dc.contributor | Combariza Bayona, David Andrés | |
dc.contributor | Alzáte Granados, Juan Pablo | |
dc.contributor | Camelo Rodriguez, Julian Felipe | |
dc.contributor | Toxicología Ambiental y Ocupacional- TOXICAO | |
dc.creator | Villadiego Molinares, Marisol Margarita | |
dc.date.accessioned | 2022-08-08T16:46:25Z | |
dc.date.available | 2022-08-08T16:46:25Z | |
dc.date.created | 2022-08-08T16:46:25Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81802 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | INTRODUCCIÓN: El formaldehído (FA) es una sustancia química clasificada por la Agencia Internacional de Investigación en Cáncer (IARC), como una sustancia grupo I, lo que significa que se ha confirmado que es capaz de originar cáncer en los seres humanos. Se ha identificado como causante de cáncer nasofaríngeo, leucemia mieloide aguda y cáncer sinusoidal, adicionalmente se conoce como genotóxica, mutagénica y sensibilizante de piel y vías áreas. Esta es una sustancia utilizada ampliamente en diferentes ambientes laborales, principalmente en ambientes hospitalarios y en la industria, por sus propiedades como conservante, biocida y producto intermedio para la fabricación de láminas, resinas y madera. Conociendo sus efectos nocivos a la salud es imperativo realizar vigilancia médica sobre los trabajadores a través del control y seguimiento de mediciones ambientales y adicionalmente, un examen médico ocupacional acompañado de biomarcadores que permitan monitorizar de cerca la exposición y así mismo alertar posibles efectos reversibles en salud; sin embargo, aunque se han hecho muchos esfuerzos e investigaciones para identificar uno o varios biomarcadores que permitan monitorear a los trabajadores expuestos, los resultados de la evidencia generada presentan amplias diferencias, lo cual lleva a una situación confusa a la hora de tomar decisiones en la vigilancia ocupacional.
OBJETIVO: Revisar de manera sistemática la evidencia disponible para evaluar los diferentes biomarcadores aplicables en la vigilancia médica ocupacional de la exposición a formaldehido
METODOLOGÍA: Se realizó una búsqueda en las bases de datos EMBASE, LILACS, MEDLINE, CHOCRANE LIBRARY, PUBCHEM, así como una búsqueda manual a partir de las referencias de los artículos seleccionados y búsqueda en base de datos OPENGREY con las palabras clave formaldehído, monitoreo biológico, exposición ocupacional, y los términos MESH Formaldehyde, biological monitoring, biomarkers, ocuppactional exposure, DNA adducts, protein adducts, antibodies, genotoxicity. Se incluyeron artículos desde enero de 2000 hasta octubre 2020. Se realizó una estrategia de dos pasos. En primer lugar, la lectura de resumen y primera selección de artículos para revisión completa; en segundo lugar, la verificación de criterios de inclusión y exclusión de artículos seleccionados y literatura de búsqueda manual.
RESULTADOS: La búsqueda inicial arrojó 108 registros, sin embargo, solo 30 artículos cumplieron los criterios de inclusión y exclusión establecidos. Posteriormente se realizó una calificación de cada estudio por parte de dos investigadores de manera independiente y se calificó el riesgo de sesgos por medio de la herramienta JBI. Unos de los biomarcadores más frecuentemente evaluados fueron los micronúcleos en sangre periférica, los cuales arrojaron un OR 3.21 (IC 95%: 2.39-4.04) entre los expuestos a formaldehído vs los controles, sin embargo, los estudios incluidos eran heterogéneos (I2=99%) entre sí, motivo por el cual se realizó un metanálisis de efectos aleatorios.
DISCUSIÓN: Se encontró un riesgo intermedio a alto de sesgos en todos los estudios realizados, lo que dificulta el análisis de los datos y limita contar con homogeneidad en los datos y genera alta variabilidad de cada ítem evaluado en los diferentes grupos de estudio. Además de que no se cuenta con un gold estándar para comparar los biomarcadores propuestos en cada estudio, lo que genera la dificultad de la realización de un análisis cuantitativo de los datos obtenidos. Se encontraron resultados que mostraban asociación de las alteraciones de los biomarcadores con exposición y otros estudios con resultados disímiles.
CONCLUSIONES: Es imperioso la ejecución de estudios con mejor calidad metodológica, que usen criterios estandarizados, donde haya control de las diferentes variables para minimizar el sesgo y en el cual se escojan diferentes poblaciones a nivel mundial dado que han sido pocos países se han interesado en evaluar a su población trabajadora. Con los estudios y biomarcadores evaluados, se logra continuar confirmando que las mediciones ambientales hacen parte de la vigilancia y que vigilancia y que no se cuenta con ningún biomarcador específico para FA. (Texto tomado de la fuente) | |
dc.description.abstract | INTRODUCTION: Formaldehyde is a chemical substance classified by the International
Agency for Research on Cancer (IARC), as a group I substance, which means that it has
been confirmed that it is capable of causing cancer in humans. It has been identified as the
cause of nasopharyngeal cancer, acute myeloid leukemia and sinusoidal cancer, it is also
known as genotoxic, mutagenic and sensitizing the skin and airways. This is a substance
widely used in different work environments, mainly in hospital environments and in industry,
for its properties as a preservative, biocide and intermediate product for the manufacture
of sheets, resins and wood. Knowing its harmful effects on health, it is imperative to
medically carry out workers through control and monitoring of environmental detection and,
additionally, an occupational medical examination accompanied by biomarkers that can
closely monitor exposure and also alert possible reversible effects on health; However,
although many efforts and investigations have been made to identify one or several biomarkers that allow monitoring of exposed workers, the results of the evidence showed
wide differences, which leads to a confusing situation when making decisions in the
industry. occupational surveillance.
OBJECTIVE: To systematically review the available evidence to evaluate the different
applicable biomarkers in occupational medical surveillance of formaldehyde exposure.
METHODOLOGY: A search was carried out in the EMBASE, LILACS, MEDLINE,
CHOCRANE LIBRARY, PUBCHEM databases, as well as a manual search based on the
references of the selected articles and a search in the OPENGREY database with the
keywords formaldehyde, biological monitoring, occupational exposure, and the MESH
terms Formaldehyde, biological monitoring, biomarkers, occupational exposure, DNA
adducts, protein adducts, antibodies, genotoxicity. Articles from January 2000 to October
2020 were included. A two-step strategy was used. Firstly, the abstract reading and first
selection of articles for full review; second, the verification of inclusion and exclusion criteria
of selected articles and manual search literature.
RESULTS: The initial search yielded 108 records, however, only 30 articles met the
established inclusion and exclusion criteria. Subsequently, each study was rated
independently by two investigators and risk of bias was rated using the JBI tool. One of the
most frequently evaluated biomarkers was micronuclei in peripheral blood, which yielded
an OR 3.21 (95% CI: 2.39-4.04) between those exposed to formaldehyde vs. controls,
however, the included studies were heterogeneous (I2=99 %) with each other, which is
why a random-effects meta-analysis was performed.
DISCUSSION: An intermediate to high risk of bias was found in all the studies carried out,
which makes data analysis difficult and contributes to the difficulty of their homogeneity and
the high variability of each item evaluated in the different study groups. In addition to the
fact that there is no gold standard to compare the biomarkers proposed in each study,
which makes it difficult to carry out a quantitative analysis of the data obtained. Results
were found that showed association of biomarker alterations with exposure and other
studies with dissimilar results CONCLUSIONS: It is imperative to carry out studies with better methodological quality,
that use standardized criteria, where there is control of the different variables to minimize
bias and in which different populations are chosen worldwide, given that few countries have
been interested in Assess your working population. With the studies and biomarkers
evaluated, it is possible to continue confirming that environmental measurements are part
of surveillance and that and there is no specific biomarker for formaldehyde. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Medicina - Maestría en Toxicología | |
dc.publisher | Departamento de Toxicología | |
dc.publisher | Facultad de Medicina | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | Ohmichi K, Komiyama M, Matsuno Y, Takanashi Y, Miyamoto H, Kadota T, et al. Formaldehyde exposure in a gross anatomy laboratory--personal exposure level is higher than indoor concentration. Environ Sci Pollut Res Int [Internet]. 2006 Mar [cited 2018 Apr 29];13(2):120–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16612901 | |
dc.relation | IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC Monogr Eval Carcinog risks to humans [Internet]. 2006 [cited 2018 Nov 22];88:1–478. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17366697 | |
dc.relation | Ministerio del Trabajo;, Instituto Nacional de Cancerología. Sistema de Vigilancia Epidemiológica del Cáncer Ocupacional en Colombia -SIVECAO [Internet]. [cited 2018 Apr 26]. Available from: http://fondoriesgoslaborales.gov.co/documents/publicaciones/guias/SIVECAO.pdf | |
dc.relation | Ministerio del Trabajo. Decreto Número 1477 de 2014 [Internet]. [cited 2018 Nov 21]. Available from: http://www.mintrabajo.gov.co/documents/20147/36482/decreto_1477_del_5_de_agosto_de_2014.pdf/b526be63-28ee-8a0d-9014-8b5d7b299500 | |
dc.relation | Arias A, Suárez O, Hoyos M, Cortés C. Perfil Nacional de Sustancias Químicas en Colombia [Internet]. 2012 [cited 2019 Mar 5]. Available from: http://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/sustancias_químicas_y_residuos_peligrosos/Perfil_Nacional_de_Sustancias_Quimicas_en_Colombia_2012.pdf | |
dc.relation | Villadiego Molinares M, Ramírez Martínez J, Rodriguez Pulido A. Formaldehído en ambientes laborales: revisión de la literatura y propuesta de vigilancia ocupacional. Rev la Fac Med ISSN 0120-0011, ISSN-e 2357-3848, Vol 68, No 3, 2020, págs 425-437 [Internet]. 2020 [cited 2021 Dec 28];68(3):425–37. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=7774465&info=resumen&idioma=ENG | |
dc.relation | Maneli MH, Smith P, Khumalo NP. Elevated formaldehyde concentration in “Brazilian keratin type” hair-straightening products: A cross-sectional study. J Am Acad Dermatol [Internet]. 2014 Feb [cited 2018 Apr 26];70(2):276–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24332313 | |
dc.relation | Peteffi GP, Antunes MV, Carrer C, Valandro ET, Santos S, Glaeser J, et al. Environmental and biological monitoring of occupational formaldehyde exposure resulting from the use of products for hair straightening. Environ Sci Pollut Res [Internet]. 2015 Jan 9 [cited 2018 May 15];23(1):908–17. Available from: http://link.springer.com/10.1007/s11356-015-5343-4 | |
dc.relation | Salthammer T. The formaldehyde dilemma [Internet]. Vol. 218, International Journal of Hygiene and Environmental Health. 2015 [cited 2018 Apr 26]. p. 433–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25772784 | |
dc.relation | Air Quality Guidelines for Europe Second Edition. [cited 2018 Apr 26]; Available from: http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf | |
dc.relation | Casanova-Schmitz, T B Starr HDH. Differentiation between Metabolic Incorporation and Covalent Binding in the Labeling of Macromolecules in the Rat Nasal Mucosa and Bone Marrow by Inhaled [j4C]-and [3H]Formaldehyde Differentiation between Metabolic Incorporation and Covalent Binding in th. | |
dc.relation | Disease A for TS and. Toxicological Profile for Formaldehyde U.S. Department of Health and Human Services, Public Health Services, Agency for Toxic Substances and Disease Registry, [Internet]. 1999 [cited 2022 Jan 8]; Available from: https://www.atsdr.cdc.gov/toxprofiles/tp111.pdf | |
dc.relation | He RQ, Lu J, Miao JY. Formaldehyde stress. Sci China Life Sci. 2010;53(12):1399–404. | |
dc.relation | Heck HD, Casanova-Schmitz M, Dodd PB, Schachter EN, Witek TJ TT. Formaldehyde (CH2O) concentrations in the blood of humans and Fischer-344 rats exposed to CH2O under controlled conditions. Am Ind Hyg Assoc J [Internet]. 1985 Jan 1 [cited 2022 Jan 8];46(1):1–3. Available from: https://pubmed.ncbi.nlm.nih.gov/4025145/ | |
dc.relation | Enviromental Protection Agency (EPA). Review of the environmental protection agency’s draft IRIS assessment of formaldehyde. Review of the Environmental Protection Agency’s Draft IRIS Assessment of Formaldehyde. National Academies Press; 2011. 1–190 p. | |
dc.relation | Heck HD, Casanova-Schmitz M, Dodd PB, Schachter EN, Witek TJ TT. Formaldehyde (CH2O) concentrations in the blood of humans and Fischer-344 rats exposed to CH2O under controlled conditions. Am Ind Hyg Assoc J [Internet]. 1985 Jan 1 [cited 2022 Jan 8];46(1):1–3. Available from: https://pubmed.ncbi.nlm.nih.gov/4025145/ | |
dc.relation | Chiarella P, Tranfo G, Pigini D, Carbonari D. Is it possible to use biomonitoring for the quantitative assessment of formaldehyde occupational exposure? Biomark Med [Internet]. 2016 Dec [cited 2018 Apr 26];10(12):1287–303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27924628 | |
dc.relation | Conaway CC, Whysner J, Verna LK, Williams GM. Formaldehyde mechanistic data and risk assessment: Endogenous protection from DNA adduct formation. Pharmacol Ther. 1996;71(1–2):29–55. | |
dc.relation | McGhee JD, Von Hippel PH. Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. Biochemistry [Internet]. 1975 Mar 1 [cited 2022 Jan 9];14(6):1281–96. Available from: https://pubmed.ncbi.nlm.nih.gov/235285/ | |
dc.relation | McGhee JD, Von Hippel PH. Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. Biochemistry [Internet]. 1975 Mar 1 [cited 2022 Jan 9];14(6):1281–96. Available from: https://pubmed.ncbi.nlm.nih.gov/235285/
19. Lu K, Moeller B, Doyle-Eisele M, McDonald J, Swenberg JA. Molecular dosimetry of N2-hydroxymethyl-dG DNA adducts in rats exposed to formaldehyde. Chem Res Toxicol. 2011 Feb;24(2):159–61 | |
dc.relation | Kautiainen A, Törnqvist M, Svensson K O-GS. Adducts of malonaldehyde and a few other aldehydes to hemoglobin. Carcinogenesis [Internet]. 1989 Nov [cited 2021 Aug 30];10(11):2123–30. Available from: https://pubmed.ncbi.nlm.nih.gov/2805232/ | |
dc.relation | Yu R, Lai Y, Hartwell HJ, Moeller BC, Doyle-Eisele M, Kracko D, et al. Formation, accumulation, and hydrolysis of endogenous and exogenous formaldehyde-induced DNA damage. Toxicol Sci. 2015;146(1):170–82. | |
dc.relation | Chang JCF, Gross EA, Swenberg JA, Barrow CS. Nasal cavity deposition, histopathology, and cell proliferation after single or repeated formaldehyde exposures in B6C3F1 mice and F-344 rats. Toxicol Appl Pharmacol [Internet]. 1983 [cited 2022 Jan 9];68(2):161–76. Available from: https://pubmed.ncbi.nlm.nih.gov/6857658/ | |
dc.relation | ENVIRONMENTAL PROTECTION AGENCY. Toxicological Review of Formaldehyde-Inhalation assessment. Rev Lit Arts Am [Internet]. 2010;39(110):759–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22050403 | |
dc.relation | Nohmi T, Fukushima S. Thresholds of genotoxic carcinogens : from mechanisms to regulation. | |
dc.relation | Casanova M, Heck H d. A. Further studies of the metabolic incorporation and covalent binding of inhaled [3H]- and [14C]formaldehyde in Fischer-344 rats: effects of glutathione depletion. Toxicol Appl Pharmacol [Internet]. 1987 Jun 15 [cited 2022 Jan 25];89(1):105–21. Available from: https://pubmed.ncbi.nlm.nih.gov/2438809/ | |
dc.relation | Kerns WD, Pavkov KL, Donofrio DJ, Gralla EJ, Swenberg JA. Carcinogenicity of Formaldehyde in Rats and Mice after Long-Term Inhalation Exposure [Internet]. Vol. 43, CANCER RESEARCH. 1983 [cited 2018 Sep 24]. Available from: https://pdfs.semanticscholar.org/4934/80a0265146138a95a750507619aedf276d0f.pdf | |
dc.relation | Monticello TM, Swenberg JA, Gross EA, Leininger JR, Kimbell JS, Seilkop S, et al. Correlation of Regional and Nonlinear Formaldehyde-induced Nasal Cancer with Proliferating Populations of Cells. Cancer Res. 1996;56(5). | |
dc.relation | Thompson CM, Gentry R, Fitch S, Lu K, Clewell HJ. An updated mode of action and human relevance framework evaluation for Formaldehyde-Related nasal tumors. Crit Rev Toxicol [Internet]. 2020;50(10):919–52. Available from: https://doi.org/10.1080/10408444.2020.1854679 | |
dc.relation | Andersen ME, Clewell HJ, Bermudez E, Dodd DE, Willson GA, Campbell JL, et al. Formaldehyde: Integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound. Toxicol Sci [Internet]. 2010 Dec [cited 2018 Apr 26];118(2):716–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20884683 | |
dc.relation | Molina Aragonés J, Bausà Peris R, Carreras Valls R, Carrillo Castillo A, Fiblà Nicolau F, Gaynés Palou E, et al. Toxicidad del formaldehido en trabajadores profesionalmente expuestos. Revisión bibliográfica. Arch Prev Riesgos Labor [Internet]. 2018 [cited 2022 Apr 30];21(3):128–57. Available from: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1578-25492018000300003&lng=es&nrm=iso&tlng=es | |
dc.relation | Thrasher JD, Wojdani A, Cheung G, Heuser G. Evidence for formaldehyde antibodies and altered cellular immunity in subjects exposed to formaldehyde in mobile homes. Arch Environ Health [Internet]. 1987 Dec [cited 2018 Apr 29];42(6):347–50. Available from: http://www.tandfonline.com/doi/abs/10.1080/00039896.1987.9934357 | |
dc.relation | Thrasher JD, Broughton A, Micevich P. Antibodies and immune profiles of individuals occupationally exposed to formaldehyde: six case reports. Am J Ind Med [Internet]. 1988 [cited 2018 Apr 29];14(4):479–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2973232 | |
dc.relation | Im H, Oh E, Mun J, Khim J-Y, Lee E, Kang H-S, et al. Evaluation of Toxicological Monitoring Markers Using Proteomic Analysis in Rats Exposed to Formaldehyde. J Proteome Res [Internet]. 2006 Jun [cited 2018 Sep 5];5(6):1354–66. Available from: http://pubs.acs.org/doi/abs/10.1021/pr050437b | |
dc.relation | National Toxicology Program(NTP). Formaldehyde. 14th Rep Carcinog [Internet]. 2016 [cited 2018 Apr 29];155(2000):82. Available from: https://ntp.niehs.nih.gov/ntp/roc/content/profiles/formaldehyde.pdf | |
dc.relation | Kitaeva L V, Kitaev EM, Pimenova MN. The cytopathic and cytogenetic sequelae of chronic inhalational exposure to formaldehyde on female germ cells and bone marrow cells in rats. Tsitologiia [Internet]. 1990 [cited 2018 Sep 24];32(12):1212–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2103083 | |
dc.relation | Kitaeva L V, Mikheeva EA, Shelomova LF, Shvartsman PI. Genotoxic effect of formaldehyde in somatic human cells in vivo. Genetika [Internet]. 1996 Sep [cited 2018 Sep 24];32(9):1287–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9026467 | |
dc.relation | Zhang L, Beane Freeman LE, Nakamura J, Hecht SS, Vandenberg JJ, Smith MT, et al. Formaldehyde and leukemia: Epidemiology, potential mechanisms, and implications for risk assessment. Environmental and Molecular Mutagenesis. 2010. | |
dc.relation | Zhang L, Tang X, Rothman N, Vermeulen R, Ji Z, Shen M, et al. Occupational Exposure to Formaldehyde, Hematotoxicity, and Leukemia-Specific Chromosome Changes in Cultured Myeloid Progenitor Cells. Cancer Epidemiol Biomarkers Prev [Internet]. 2010 Jan 1 [cited 2018 Apr 26];19(1):80–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20056626 | |
dc.relation | Viegas S, Ladeira C, Nunes C, Malta-Vacas J, Gomes M, Brito M, et al. Genotoxic effects in occupational exposure to formaldehyde: A study in anatomy and pathology laboratories and formaldehyde-resins production. J Occup Med Toxicol [Internet]. 2010 Aug 20 [cited 2018 Apr 26];5(1):25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20727169 | |
dc.relation | Hauptmann M, Stewart PA, Lubin JH, Beane Freeman LE, Hornung RW, Herrick RF, et al. Mortality from lymphohematopoietic malignancies and brain cancer among embalmers exposed to formaldehyde. J Natl Cancer Inst [Internet]. 2009 Dec 16 [cited 2018 Sep 5];101(24):1696–708. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19933446 | |
dc.relation | Gentry R, Thompson CM, Franzen A, Salley J, Albertini R, Lu K, et al. Using mechanistic information to support evidence integration and synthesis: a case study with inhaled formaldehyde and leukemia. Crit Rev Toxicol [Internet]. 2020;50(10):885–918. Available from: https://doi.org/10.1080/10408444.2020.1854678 | |
dc.relation | Mcgregor D, Bolt H, Cogliano V, Richter-Reichhelm H-B. Formaldehyde and Glutaraldehyde and Nasal Cytotoxicity: Case Study Within the Context of the 2006 IPCS Human Framework for the Analysis of a Cancer Mode of Action for Humans For personal use only. Crit Rev Toxicol. 2006;36:821–35. | |
dc.relation | Kim K-H, Jahan SA, Lee J-T. Exposure to Formaldehyde and Its Potential Human Health Hazards. J Environ Sci Heal Part C [Internet]. 2011 Oct [cited 2018 Apr 26];29(4):277–99. Available from: http://www.tandfonline.com/doi/abs/10.1080/10590501.2011.629972 | |
dc.relation | Bateman DN, Good AM, Laing WJ, Kelly CA. TOXBASE: poisons information on the internet. Emerg Med J [Internet]. 2002 [cited 2022 Jan 9];19(1):31–4. Available from: https://pubmed.ncbi.nlm.nih.gov/11777868/ | |
dc.relation | Kulle TJ. Acute Odor and Irritation Response in Healthy Nonsmokers with Formaldehyde Exposure. http://dx.doi.org/103109/08958379308998389 [Internet]. 2008 [cited 2022 Jan 9];5(3):323–32. Available from: https://www.tandfonline.com/doi/abs/10.3109/08958379308998389 | |
dc.relation | Schwensen JF, Friis UF, Menné T, Flyvholm MA, Johansen JD. Contact allergy to preservatives in patients with occupational contact dermatitis and exposure analysis of preservatives in registered chemical products for occupational use. Int Arch Occup Environ Health. 2017;90(4):319–33. | |
dc.relation | Rajaeifard A, Neghab M. Ventilatory disorder induced by formaldehyde exposure. Toxicol Lett [Internet]. 2006 Sep 20 [cited 2018 Apr 26];164:S122. Available from: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0378427406004516 | |
dc.relation | Ministerio de la Protección Social. Guía de Atención integral de Salud Ocupacional Basada en la Evidencia para Asma Ocupacional. 2008 [cited 2022 Jan 9];1–158. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/gatiso-asma.pdf | |
dc.relation | Lino-dos-Santos-Franco A, Correa-Costa M, dos Santos Durão ACC, Ligeiro de Oliveira AP, Breithaupt-Faloppa AC, Bertoni J de A, et al. Formaldehyde induces lung inflammation by an oxidant and antioxidant enzymes mediated mechanism in the lung tissue. Toxicol Lett [Internet]. 2011 Dec [cited 2018 Apr 29];207(3):278–85. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378427411015542 | |
dc.relation | Vandenplas O, Fievez P, Delwiche JP, Boulanger J, Thimpont J. Persistent asthma following accidental exposure to formaldehyde. Allergy [Internet]. 2004 Jan [cited 2022 Jan 9];59(1):115–6. Available from: https://pubmed.ncbi.nlm.nih.gov/14674947/ | |
dc.relation | Yao Y, Liang W, Zhu L, Duan Y, Jin Y, He L. Relationship between the concentration of formaldehyde in the air and asthma in children: a meta-analysis. Int J Clin Exp Med [Internet]. 2015 Jun 30 [cited 2022 Jan 9];8(6):8358. Available from: /pmc/articles/PMC4538175/ | |
dc.relation | Orduz CE GJ. Asma Ocupacional por Formaldehído. Rev Neumol [Internet]. 2018; Available from: https://encolombia.com/medicina/revistas-medicas/neumologia/vn-153/neum15303trabajos4/ | |
dc.relation | Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. Mortality from Solid Cancers among Workers in Formaldehyde Industries. Am J Epidemiol [Internet]. 2004 Jun 15 [cited 2018 Sep 5];159(12):1117–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15191929 | |
dc.relation | Tulpule K, Dringen R. Formaldehyde in brain: an overlooked player in neurodegeneration? J Neurochem [Internet]. 2013 Oct [cited 2022 Jan 9];127(1):7–21. Available from: https://pubmed.ncbi.nlm.nih.gov/23800365/ | |
dc.relation | Kilburn KH. Neurobehavioral Impairment and Seizures from Formaldehyde. Arch Environ Heal An Int J [Internet]. 1994 Feb [cited 2018 Nov 22];49(1):37–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8117145 | |
dc.relation | Kilburn KH. Neurobehavioral Impairment and Seizures from Formaldehyde. Arch Environ Heal An Int J [Internet]. 1994 Feb [cited 2018 Nov 22];49(1):37–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8117145 | |
dc.relation | Zhang L, Steinmaus C, Eastmond DA, Xin XK, Smith MT. Formaldehyde exposure and leukemia: A new meta-analysis and potential mechanisms. Mutat Res Mutat Res [Internet]. 2009 Mar [cited 2018 Apr 26];681(2–3):150–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18674636 | |
dc.relation | Chiarella P, Tranfo G, Pigini D, Carbonari D. Is it possible to use biomonitoring for the quantitative assessment of formaldehyde occupational exposure? Biomark Med [Internet]. 2016 Dec 7 [cited 2018 May 15];10(12):1287–303. Available from: http://www.futuremedicine.com/doi/10.2217/bmm-2016-0146 | |
dc.relation | Coggon D, Harris EC, Poole J, Palmer KT. Extended follow-up of a cohort of british chemical workers exposed to formaldehyde. J Natl Cancer Inst [Internet]. 2003 Nov 5 [cited 2018 Sep 5];95(21):1608–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14600093 | |
dc.relation | EL PARLAMENTO EUROPEO Y EL CONSEJO DE LA UNIÓN EUROPEA. DIRECTIVA 2004/37/CE DEL PARLAMENTO EUROPEO Y DEL CONSEJO [Internet]. [cited 2018 Nov 19]. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:158:0050:0076:ES:PDF | |
dc.relation | United States Department of Health, Education, and Welfare PH, Service, Center for Disease Control NI for OS, and Health. Criteria for a Recommended Standard, Occupational Exposure to Formldehyde, DHEW (NIOSH) Publication 77-126. [Internet]. [cited 2018 Sep 24]. Available from: https://www.cdc.gov/niosh/pdfs/77-126a.pdf?id=10.26616/NIOSHPUB77126 | |
dc.relation | Auerbach C, Moutschen-Dahmen M, Moutschen J. Genetic and cytogenetical effects of formaldehyde and related compounds. Mutat Res [Internet]. 1977 [cited 2018 Sep 24];39(3–4):317–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/331091 | |
dc.relation | Obe G, Beek B. Mutagenic activity of aldehydes. Drug Alcohol Depend [Internet]. [cited 2018 Sep 24];4(1–2):91–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/574448 | |
dc.relation | Swenberg JA, Kerns WD, Mitchell RI, Gralla EJ, Pavkov KL. Induction of squamous cell carcinomas of the rat nasal cavity by inhalation exposure to formaldehyde vapor. Cancer Res [Internet]. 1980 Sep [cited 2018 Nov 19];40(9):3398–402. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7427950 | |
dc.relation | Environmental Protection Agency. Report to Congress on Indoor Air Quality, Volume II: Assessment and Control of Indoor Air Pollution, 1989. 1989. | |
dc.relation | Pira E, Romano C, Verga F, La Vecchia C. Mortality from lymphohematopoietic neoplasms and other causes in a cohort of laminated plastic workers exposed to formaldehyde. Cancer Causes Control [Internet]. 2014 Oct 23 [cited 2018 Nov 21];25(10):1343–9. Available from: http://link.springer.com/10.1007/s10552-014-0440-0 | |
dc.relation | Beane Freeman LE, Blair A, Lubin JH, Stewart PA, Hayes RB, Hoover RN, et al. Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries: the National Cancer Institute Cohort. J Natl Cancer Inst [Internet]. 2009 May 20 [cited 2018 Sep 5];101(10):751–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19436030 | |
dc.relation | Beane Freeman LE, Blair A, Lubin JH, Stewart PA, Hayes RB, Hoover RN, et al. Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries: the National Cancer Institute Cohort. J Natl Cancer Inst [Internet]. 2009 May 20 [cited 2018 Sep 5];101(10):751–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19436030 | |
dc.relation | Marsh GM, Youk AO. Reevaluation of mortality risks from nasopharyngeal cancer in the formaldehyde cohort study of the National Cancer Institute. Regul Toxicol Pharmacol [Internet]. 2005 Aug [cited 2018 Sep 24];42(3):275–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15978711 | |
dc.relation | ACGIH. TLVs and BEIs Threshold Limit Values, for chemical substances and Physical Agents. Biological Exposure Indices.2022. 2022. 1–280 p. | |
dc.relation | Ministerio de trabajo y asuntos sociales. Límites de exposición profesional para agentes químicos en España 2021 [Internet]. 2022 [cited 2022 Feb 8]. Available from: http://cpage.mpr.gob.es | |
dc.relation | Nielsen GD, Larsen ST, Wolkoff P. Recent trend in risk assessment of formaldehyde exposures from indoor air. Arch Toxicol [Internet]. 2013 Jan [cited 2018 Apr 26];87(1):73–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23179754 | |
dc.relation | Thavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K. Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol [Internet]. 2012 Sep [cited 2018 Nov 22];16(3):400–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23248474 | |
dc.relation | Piva Peteffi ab G, Basso da Silva luciano, Zilles Hahn roberta, Venzon antunes M, rhoden liliane, elias anschau M, et al. Simple and fast headspace-gas chromatographic determination of formic acid in urine: application to the assessment of occupational exposure to formaldehyde. Appl Res Toxicol [Internet]. 2015 [cited 2018 Apr 26];11:40–5. Available from: http://www.appliedrestoxicol.com/Artigos/Vol1Num1/Art_06.pdf | |
dc.relation | Farmer EE DC. Reactive electrophile species. J Curr Opin Plant Biol 10(4) [Internet]. 2007 [cited 2021 Aug 26];10(4):380–386. Available from: www.sciencedirect.com | |
dc.relation | Chang JR XD. Effects of formaldehyde on the activity of superoxide dismutases and glutathione peroxidase and the concentration of malondialdehyde. J Hyg Res [Internet]. 2006 [cited 2021 Aug 26];35(5):653–655. Available from: https://pubmed.ncbi.nlm.nih.gov/17086726/ | |
dc.relation | Basu AK. Molecular Sciences DNA Damage, Mutagenesis and Cancer. [cited 2022 Jan 6]; Available from: www.mdpi.com/journal/ijms | |
dc.relation | Barker S, Weinfeld M, Murray D. DNA–protein crosslinks: their induction, repair, and biological consequences. Mutat Res Mutat Res. 2005 Mar 1;589(2):111–35. | |
dc.relation | Ridpath JR, Nakamura A, Tano K, Luke AM, Sonoda E, Arakawa H, et al. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res [Internet]. 2007 Dec 1 [cited 2022 Jan 6];67(23):11117–22. Available from: https://pubmed.ncbi.nlm.nih.gov/18056434/ | |
dc.relation | Cohen Hubal EA, Schlosser PM, Conolly RB, Kimbell JS. Comparison of Inhaled Formaldehyde Dosimetry Predictions with DNA–Protein Cross-Link Measurements in the Rat Nasal Passages. Toxicol Appl Pharmacol. 1997 Mar 1;143(1):47–55. | |
dc.relation | Schmid O, Speit G. Genotoxic effects induced by formaldehyde in human blood and implications for the interpretation of biomonitoring studies. Mutagenesis [Internet]. 2007 Jan [cited 2022 Jan 6];22(1):69–74. Available from: https://pubmed.ncbi.nlm.nih.gov/17158519/ | |
dc.relation | Merk O, Speit G. Significance of Formaldehyde-Induced DNA-Protein Crosslinks for Mutagenesis. Environ Mol Mutagen. 1998;32:260–8. | |
dc.relation | Bono R, Vincenti M, Schiliro T, Scursatone E, Pignata C, Gilli G. N -Methylenvaline in a group of subjects occupationally exposed to formaldehyde ଝ. 2006;161:10–7. | |
dc.relation | Arango V S. Biomarcadores para la evaluación de riesgo en la salud humana. Rev Fac Nac Salud Pública [Internet]. 2011 [cited 2018 Nov 23];30(1):75–82. Available from: http://www.scielo.org.co/pdf/rfnsp/v30n1/v30n1a09.pdf | |
dc.relation | Albertini R, Bird M, Doerrer N, Needham L, Robison S, Sheldon L, et al. The use of biomonitoring data in exposure and human health risk assessments. Environ Health Perspect [Internet]. 2006 Nov [cited 2018 May 20];114(11):1755–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17107864 | |
dc.relation | Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc [Internet]. 2006 Jun [cited 2018 Nov 6];1(1):23–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17406208 | |
dc.relation | Costa S., Costa C., Valdiglesias V., Coelho P., Silva S., Silva Santos L., Porto B., Laffon B. TJP. Abstracts of the 12th International Comet Assay Workshop held at the University of Navarra, Pamplona, Spain, 29–31 August 2017 (https://icaw.vito.be/). Mutagenesis [Internet]. 2017 Dec 31 [cited 2018 May 15];32(6):e1–28. Available from: https://academic.oup.com/mutage/article/32/6/e1/4844756 | |
dc.relation | Tonina, E., Garcete, T., Samaniego, M.J., Aveiro, R., Aranda, A.G., Ortiz, J., Benítez, C., Widjaja, P., Castiglioni, D.M., Segovia, J.L., & Diana DF. TEST DEL COMETA EN SANGRE PERIFÉRICA DE ESTUDIANTES FUMADORES DE LA FACULTAD DE CIENCIAS DE LA SALUD, UNIVERSIDAD CATÓLICA NUESTRA SEÑORA DE LA ASUNCIÓN. Cienc e Investig Med Estud Latinoam. 2017 Apr 3;22(1). | |
dc.relation | Mozaffarieh M, Schoetzau A, Sauter M, Grieshaber M, Orgül S, Golubnitschaja O, et al. Comet assay analysis of single–stranded DNA breaks in circulating leukocytes of glaucoma patients. Mol Vis [Internet]. 2008 Aug 29 [cited 2022 May 3];14:1584. Available from: /pmc/articles/PMC2526097/ | |
dc.relation | Pitarque M, Vaglenov A, Nosko M, Hirvonen A, Norppa H, Creus A, et al. Evaluation of DNA damage by the Comet assay in shoe workers exposed to toluene and other organic solvents. Mutat Res - Genet Toxicol Environ Mutagen. 1999 Apr 26;441(1):115–27. | |
dc.relation | Fenech M. The micronucleus assay determination of chromosomal level DNA damage. Methods Mol Biol [Internet]. 2008 [cited 2018 May 16];410:185–216. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18642602 | |
dc.relation | Ruíz-Bernés S, Flores-García A, Luisa Ramos-Ibarra M, Raquel Moya-García M, Aguíar-García P, Sánchez-Gutiérrez R, et al. Micronúcleos en células de mucosa bucal como biomarcador de riesgo para cáncer. Rev Fuente nueva época Año [Internet]. [cited 2018 Nov 6];4(13). Available from: http://dspace.uan.mx:8080/jspui/bitstream/123456789/930/1/13-5 Micronucleos.pdf | |
dc.relation | Tolbert PE, Shy CM, Allen JW. Micronuclei and other nuclear anomalies in buccal smears: a field test in snuff users. Am J Epidemiol [Internet]. 1991 Oct 15 [cited 2018 Nov 23];134(8):840–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1951279 | |
dc.relation | Torres-Bugarín O, Guadalupe Zavala-Cerna M, Macriz-Romero N, Flores-García A, Luisa Ramos-Ibarra M, en Olivia Torres-Bugarín DC. Procedimientos básicos de la prueba de micronúcleos y anormalidades nucleares en células exfoliadas de mucosa oral. [cited 2018 Nov 6]; Available from: www.medigraphic.org.mx | |
dc.relation | Costa S, García-Lestón J, Coelho M, Coelho P, Costa C, Silva S, et al. Cytogenetic and Immunological Effects Associated with Occupational Formaldehyde Exposure. J Toxicol Environ Heal Part A [Internet]. 2013 Feb 15 [cited 2018 Apr 26];76(4–5):217–29. Available from: http://www.tandfonline.com/doi/abs/10.1080/15287394.2013.757212 | |
dc.relation | Decordier I, Mateuca R, Kirsch-Volders M. Micronucleus assay and labeling of centromeres with FISH technique. Methods Mol Biol [Internet]. 2011 [cited 2022 Jan 24];691:115–36. Available from: https://pubmed.ncbi.nlm.nih.gov/20972750/ | |
dc.relation | Natarajan AT. Chromosome aberrations: past, present and future. Mutat Res. 2002;504:3–16. | |
dc.relation | Tucker JD, Preston RJ. Chromosome aberrations, micronuclei, aneuploidy, sister chromatid exchanges, and cancer risk assessment. Mutat Res. 1996;365:147–59. | |
dc.relation | Institute NHGR. Anomalías Cromosómicas [Internet]. [cited 2022 Jan 24]. Available from: https://www.genome.gov/node/14706 | |
dc.relation | Sunada S, Haskins JS, Kato TA. Sister chromatid exchange as a genotoxic stress marker. In: Methods in Molecular Biology [Internet]. Humana Press Inc.; 2019 [cited 2020 Sep 19]. p. 61–8. Available from: https://pubmed.ncbi.nlm.nih.gov/31267420/ | |
dc.relation | Wilson DM, Thompson LH. Molecular mechanisms of sister-chromatid exchange. Mutat Res Mol Mech Mutagen. 2007 Mar 1;616(1–2):11–23. | |
dc.relation | Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res - Fundam Mol Mech Mutagen. 2000 Nov 20;455(1–2):29–60. | |
dc.relation | Roberts LJ, Milne GL. Isoprostanes. 2009 [cited 2021 Aug 25]; Available from: http://www.jlr.org | |
dc.relation | Vianed D, Suárez M, Lázaro L, Del Valle Pérez O, Gabriela L, Domínguez D, et al. Metodología y aplicaciones de la citometría de flujo para el inmunofenotipaje de las leucemias agudas Methodology and applications of flow cytometry for immunophenotyping of acute leukemias. Rev Cuba Hematol, Inmunol y Hemoter [Internet]. 2015 [cited 2022 Jan 6];31(3):242–53. Available from: http://scielo.sld.cu | |
dc.relation | Hosgood HD, Zhang L, Tang X, Vermeulen R, Hao Z, Shen M, et al. Occupational exposure to formaldehyde and alterations in lymphocyte subsets. Am J Ind Med. 2013;56(2):252–7. | |
dc.relation | Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, et al. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics. 2011;6(3):293–9. | |
dc.relation | Rodríguez Dorantes Mauricio, Téllez Ascencio Nelly, Cerbón Marco A., López Marisol CA. Metilación del ADN: un fenómeno epigenético de importancia médica. Rev invest clín [Internet]. 2004 [cited 2022 May 3];56(1):56–1. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0034-83762004000100010 | |
dc.relation | Lutz W, Nowakowska-Świrta E. Gene p53 mutations, protein p53, and anti-p53 antibodies as biomarkers of cancer process. Int J Occup Med Environ Health [Internet]. 2002 [cited 2022 May 3];15(3):209–18. Available from: https://pubmed.ncbi.nlm.nih.gov/12462448/ | |
dc.relation | Torrens M. Interpretación Clínica del Hemograma. Rev Médica Clínica Las Condes [Internet]. 2015 Nov 1 [cited 2020 Oct 4];26(6):713–25. Available from: http://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-interpretaciyn-clynica-del-hemograma-S0716864015001480 | |
dc.relation | Kim CW, Song JS, Ahn YS, Park SH, Park JW NJ, CS H. Asma por formaldehído. Update en Alergia [Internet]. 2007 [cited 2020 Oct 4];1(4):440–5. Available from: www.jarpyo.es | |
dc.relation | Califf RM. Minireview Biomarker definitions and their applications. Exp Biol Med. 2018;243:213–21. | |
dc.relation | Julian PT Higgins, Sally Green. Manual Cochrane de revisiones sistemáticas de intervenciones [Internet]. 5.1.0. 2011 [cited 2020 Oct 4]. Available from: https://es.cochrane.org/sites/es.cochrane.org/files/public/uploads/Manual_Cochrane_510_reduit.pdf | |
dc.relation | Urrutia G, Bonfill X. Revisiones sistemáticas: una herramienta clave para la toma de decisiones clínicas y sanitarias. Rev Esp Salud Publica [Internet]. 2014 [cited 2021 Aug 19];88(1):1–3. Available from: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1135-57272014000100001&lng=es&nrm=iso&tlng=es | |
dc.relation | Mombaque dos Santos W, Regina Secoli S, Alves de Araújo Püschel V. El enfoque del Joanna Briggs Institute para revisiones sistemáticas. 2018 [cited 2021 Aug 19]; Available from: www.eerp.usp.br/rlae | |
dc.relation | Site Home Page | Joanna Briggs Institute [Internet]. [cited 2022 Jan 11]. Available from: https://jbi.global/ | |
dc.relation | Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Qureshi R, Mattis P, Lisy K MP-F. Chapter 7: Systematic reviews of etiology and risk. JBI Man Evid Synth. 2020; | |
dc.relation | Ministerio de Salud. Resolución 8430 de 1993. Minist Salud y Protección Soc República Colomb. 1993;1993(Octubre 4):1–19. | |
dc.relation | Hopf NB, Bolognesi C, Danuser B, Wild P. Biological monitoring of workers exposed to carcinogens using the buccal micronucleus approach: A systematic review and meta-analysis [Internet]. Vol. 781, Mutation Research - Reviews in Mutation Research. Elsevier B.V.; 2019 [cited 2020 Sep 10]. p. 11–29. Available from: https://pubmed.ncbi.nlm.nih.gov/31416572/ | |
dc.relation | Regazzoni LG, Grigoryan H, Ji Z, Chen X, Daniels SI, Huang D, et al. Using lysine adducts of human serum albumin to investigate the disposition of exogenous formaldehyde in human blood. Toxicol Lett [Internet]. 2017 Feb 15 [cited 2022 Jan 23];268:26–35. Available from: https://pubmed.ncbi.nlm.nih.gov/28104429/ | |
dc.relation | Zendehdel R, Fazli Z, Mazinani M. Neurotoxicity effect of formaldehyde on occupational exposure and influence of individual susceptibility to some metabolism parameters. Environ Monit Assess. 2016 Nov 1;188(11). | |
dc.relation | Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. Mutat Res Rev Mutat Res [Internet]. 2016 Apr 1 [cited 2022 Jan 23];768:27–45. Available from: https://pubmed.ncbi.nlm.nih.gov/27234561/ | |
dc.relation | Fornander L, Graff P, Wåhlén K, Ydreborg K, Flodin U, Leanderson P, et al. Airway Symptoms and Biological Markers in Nasal Lavage Fluid in Subjects Exposed to Metalworking Fluids. Stewart JP, editor. PLoS One [Internet]. 2013 Dec 31 [cited 2018 Apr 26];8(12):e83089. Available from: http://dx.plos.org/10.1371/journal.pone.0083089 | |
dc.relation | Guo YJ, Lin DF, Yi JH, Kuang D, Deng HX, Li XH, Zhang ZH WT. The increase of micronuclei frequencies of peripheral blood lymphocyte in plywood workers exposed accumulatively to formaldehyde. Chinese J Ind Hyg Occup Dis [Internet]. 2012 [cited 2022 Jan 23];17–20. Available from: https://pubmed.ncbi.nlm.nih.gov/22730682/ | |
dc.relation | Speit G, Ladeira C, Linsenmeyer R, Schütz P, Högel J. Re-evaluation of a reported increased micronucleus frequency in lymphocytes of workers occupationally exposed to formaldehyde. Mutat Res [Internet]. 2012 May 15 [cited 2022 Jan 23];744(2):161–6. Available from: https://pubmed.ncbi.nlm.nih.gov/22405975/ | |
dc.relation | Goldstein BD. Hematological and toxicological evaluation of formaldehyde as a potential cause of human leukemia. Hum Exp Toxicol [Internet]. 2011 Jul [cited 2022 Jan 23];30(7):725–35. Available from: https://pubmed.ncbi.nlm.nih.gov/20729258/ | |
dc.relation | Wieslander G, Norbäck D. Ocular symptoms, tear film stability, nasal patency, and biomarkers in nasal lavage in indoor painters in relation to emissions from water-based paint. Int Arch Occup Environ Health [Internet]. 2010 Oct [cited 2022 Jan 23];83(7):733–41. Available from: https://pubmed.ncbi.nlm.nih.gov/20549228/ | |
dc.relation | Jakab MG, Klupp T, Besenyei K, Biró A, Major J, Tompa A. Formaldehyde-induced chromosomal aberrations and apoptosis in peripheral blood lymphocytes of personnel working in pathology departments. Mutat Res [Internet]. 2010 Apr 30 [cited 2022 Jan 23];698(1–2):11–7. Available from: https://pubmed.ncbi.nlm.nih.gov/20193773/ | |
dc.relation | Neuss S, Speit G. Further characterization of the genotoxicity of formaldehyde in vitro by the sister chromatid exchange test and co-cultivation experiments. Mutagenesis [Internet]. 2008 Sep [cited 2022 Jan 23];23(5):355–7. Available from: https://pubmed.ncbi.nlm.nih.gov/18477654/ | |
dc.relation | Iarmarcovai G, Bonassi S, Sari-Minodier I, Baciuchka-Palmaro M, Botta A, Orsière T. Exposure to genotoxic agents, host factors, and lifestyle influence the number of centromeric signals in micronuclei: a pooled re-analysis. Mutat Res [Internet]. 2007 Feb 3 [cited 2022 Jan 23];615(1–2):18–27. Available from: https://pubmed.ncbi.nlm.nih.gov/17198715/ | |
dc.relation | Soogarun S, Suwansaksri J W V. High sister chromatid exchange among a sample of traffic policemen in Bangkok, Thailand - PubMed. Southeast Asian J Trop Med Public Heal [Internet]. 2006 [cited 2022 Jan 23]; Available from: https://pubmed.ncbi.nlm.nih.gov/17120983/ | |
dc.relation | Kleber M, Föllmann W, Blaszkewicz M. Assessing the genotoxicity of industrial cutting fluids under conditions of use. Toxicol Lett [Internet]. 2004 Jun 15 [cited 2022 Jan 23];1(151):211–7. Available from: https://www.infona.pl//resource/bwmeta1.element.elsevier-d113fbee-b10b-3625-8390-1b7905da3cec | |
dc.relation | Suruda A, Schulte P, Boeniger M, Hayes RB, Livingston GK, Steenland K, Stewart P, Herrick R, Douthit D FM. Cytogenetic effects of formaldehyde exposure in students of mortuary science. Cancer Epidemiol Biomarkers Prev [Internet]. 1993 [cited 2022 Jan 23];2:453–60. Available from: https://www.researchgate.net/publication/14979372_Cytogenetic_effects_of_formaldehyde_exposure_in_students_of_mortuary_science | |
dc.relation | Kirsch-Volders M, Fenech M, Bolognesi C. Validity of the Lymphocyte Cytokinesis-Block Micronucleus Assay (L-CBMN) as biomarker for human exposure to chemicals with different modes of action: A synthesis of systematic reviews. Mutat Res Genet Toxicol Environ Mutagen [Internet]. 2018 Dec 1 [cited 2022 Jan 23];836(Pt A):47–52. Available from: https://pubmed.ncbi.nlm.nih.gov/30389162/ | |
dc.relation | Mai W, Liu X, Su G, Zhou W, Wen Z, Lu D. Elevation of Circulating Th17/Th22 Cells Exposed to Low-Level Formaldehyde and Its Relevance to Formaldehyde-Induced Occupational Allergic Contact Dermatitis. J Occup Environ Med [Internet]. 2017 Sep 1 [cited 2022 Jan 23];59(9):817–21. Available from: https://pubmed.ncbi.nlm.nih.gov/28697061/ | |
dc.relation | Bassig BA, Zhang L, Vermeulen R, Tang X, Li G, Hu W, et al. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene. Carcinogenesis [Internet]. 2016 Jul 1 [cited 2022 Jan 23];37(7):692–700. Available from: https://pubmed.ncbi.nlm.nih.gov/27207665/ | |
dc.relation | Aglan MA, Mansour GN. Hair straightening products and the risk of occupational formaldehyde exposure in hairstylists. Drug Chem Toxicol [Internet]. 2020;43(5):488–95. Available from: https://doi.org/10.1080/01480545.2018.1508215 | |
dc.relation | Barbosa E, Laura A, Peteffi GP, Schneider A, Müller D, Rovaris D, et al. Increase of global DNA methylation patterns in beauty salon workers exposed to low levels of formaldehyde. 2019;1304–14 | |
dc.relation | Pala M, Ugolini D, Ceppi M, Rizzo F, Maiorana L, Bolognesi C, et al. Occupational exposure to formaldehyde and biological monitoring of Research Institute workers. Cancer Detect Prev [Internet]. 2008 Jan [cited 2018 Apr 26];32(2):121–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18639989 | |
dc.relation | Bono, R., Romanazzi, V., Munnia, A., Piro, S., Allione, A., Ricceri, F., Guarrera, S., Pignata, C., Matullo, G., Wang, P., Giese, R. W., & Peluso M. Malondialdehyde-deoxyguanosine adduct formation in workers of pathology wards: the role of air formaldehyde exposure. Chem Res Toxicol [Internet]. 2012 Aug 16 [cited 2021 Aug 25];23(8):1342–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20707408/ | |
dc.relation | Attia D, Mansour N, Taha F, Seif El Dein A. Assessment of lipid peroxidation and p53 as a biomarker of carcinogenesis among workers exposed to formaldehyde in the cosmetic industry. Toxicol Ind Health [Internet]. 2016 Jun 5 [cited 2018 Nov 21];32(6):1097–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25193344 | |
dc.relation | Souza AD, Devi R. Cytokinesis blocked micronucleus assay of peripheral lymphocytes revealing the genotoxic effect of formaldehyde exposure. Clin Anat [Internet]. 2014 Apr [cited 2018 May 15];27(3):308–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23893659 | |
dc.relation | Orsière, T., Sari-Minodier, I., Iarmarcovai, G, Botta A. Genotoxic risk assessment of pathology and anatomy laboratory workers exposed to formaldehyde by use of personal air sampling and analysis of DNA damage in peripheral lymphocytes. 2006;605:30–41. | |
dc.relation | Costa S, Coelho P, Costa C, Silva S, Mayan O, Santos LS, et al. Genotoxic damage in pathology anatomy laboratory workers exposed to formaldehyde. Toxicology [Internet]. 2008 Oct 30 [cited 2022 Jan 14];252(1–3):40–8. Available from: https://pubmed.ncbi.nlm.nih.gov/18721846/ | |
dc.relation | Costa S, Coelho P, Costa C, Silva S, Mayan O, Santos LS, et al. Occupational Exposure to Formaldehyde: Genotoxic Risk Evaluation By Comet Assay And Micronucleus Test Using Human Peripheral Lymphocytes. Toxicology. 2011;252(1–3):40–8 | |
dc.relation | Costa S, García-Lestón J, Coelho M, Coelho P, Costa C, Silva S, et al. Cytogenetic and Immunological Effects Associated with Occupational Formaldehyde Exposure. J Toxicol Environ Heal Part A [Internet]. 2013 Feb 15 [cited 2018 May 15];76(4–5):217–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23514064 | |
dc.relation | Costa S, Costa C, Madureira J, Valdiglesias V, Teixeira-Gomes A, Guedes de Pinho P, et al. Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility. Environ Res [Internet]. 2019 Dec 1 [cited 2020 Sep 10];179:108740. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0013935119305377 | |
dc.relation | Ladeira C, Viegas S, Carolino E, Prista J, Gomes MC, Brito M. Genotoxicity biomarkers in occupational exposure to formaldehyde—The case of histopathology laboratories. Mutat Res Toxicol Environ Mutagen [Internet]. 2011 Mar 18 [cited 2018 Apr 26];721(1):15–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21256246 | |
dc.relation | Ladeira C, Viegas S, Carolino E, Gomes MC, Brito M. The influence of genetic polymorphisms in XRCC3 and ADH5 genes on the frequency of genotoxicity biomarkers in workers exposed to formaldehyde. Environ Mol Mutagen [Internet]. 2013 Apr;54(3):213–21. Available from: http://search.ebscohost.com/login.aspx?direct=true&db=cmedm&AN=23355119&lang=es&site=ehost-live | |
dc.relation | Ladeira C, Pádua M, Veiga L, Viegas S, Carolino E, Gomes MC, et al. Influence of serum levels of Vitamins A, D, and E as well as Vitamin D receptor polymorphisms on micronucleus frequencies and other biomarkers of genotoxicity in workers exposed to formaldehyde. J Nutrigenet Nutrigenomics. 2016;8(4–6):205–14. | |
dc.relation | Jiang S, Yu L, Cheng J, Leng S, Dai Y, Zhang Y, et al. Genomic damages in peripheral blood lymphocytes and association with polymorphisms of three glutathione S-transferases in workers exposed to formaldehyde. 2010;695:9–15. | |
dc.relation | Bouraoui S, Mougou S, Brahem A, Tabka F, Ben Khelifa H, Harrabi I, et al. A combination of micronucleus assay and fluorescence in situ hybridization analysis to evaluate the genotoxicity of formaldehyde. Arch Environ Contam Toxicol [Internet]. 2012 Feb;64(2):337–44. Available from: http://search.ebscohost.com/login.aspx?direct=true&db=cmedm&AN=23132144&lang=es&site=ehost-live | |
dc.relation | Lin D, Guo Y, Yi J, Kuang D, Li X, Deng H, et al. Occupational exposure to formaldehyde and genetic damage in the peripheral blood lymphocytes of plywood workers. J Occup Health [Internet]. 2013;55(4):284–91. Available from: https://www.jstage.jst.go.jp/article/joh/55/4/55_12-0288-OA/_pdf/-char/en | |
dc.relation | Peteffi GP, Da Silva LB, Antunes MV, Wilhelm C, Valandro ET, Glaeser J, et al. Evaluation of genotoxicity in workers exposed to low levels of formaldehyde in a furniture manufacturing facility. Toxicol Ind Health [Internet]. 2015 Oct 9 [cited 2018 Apr 26];32(10):1763–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25971585 | |
dc.relation | Aydın S, Canpınar H, Ündeğer Ü, Güç D, Çolakoğlu M, Kars A, et al. Assessment of immunotoxicity and genotoxicity in workers exposed to low concentrations of formaldehyde. Arch Toxicol [Internet]. 2013 Jan 26 [cited 2018 Nov 21];87(1):145–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23100157 | |
dc.relation | Costa S, Carvalho S, Costa C, Coelho P, Silva S, Santos LS, et al. Increased levels of chromosomal aberrations and DNA damage in a group of workers exposed to formaldehyde. Mutagenesis [Internet]. 2015 Jul 1 [cited 2018 May 15];30(4):463–73. Available from: https://academic.oup.com/mutage/article-lookup/doi/10.1093/mutage/gev002 | |
dc.relation | Zendehdel R, Vahabi M, Sedghi R. Estimation of formaldehyde occupational exposure limit based on genetic damage in some Iranian exposed workers using benchmark dose method. 2018; | |
dc.relation | Lan Q, Smith MT, Tang X, Guo W, Vermeulen R, Ji Z, et al. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde. Carcinogenesis. 2014;36(1):160–7. | |
dc.relation | Lan Q, Smith MT, Tang X, Guo W, Vermeulen R, Ji Z, et al. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde. Carcinogenesis. 2014;36(1):160–7. | |
dc.relation | Costa S, Teixeira JP. Formaldehyde: Human exposure, metabolism and potential health effects. Formaldehyde: Synthesis, Applications and Potential Health Effects. 2015. | |
dc.relation | Savage JRK. Classification and relationships of induced chromosomal structural changes. Annot J Med Genet. 1975;12:103–22. | |
dc.relation | Jia X, Jia Q, Zhang Z, Gao W, Zhang X, Niu Y, et al. Effects of Formaldehyde on Lymphocyte Subsets and Cytokines in the Peripheral Blood of Exposed Workers. Fugmann SD, editor. PLoS One [Internet]. 2014 Aug 26 [cited 2018 Nov 21];9(8):e104069. Available from: https://dx.plos.org/10.1371/journal.pone.0104069 | |
dc.relation | Shaham J, Bomstein Y, Gurvich R, Rashkovsky M, Kaufman Z. DNA-protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde. Occup Environ Med. 2003;60(6):403–9. | |
dc.relation | Ladeira C, Viegas S, Carolino E, Prista J, Gomes MC, Brito M. Genotoxicity biomarkers in occupational exposure to formaldehyde-The case of histopathology laboratories. Mutat Res - Genet Toxicol Environ Mutagen [Internet]. 2011 [cited 2018 May 15];721(1):15–20. Available from: https://ac-els-cdn-com.ezproxy.unal.edu.co/S1383571811000155/1-s2.0-S1383571811000155-main.pdf?_tid=e50fc88b-150a-46d4-9c58-a7aa624f3874&acdnat=1526429303_f90144a4f78f755b5b3569c6229edca1 | |
dc.relation | WHO. Air Quality Guidelines for Europe Second Edition. 2010;1–287. | |
dc.relation | Kautiainen A, Törnqvist M, Anderstam B, Vaca CE. In vivo hemoglobin dosimetry of malonaldehyde and ethene in mice after induction of lipid peroxidation. effects of membrane lipid fatty acid composition. Carcinogenesis. 1991 Jun;12(6):1097–102. | |
dc.relation | Carraro E, Gasparini S, Gilli G. Identification of a chemical marker of environmental exposure to formaldehyde. Environ Res [Internet]. 1999 [cited 2022 Jan 14];80(2 Pt 1):132–7. Available from: https://pubmed.ncbi.nlm.nih.gov/10092405/ | |
dc.relation | Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis [Internet]. 2007 Mar [cited 2022 Jan 14];28(3):625–31. Available from: https://pubmed.ncbi.nlm.nih.gov/16973674/ | |
dc.relation | Dafeng Lin1, Yaojing Guo1, Jihu Yi2, Dan Kuang1, Xiaohai Li1, Huaxin Deng1, et al. Occupational Exposure to Formaldehyde and Genetic Damage in the Peripheral Blood Lymphocytes of Plywood Workers. J Occup Heal [Internet]. 2013 [cited 2018 May 15];55. Available from: https://www.jstage.jst.go.jp/article/joh/55/4/55_12-0288-OA/_pdf/-char/en | |
dc.relation | Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, et al. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat Res [Internet]. 2008 Jul [cited 2022 Jan 14];659(1–2):93–108. Available from: https://pubmed.ncbi.nlm.nih.gov/18514568/ | |
dc.relation | IARC WORKING GROUP ON THE EVALUATION OF THE CARCINOGENIC RISK OF CHEMICALS TO HUMANS. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans - Volume 88 - Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol [Internet]. 2006 [cited 2018 Sep 5]. Available from: http://monographs. | |
dc.relation | Szende B, Tyihák E. Effect of formaldehyde on cell proliferation and death. 2010;34:1273–82. | |
dc.relation | Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res [Internet]. 2007 Feb 1 [cited 2022 Feb 10];67(3):876–80. Available from: https://pubmed.ncbi.nlm.nih.gov/17283117/ | |
dc.relation | Aydın S, Canpınar H, Ündeğer Ü, Güç D, Çolakoğlu M, Kars A, et al. Assessment of immunotoxicity and genotoxicity in workers exposed to low concentrations of formaldehyde. Arch Toxicol. 2013;87(1):145–53. | |
dc.relation | Seow WJ, Zhang L, Vermeulen R, Tang X, Hu W, Bassig BA, et al. Circulating immune/inflammation markers in Chinese workers occupationally exposed to formaldehyde. Carcinogenesis [Internet]. 2015 Aug [cited 2018 Nov 21];36(8):852–7. Available from: https://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgv055 | |
dc.relation | Gallart MT. Interleuquinas y su papel en las respuestas inmunes. [cited 2022 Jan 19]; Available from: https://www.esteve.org/wp-content/uploads/2018/01/136632.pdf | |
dc.relation | Romanazzi V, Pirro V, Bellisario V, Mengozzi G, Peluso M, Pazzi M, et al. Science of the Total Environment 15-F 2t isoprostane as biomarker of oxidative stress induced by tobacco smoke and occupational exposure to formaldehyde in workers of plastic laminates. Sci Total Environ [Internet]. 2013;442:20–5. Available from: http://dx.doi.org/10.1016/j.scitotenv.2012.10.057 | |
dc.relation | Annesi-Maesano I, Dab W. Air pollution and the lung: Epidemiological approach. Medecine/Sciences. 2006;22(6–7):589–94. | |
dc.relation | Jones KH, York TP, Juusola J, Ferreira-Gonzalez A, Maes HH, Jackson-Cook C. Genetic and environmental influences on spontaneous micronuclei frequencies in children and adults: a twin study. Mutagenesis [Internet]. 2011 Nov [cited 2022 Jan 19];26(6):745. Available from: /pmc/articles/PMC3198889/ | |
dc.relation | Strange RC, Jones PW, Fryer AA. Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett [Internet]. 2000 Mar 15 [cited 2022 Jan 20];112–113:357–63. Available from: https://pubmed.ncbi.nlm.nih.gov/10720752/ | |
dc.relation | Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006 Mar 10;160(1):1–40. | |
dc.relation | Dringen R, Brandmann M, Hohnholt MC, Blumrich EM. Glutathione-Dependent Detoxification Processes in Astrocytes. Neurochem Res [Internet]. 2015 Dec 1 [cited 2022 Jan 20];40(12):2570–82. Available from: https://pubmed.ncbi.nlm.nih.gov/25428182/ | |
dc.relation | Gonzalez FJ. The 2006 Bernard B. Brodie Award Lecture. Cyp2e1. Drug Metab Dispos [Internet]. 2007 [cited 2022 Jan 21];35(1):1–8. Available from: https://pubmed.ncbi.nlm.nih.gov/17020953/ | |
dc.relation | Ji Y, Tulin A V. The roles of PARP1 in gene control and cell differentiation. Curr Opin Genet Dev. 2010 Oct 1;20(5):512–8. | |
dc.relation | Dokal I. Fanconi’s anaemia and related bone marrow failure syndromes. Br Med Bull [Internet]. 2006 Jan 1 [cited 2022 Jan 21];77–78(1):37–53. Available from: https://academic.oup.com/bmb/article/77-78/1/37/324287 | |
dc.relation | Hess CJ, Ameziane N, Schuurhuis GJ, Errami A, Denkers F, Kaspers GJL, et al. Hypermethylation of the FANCC and FANCL promoter regions in sporadic acute leukaemia. Cell Oncol [Internet]. 2008 [cited 2022 Jan 21];30(4):299–306. Available from: https://pubmed.ncbi.nlm.nih.gov/18607065/ | |
dc.relation | Kottemann M, Smogorzewska A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature, 493(7432), 356–363 | 10.1038/nature11863. Nature [Internet]. 2013 Jan 17 [cited 2022 Jan 21];493(356). Available from: https://pubmed.ncbi.nlm.nih.gov/23325218/ | |
dc.relation | Brenneman MA, Weiss AE, Nickoloff JA, Chen DJ. XRCC3 is required for efficient repair of chromosome breaks by homologous recombination. Mutat Res Repair. 2000 Mar 20;459(2):89–97. | |
dc.relation | Just W, Zeller J, Riegert C, Speit G. Genetic polymorphisms in the formaldehyde dehydrogenase gene and their biological significance. Toxicol Lett [Internet]. 2011 Nov 30 [cited 2022 Jan 20];207(2):121–7. Available from: https://pubmed.ncbi.nlm.nih.gov/21920416/ | |
dc.relation | Raimondi S, Johansson H, Maisonneuve P, Gandini S. Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis [Internet]. 2009 [cited 2022 Jan 20];30(7):1170–80. Available from: https://pubmed.ncbi.nlm.nih.gov/19403841/ | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Biomarcadores para la vigilancia médica ocupacional a formaldehído: Una revisión sistemática de la literatura | |
dc.type | Trabajo de grado - Maestría | |