambert, D., & Pagh, J. (1997). Supply Chain Management: More Than a New Name for Logistics. The International Journal of Logistics Management, 8(1), 1–14. https://doi.org/10.1108/09574099710805556 | |
dc.relation | Council of Supply Chain Management Professionals. (n.d.). CSCMP Supply Chain Management Definitions and Glossary. Retrieved June 13, 2020, from https://cscmp.org/CSCMP/Academia/SCM_Definitions_and_Glossary_of_Terms/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx?hkey=60879588-f65f-4ab5-8c4b-6878815ef921 | |
dc.relation | Coyle, J., Langley, J., Novack, R., & Gibson, B. (2017). Supply Chain Management: A Logistics Perspective (10th ed.). Boston, USA: Cengage Learning. | |
dc.relation | Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5th ed.). Los Angeles, CA: SAGE. | |
dc.relation | Cruz Trejos, E., Correa Espinal, A. A., & Cogollo Florez, J. M. (2012). Supply Chain Social Responsibility. Gestión y Región, 13, 89–106. | |
dc.relation | Das, K., & Sengupta, S. (2010). Modelling supply chain network: a quality-oriented approach. International Journal of Quality & Reliability Management, 27(5), 506–526. https://doi.org/10.1108/09574090910954864 | |
dc.relation | Das, Kanchan, & Lashkari, R. S. (2015). A Supply Chain Product Delivery and Distribution Planning Model. Operations and Supply Chain Management: An International Journal, 8(1), 22–27. https://doi.org/10.31387/oscm0190129 | |
dc.relation | Dellana, S., & Kros, J. (2014). An exploration of quality management practices, perceptions and program maturity in the supply chain. International Journal of Operations & Production Management, 34(6), 786–806. https://doi.org/10.1108/09574090910954864 | |
dc.relation | Dickerson, J. A., & Kosko, B. (1994). Virtual Worlds as Fuzzy Cognitive Maps. Presence: Teleoperators and Virtual Environments, 3(2), 173–189. https://doi.org/10.1109/VRAIS.1993.380742 | |
dc.relation | Duman, E. (2007). Decision making by simulation in a parcel transportation company. Journal of The Franklin Institute, 344(5), 672–683. https://doi.org/10.1016/j.jfranklin.2006.02.030 | |
dc.relation | Edmonds, W., & Kennedy, T. (2017). An Applied Guide to Research Designs: Quantitative, Qualitative, and Mixed Methods (2nd ed.). Los Angeles, CA: SAGE. | |
dc.relation | Evans, J. R., Foster, S. T., & Linderman, K. (2014). A Content Analysis of Research in Quality Management and a Proposed Agenda for Future Research. Quality Management Journal, 21(2), 17–44. | |
dc.relation | Fernandes, A. C., Sampaio, P., & Carvalho, M. do S. (2014). Quality Management and Supply Chain Management Integration: a conceptual model. In Proceedings of the International Conference on Industrial Engineering and Operations Management (pp. 773–780). Bali, Indonesia. | |
dc.relation | Flynn, B., & Zhao, X. (2015). Global Supply Chain Quality Management: Product Recalls and Their Impact. Boca Raton: CRC Press. | |
dc.relation | Foster, S. T. (2008). Towards an understanding of supply chain quality management. Journal of Operations Management, 26(4), 461–467. https://doi.org/10.1016/j.jom.2007.06.003 | |
dc.relation | Foster, S. T. (2017). Managing Quality: Integrating the Supply Chain (6th ed.). New Jersey: Pearson. | |
dc.relation | Galindo-Pacheco, G. M., Paternina-Arboleda, C. D., Barbosa-Correa, R. A., & Llinás-Solano, H. (2012). Non-linear programming model for cost minimization in a supply chain, including non-quality and inspection costs. International Journal of Operational Research, 14(3), 301–323. https://doi.org/10.1504/IJOR.2012.047092 | |
dc.relation | Gao, C., Cheng, T. C. E., Shen, H., & Xu, L. (2016). Incentives for quality improvement efforts coordination in supply chains with partial cost allocation contract. International Journal of Production Research, 54(20), 6213–6231. https://doi.org/10.1080/00207543.2016.1191691 | |
dc.relation | Gumrukcu, S., Rossetti, M. D., & Buyurgan, N. (2008). Quantifying the costs of cycle counting in a two-echelon supply chain with multiple items. International Journal of Production Economics, 116(2), 263–274. https://doi.org/10.1016/j.ijpe.2008.09.006 | |
dc.relation | Gutiérrez, H., & De La Vara, R. (2012). Análisis y diseño de experimentos (3rd ed.). México: McGrawHill. | |
dc.relation | Gylling, M., Heikkilä, J., Jussila, K., & Saarinen, M. (2015). Making decisions on offshore outsourcing and backshoring: A case study in the bicycle industry. International Journal of Production Economics, 162, 92–100. https://doi.org/10.1016/j.ijpe.2015.01.006 | |
dc.relation | Harrison, A., Van Hoek, R., & Skipworth, H. (2014). Logistics Management and Strategy: Competing Throug the Supply Chain (5th ed.). Harlow, UK: Pearson. | |
dc.relation | Hasani, A., Zegordi, S. H., & Nikbakhsh, E. (2012). Robust closed-loop supply chain network design for perishable goods in agile manufacturing under uncertainty. International Journal of Production Research, 50(16), 4649–4669. https://doi.org/10.1080/00207543.2011.625051 | |
dc.relation | Hatwagner, M. F., Buruzs, A., Torma, A., & Koczy, L. T. (2015). Introduction of Modeling Complex Management Systems using Fuzzy Cognitive Map. The 7th International Conference on Information Technology, 2015, 508–514. https://doi.org/10.15849/icit.2015.0092 | |
dc.relation | Hugos, M. (2018). Essentials of Supply Chain Management (4th ed.). Hoboken, NJ: Wiley. | |
dc.relation | Huo, B., Ye, Y., Zhao, X., & Zhu, K. (2016). Supply chain quality integration: A taxonomy perspective. International Journal of Production Economics, In Press, 1–11. https://doi.org/10.1016/j.ijpe.2016.05.004 | |
dc.relation | Jacobs, F., & Chase, R. (2018). Operations and Supply Chain Management (15th ed.). New York, NY: McGrawHill. | |
dc.relation | Jaqueta, S. D. J., Mashilo, E. N., Mocke, K., & Agigi, A. F. A. (2020). Physical distribution challenges and adaptations: A qualitative study of South Africa-based organisations operating in emerging African markets. Journal of Transport and Supply Chain Management, 14(1), 1–16. https://doi.org/10.4102/jtscm.v14i0.475 | |
dc.relation | Jetter, A. J., & Kok, K. (2014). Fuzzy Cognitive Maps for futures studies-A methodological assessment of concepts and methods. Futures, 61, 45–57. https://doi.org/10.1016/j.futures.2014.05.002 | |
dc.relation | Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Joint Technical Report. Australia: Department of Computer Science. Keele University. https://doi.org/10.1.1.122.3308 | |
dc.relation | Kleijnen, J. (2005). An overview of the design and analysis of simulation experiments for sensitivity analysis. European Journal of Operational Research, 164(2), 287–300. https://doi.org/10.1016/j.ejor.2004.02.005 | |
dc.relation | Kleijnen, J. P. C., & Smits, M. T. (2003). Performance metrics in supply chain management. Journal of the Operational Research Society, 54(5), 507–514. https://doi.org/10.1057/palgrave.jors.2601539 | |
dc.relation | Konti, A., & Damigos, D. (2018). Exploring strengths and weaknesses of bioethanol production from bio-waste in Greece using Fuzzy Cognitive Maps. Energy Policy, 112, 4–11. https://doi.org/10.1016/j.enpol.2017.09.053 | |
dc.relation | Kosko, B. (1986). Fuzzy cognitive maps. Int. J. Man-Machine Studies, 24, 65–75. | |
dc.relation | Kuei, C.-H., & Madu, C. N. (2001). Identifying critical success factors for supply chain quality management (SCQM). Asia Pacific Management Review, 6(4), 409–423. https://doi.org/10.4018/jsds.2010070104 | |
dc.relation | Kuei, C.-H., Madu, C. N., & Lin, C. (2011). Developing global supply chain quality management systems. International Journal of Production Research, 49(15), 4457–4481. https://doi.org/10.1080/00207543.2010.501038 | |
dc.relation | Kuei, C.-H., Madu, C. N., & Winch, J. K. (2008). Supply chain quality management: a simulation study. Information and Management Sciences, 19(1), 131–151. | |
dc.relation | Kumar, S., & Schmitz, S. (2011). Managing recalls in a consumer product supply chain - Root cause analysis and measures to mitigate risks. International Journal of Production Research, 49(1), 235–253. https://doi.org/10.1080/00207543.2010.508952 | |
dc.relation | Laguna, M., & Marklund, J. (2019). Business Process Modeling, Simulation and Design (3rd ed.). Boca Raton, FL: CRC Press. | |
dc.relation | Lambertini, L. (2018). Coordinating research and development efforts for quality improvement along a supply chain. European Journal of Operational Research, 270(2), 599–605. https://doi.org/10.1016/j.ejor.2018.03.037 | |
dc.relation | Lavin, E., & Giabbanelli, P. (2017). Analyzing and simplifying model uncertainty in fuzzy cognitive maps. In Proceedings of the 2017 Winter Simulation Conference (pp. 1868–1879). Las Vegas, NV, USA. https://doi.org/10.1109/WSC.2017.8247923 | |
dc.relation | Law, A. (2015). Simulation Modeling and Analysis (5th ed.). New York, NY: McGrawHill. | |
dc.relation | Law, A. (2017). A tutorial on Design of Experiments for simulation modeling. In Proceedings of the 2017 Winter Simulation Conference (pp. 550–564). Las Vegas, NV, USA. | |
dc.relation | Lejarza, F., & Baldea, M. (2020). Closed-loop optimal operational planning of supply chains with fast product quality dynamics. Computers and Chemical Engineering, 132, 106594. https://doi.org/10.1016/j.compchemeng.2019.106594 | |
dc.relation | León, M., Rodriguez, C., García, M. M., Bello, R., & Vanhoof, K. (2010). Fuzzy Cognitive Maps for Modeling Complex Systems. In Proceedings of 9th Mexican International Conference on Artificial Intelligence, MICAI 2010 (pp. 166–174). https://doi.org/10.1007/978-3-642-16761-4_15 | |
dc.relation | Li, B., & Jiang, Y. (2019). Impacts of returns policy under supplier encroachment with risk-averse retailer. Journal of Retailing and Consumer Services, 47, 104–115. https://doi.org/10.1016/j.jretconser.2018.11.011 | |
dc.relation | Lin, C., Chow, W. S., Madu, C. N., Kuei, C.-H., & Pei Yu, P. (2005). A structural equation model of supply chain quality management and organizational performance. International Journal of Production Economics, 96(3), 355–365. https://doi.org/10.1016/j.ijpe.2004.05.009 | |
dc.relation | Liu, S., & Lin, Y. (2006). Grey Information: Theory and Practical Applications. London, UK: Springer. | |
dc.relation | Liu, Y., Fang, S., Fang, Z., & Hipel, K. (2012). Petri net model for supply-chain quality conflict resolution of a complex product. Kybernetes, 41(7/8), 920–928. https://doi.org/10.1108/K-01-2015-0009 | |
dc.relation | Lorscheid, I., Heine, B. O., & Meyer, M. (2012). Opening the “black box” of simulations: increased transparency and effective communication through the systematic design of experiments. Computational and Mathematical Organization Theory, 18(1), 22–62. https://doi.org/10.1007/s10588-011-9097-3 | |
dc.relation | Lou, P., Liu, Q., Zhou, Z., & Quan, S. (2009). Production-Outsourcing Supply Chain Quality Management Based on Multi-Agent System. In Proceedings of The 16th International Conference on Industrial Engineering and Engineering Management, 2009. IE&EM ’09. (pp. 1555–1559). | |
dc.relation | Luthra, S., Govindan, K., Kannan, D., Mangla, S. K., & Garg, C. P. (2017). An integrated framework for sustainable supplier selection and evaluation in supply chains. Journal of Cleaner Production, 140, 1686–1698. https://doi.org/10.1016/j.jclepro.2016.09.078 | |
dc.relation | Mallick, R. K., Manna, A. K., & Mondal, S. K. (2018). A supply chain model for imperfect production system with stochastic lead time demand. Journal of Management Analytics, 5(4), 309–333. https://doi.org/10.1080/23270012.2018.1530619 | |
dc.relation | Marucheck, A., Greis, N., Mena, C., & Cai, L. (2011). Product safety and security in the global supply chain: Issues, challenges and research opportunities. Journal of Operations Management, 29(7–8), 707–720. https://doi.org/10.1016/j.jom.2011.06.007 | |
dc.relation | Masoudipour, E., Amirian, H., & Sahraeian, R. (2017). A novel closed-loop supply chain based on the quality of returned products. Journal of Cleaner Production, 151, 344–355. https://doi.org/10.1016/j.jclepro.2017.03.067 | |
dc.relation | Melnyk, S. a., Lummus, R. R., Vokurka, R. J., Burns, L. J., & Sandor, J. (2009). Mapping the future of supply chain management: a Delphi study. International Journal of Production Research, 47(16), 4629–4653. https://doi.org/10.1080/00207540802014700 | |
dc.relation | Mendes Dos Reis, J. G. (2011). Modelo de Avaliação da Qualidade para Redes de Suprimentos. Universidade Paulista: Tese de Doutoramento em Engenharia de Produção. | |
dc.relation | Merigó, J. M., & Yang, J. B. (2017). A bibliometric analysis of operations research and management science. Omega, 73, 37–48. https://doi.org/10.1016/j.omega.2016.12.004 | |
dc.relation | Modak, N. M., Panda, S., & Sana, S. S. (2016). Three-echelon supply chain coordination considering duopolistic retailers with perfect quality products. International Journal of Production Economics, 182, 564–578. https://doi.org/10.1016/j.ijpe.2015.05.021 | |
dc.relation | Moharana, H., Murty, J. S., Senapati, S. K., & Khuntia, K. (2012). Coordination, Collaboration and Integration for Supply Chain Management. International Journal of Interscience Management Review (IMR), 2(2), 46–50. | |
dc.relation | Montevechi, J. A. B., De Almeida Filho, R. G., Paiva, A. P., Costa, R. F. S., & Medeiros, A. L. (2010). Sensitivity analysis in discrete-event simulation using fractional factorial designs. Journal of Simulation, 4(2), 128–142. https://doi.org/10.1057/jos.2009.23 | |
dc.relation | Montgomery, D. (2017). Design and Analysis of Experiments (9th ed.). Hoboken, NJ: John Wiley & Sons. | |
dc.relation | Montoya-Torres, J. R., & Ortiz-Vargas, D. A. (2014). Collaboration and information sharing in dyadic supply chains: A literature review over the period 2000–2012. Estudios Gerenciales, 30, 343–354. https://doi.org/10.1016/j.estger.2014.05.006 | |
dc.relation | Montoya-Torres, J. R., & Ortiz, D. (2011). Analysis of the collaboration concept in supply chain: A scientific literature review. In Proceedings of Ninth Latin American and Caribbean Conference. (pp. 1–10). August 3-5, Medellín, Colombia. | |
dc.relation | Mota, B., Gomes, M. I., Carvalho, A., & Barbosa-Povoa, A. P. (2015). Towards supply chain sustainability: Economic, environmental and social design and planning. Journal of Cleaner Production, 105, 14–27. https://doi.org/10.1016/j.jclepro.2014.07.052 | |
dc.relation | Mourhir, A., Papageorgiou, E., Kokkinos, K., & Rachidi, T. (2017). Exploring Precision Farming Scenarios Using Fuzzy Cognitive Maps. Sustainability, 9(7), 1241. https://doi.org/10.3390/su9071241 | |
dc.relation | Mpelogianni, V., Marnetta, P., & Groumpos, P. P. (2015). Fuzzy Cognitive Maps in the Service of Energy Efficiency. IFAC-PapersOnLine, 48(24), 1–6. https://doi.org/10.1016/j.ifacol.2015.12.047 | |
dc.relation | Nagar, L., & Jain, K. (2008). Supply chain planning using multi-stage stochastic programming. Supply Chain Management: An International Journal, 13(3), 251–256. https://doi.org/10.1108/13598540810871299 | |
dc.relation | Narasimhan, R., & Nair, A. (2005). The antecedent role of quality, information sharing and supply chain proximity on strategic alliance formation and performance. International Journal of Production Economics, 96(3), 301–313. https://doi.org/10.1016/j.ijpe.2003.06.004 | |
dc.relation | Narasimhan, V., Venkatasubbaiah, K., & Avadhani, P. S. (2013). Identification of Critical SSCM Activities Through Confirmatory Factor Analysis. International Journal for Quality Research, 7(2), 239–248. | |
dc.relation | Obiedat, M., & Samarasinghe, S. (2016). A novel semi-quantitative Fuzzy Cognitive Map model for complex systems for addressing challenging participatory real life problems. Applied Soft Computing Journal, 48, 91–110. https://doi.org/10.1016/j.asoc.2016.06.001 | |
dc.relation | Pang, J., & Tan, K. H. (2018). Supply chain quality and pricing decisions under multi-manufacturer competition. Industrial Management & Data Systems, 118(1), 164–187. https://doi.org/10.1108/IMDS-03-2017-0092 | |
dc.relation | Papageorgiou, E. I., Aggelopoulou, K. D., Gemtos, T. A., & Nanos, G. D. (2013). Yield prediction in apples using Fuzzy Cognitive Map learning approach. Computers and Electronics in Agriculture, 91, 19–29. https://doi.org/10.1016/j.compag.2012.11.008 | |
dc.relation | Papageorgiou, E., Markinos, A., & Gemptos, T. (2009). Application of fuzzy cognitive maps for cotton yield management in precision farming. Expert Systems with Applications, 36(10), 12399–12413. https://doi.org/10.1016/j.eswa.2009.04.046 | |
dc.relation | Parast, M. M. (2013). Supply chain quality management: An inter-organizational learning perspective. International Journal of Quality & Reliability Management, 30(5), 511–529. https://doi.org/10.1108/09574090910954864 | |
dc.relation | Parast, M. M. (2019). A learning perspective of supply chain quality management: empirical evidence from US supply chains. Supply Chain Management: An International Journal, 25(1), 17–34. https://doi.org/10.1108/SCM-01-2019-0028 | |
dc.relation | Park, Y. B. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205–1224. https://doi.org/10.1080/00207540412331327718 | |
dc.relation | Pelta, D. A., & Cruz Corona, C. (2018). Soft Computing Based Optimization and Decision Models. Berlin: Springer. https://doi.org/10.1007/978-3-319-64286-4 | |
dc.relation | Peng, X., Prybutok, V., & Xie, H. (2019). Integration of supply chain management and quality management within a quality focused organizational framework. International Journal of Production Research, 58(2), 448–466. https://doi.org/10.1080/00207543.2019.1593548 | |
dc.relation | Pettersson, A. I., & Segerstedt, A. (2013). Measuring supply chain cost. International Journal of Production Economics, 143(2), 357–363. https://doi.org/10.1016/j.ijpe.2012.03.012 | |
dc.relation | Phan, A. C., Abdallah, A. B., & Matsui, Y. (2011). Quality management practices and competitive performance: Empirical evidence from Japanese manufacturing companies. International Journal of Production Economics, 133(2), 518–529. https://doi.org/10.1016/j.ijpe.2011.01.024 | |
dc.relation | Poczeta, K., & Papageorgiou, E. I. (2018). Implementing Fuzzy Cognitive Maps with Neural Networks for Natural Gas Prediction. In 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1026–1032). Volos, Greece: IEEE. https://doi.org/10.1109/ICTAI.2018.00158 | |
dc.relation | Rashid, K., & Aslam, M. M. H. (2012). Business excellence through total supply chain quality management. Asian Journal on Quality, 13(3), 309–324. https://doi.org/10.1108/09574090910954864 | |
dc.relation | Reisman, A. (2004). How can OR/MS Educators Benefit From Creating and Using Taxonomies? INFORMS Transactions on Education, 4(3), 55–65. https://doi.org/10.1287/ited.4.3.55 | |
dc.relation | Robinson, C. J., & Malhotra, M. K. (2005). Defining the concept of supply chain quality management and its relevance to academic and industrial practice. International Journal of Production Economics, 96(3), 315–337. https://doi.org/10.1016/j.ijpe.2004.06.055 | |
dc.relation | Romero, J. C., Coudert, T., Geneste, L., & De Valroger, A. (2012). Collaborative methodology for supply chain quality management: Framework and integration with strategic decision processes in product development. In 6th European Conference on Information Management and Evaluation, ECIME 2012 (pp. 418–427). | |
dc.relation | Rushton, A., Croucher, P., & Baker, P. (2017). The Handbook of Logistics and Distribution Management: Understanding the Supply Chain (6th ed.). New York, NY: Kogan Page. | |
dc.relation | Salmeron, J. (2010). Modelling grey uncertainty with Fuzzy Grey Cognitive Maps. Expert Systems with Applications, 37(12), 7581–7588. https://doi.org/10.1016/j.eswa.2010.04.085 | |
dc.relation | Sanders, N. (2018). Supply Chain Management: A Global Perspective (2nd ed.). Hoboken, NJ: John Wiley & Sons. | |
dc.relation | Sarkar, B., Majumder, A., Sarkar, M., Kim, N., & Ullah, M. (2018). Effects of variable production rate on quality of products in a single-vendor multi-buyer supply chain management. The International Journal of Advanced Manufacturing Technology, 99, 567–581. https://doi.org/10.1007/s00170-018-2527-3 | |
dc.relation | Sayama, H. (2015). Introduction to the Modeling and Analysis of Complex Systems. New York: Open SUNY Textbooks. | |
dc.relation | Shah, J. (2016). Supply Chain Management: Text and Cases (2nd ed.). Noida, India: Pearson. | |
dc.relation | Sharma, A., Garg, D., & Agarwal, A. (2012). Quality Management in Supply Chains: the Literature Review. International Journal for Quality Research, 6(3), 193–206. | |
dc.relation | Sharma, A., Garg, D., & Agarwal, A. (2014). Product recall: Supply chain quality issue? International Journal of Intelligent Enterprise, 2(4), 277–293. https://doi.org/10.1504/IJIE.2014.069059 | |
dc.relation | Simchi-Levi, D., Chen, X., & Bramel, J. (2014). The Logic of Logistics: Theory, Algorithms, and Applications for Logistics Management (3rd ed.). New York, NY: Springer. | |
dc.relation | Skład, A. (2019). Assessing the impact of processes on the Occupational Safety and Health Management System’s effectiveness using the fuzzy cognitive maps approach. Safety Science, 117, 71–80. https://doi.org/10.1016/j.ssci.2019.03.021 | |
dc.relation | Slack, N., Brandon-Jones, A., & Johnston, R. (2016). Operations Management (8th ed.). Harlow, UK: Pearson. | |
dc.relation | Slack, N., & Lewis, M. (2017). Operations Strategy (5th ed.). Harlow, UK: Pearson. | |
dc.relation | Song, T., Li, Y., Song, J., & Zhang, Z. (2014). Airworthiness considerations of supply chain management from Boeing 787 Dreamliner battery issue. Procedia Engineering, 80, 628–637. https://doi.org/10.1016/j.proeng.2014.09.118 | |
dc.relation | Steven, A. B., Dong, Y., & Corsi, T. (2014). Global sourcing and quality recalls: An empirical study of outsourcing-supplier concentration-product recalls linkages. Journal of Operations Management, 32(5), 241–253. https://doi.org/10.1016/j.jom.2014.04.003 | |
dc.relation | Su, Q., & Liu, Q. (2011). Supply Chain Quality Management by Contract Design. In D. Önkal & E. Aktas (Eds.), Supply Chain Management - Pathways for Research and Practice (pp. 57–74). Rijeka: InTech. | |
dc.relation | Suard, S., Hostikka, S., & Baccou, J. (2013). Sensitivity analysis of fire models using a fractional factorial design. Fire Safety Journal, 62, 115–124. https://doi.org/10.1016/j.firesaf.2013.01.031 | |
dc.relation | Sun, P., & Li, Q. (2010). Study on Supply Chain Quality Management Model Based on Immune Theory. 2010 International Conference on Management and Service Science, 1–4. https://doi.org/10.1109/ICMSS.2010.5576336 | |
dc.relation | Susniene, D., Torma, A., Buruzs, A., Hatwágner, M. F., & Kóczy, L. T. (2014). Using Fuzzy Cognitive Map Approach to model the casual relationships in stakeholder management at companies. In 5th IEEE International Conference on Cognitive Infocommunications (pp. 121–124). Vietri sul Mare, Italy. | |
dc.relation | Tarashioon, S., Van Driel, W. D., & Zhang, G. Q. (2014). Multi-physics reliability simulation for solid state lighting drivers. Microelectronics Reliability, 54(6–7), 1212–1222. https://doi.org/10.1016/j.microrel.2014.02.019 | |
dc.relation | Truong, H. Q., Sampaio, P., Sameiro, M., & Fernandez, A. (2016). An extensive structural model of supply chain quality management and firm performance. International Journal of Quality & Reliability Management, 33(4), 444–464. | |
dc.relation | Truong, H., Sampaio, P., Carvalho, M. S., Fernandes, A. C., Binh An, D. T., & Vilhenac, E. (2016). An extensive structural model of supply chain quality management and firm performance. International Journal of Quality & Reliability Management, 33(4), 444–464. https://doi.org/10.1108/IJQRM-11-2014-0188 | |
dc.relation | Tsadiras, A. K. (2008). Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps. Information Sciences, 178(20), 3880–3894. https://doi.org/10.1016/j.ins.2008.05.015 | |
dc.relation | Tsai, T. P., & Wang, F.-C. (2004). Improving Supply Chain Management: A Model for Collaborative Quality Control. In Advanced Semiconductor Manufacturing, 2004. ASMC ’04. IEEE Conference and Workshop (pp. 36–42). https://doi.org/10.1109/ASMC.2004.1309531 | |
dc.relation | Wieland, A., Handfield, R. B., & Durach, C. F. (2016). Mapping the Landscape of Future Research Themes in Supply Chain Management. Journal of Business Logistics, 37(3), 205–212. | |
dc.relation | Wood, L. C., Wang, J. X., Olesen, K., & Reiners, T. (2017). The effect of slack, diversification, and time to recall on stock market reaction to toy recalls. International Journal of Production Economics, 193, 244–258. https://doi.org/10.1016/j.ijpe.2017.07.021 | |
dc.relation | Wu, Y., Yang, Y., Wang, Z., & Yuan, J. (2013). Macro Quality Chain Management and Coordination Optimization Research. Journal of Software, 8(8), 2023–2031. https://doi.org/10.4304/jsw.8.8.2023-2031 | |
dc.relation | Xiao, T., Yang, D., & Shen, H. (2011). Coordinating a supply chain with a quality assurance policy via a revenue-sharing contract. International Journal of Production Research, 49(1), 99–120. https://doi.org/10.1080/00207543.2010.508936 | |
dc.relation | Yan, J., Sun, S., Wang, H., & Hua, Z. (2010). Ontology of Collaborative Supply Chain for Quality Management. World Academy of Science, Engineering and Technology, 4(4), 365–370. | |
dc.relation | Yao, D. Q., & Zhang, N. (2009). Contract design for supply chain quality management. International Journal of Value Chain Management, 3(2), 129–145. https://doi.org/10.1504/IJVCM.2009.026954 | |
dc.relation | Yoo, S. H. (2014). Product quality and return policy in a supply chain under risk aversion of a supplier. International Journal of Production Economics, 154, 146–155. https://doi.org/10.1016/j.ijpe.2014.04.012 | |
dc.relation | Yoo, S. H., & Cheong, T. (2018). Quality improvement incentive strategies in a supply chain. Transportation Research Part E: Logistics and Transportation Review, 114, 331–342. https://doi.org/10.1016/j.tre.2018.01.005 | |
dc.relation | Yu, Y., & Huo, B. (2018). Supply chain quality integration: relational antecedents and operational consequences. Supply Chain Management: An International Journal, 23(3), 188–206. https://doi.org/10.1108/SCM-08-2017-0280 | |
dc.relation | Zeng, J., Phan, C. A., & Matsui, Y. (2013). Supply chain quality management practices and performance: An empirical study. Operations Management Research, 6(1–2), 19–31. https://doi.org/10.1007/s12063-012-0074-x | |
dc.relation | Zhang, M., Guo, H., Huo, B., Zhao, X., & Huang, J. (2017). Linking supply chain quality integration with mass customization and product modularity. International Journal of Production Economics, 207, 227–235. https://doi.org/10.1016/j.ijpe.2017.01.011 | |
dc.relation | Zimon, D. (2017). The Impact of TQM Philosophy for the Improvement of Logistics Processes in the Supply Chain. International Journal for Quality Research, 11(1), 3–16. https://doi.org/10.18421/IJQR11.01-01 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Modelado de la gestión de la calidad en cadenas de suministro usando un enfoque multi-etapas | |
dc.type | Trabajo de grado - Doctorado |