dc.contributorCombariza Bayona, David Andrés
dc.contributorAlzáte Granados, Juan Pablo
dc.contributorCamelo Rodriguez, Julian Felipe
dc.contributorToxicología Ambiental y Ocupacional- TOXICAO
dc.creatorVilladiego Molinares, Marisol Margarita
dc.date.accessioned2022-08-08T16:46:25Z
dc.date.available2022-08-08T16:46:25Z
dc.date.created2022-08-08T16:46:25Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81802
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractINTRODUCCIÓN: El formaldehído (FA) es una sustancia química clasificada por la Agencia Internacional de Investigación en Cáncer (IARC), como una sustancia grupo I, lo que significa que se ha confirmado que es capaz de originar cáncer en los seres humanos. Se ha identificado como causante de cáncer nasofaríngeo, leucemia mieloide aguda y cáncer sinusoidal, adicionalmente se conoce como genotóxica, mutagénica y sensibilizante de piel y vías áreas. Esta es una sustancia utilizada ampliamente en diferentes ambientes laborales, principalmente en ambientes hospitalarios y en la industria, por sus propiedades como conservante, biocida y producto intermedio para la fabricación de láminas, resinas y madera. Conociendo sus efectos nocivos a la salud es imperativo realizar vigilancia médica sobre los trabajadores a través del control y seguimiento de mediciones ambientales y adicionalmente, un examen médico ocupacional acompañado de biomarcadores que permitan monitorizar de cerca la exposición y así mismo alertar posibles efectos reversibles en salud; sin embargo, aunque se han hecho muchos esfuerzos e investigaciones para identificar uno o varios biomarcadores que permitan monitorear a los trabajadores expuestos, los resultados de la evidencia generada presentan amplias diferencias, lo cual lleva a una situación confusa a la hora de tomar decisiones en la vigilancia ocupacional. OBJETIVO: Revisar de manera sistemática la evidencia disponible para evaluar los diferentes biomarcadores aplicables en la vigilancia médica ocupacional de la exposición a formaldehido METODOLOGÍA: Se realizó una búsqueda en las bases de datos EMBASE, LILACS, MEDLINE, CHOCRANE LIBRARY, PUBCHEM, así como una búsqueda manual a partir de las referencias de los artículos seleccionados y búsqueda en base de datos OPENGREY con las palabras clave formaldehído, monitoreo biológico, exposición ocupacional, y los términos MESH Formaldehyde, biological monitoring, biomarkers, ocuppactional exposure, DNA adducts, protein adducts, antibodies, genotoxicity. Se incluyeron artículos desde enero de 2000 hasta octubre 2020. Se realizó una estrategia de dos pasos. En primer lugar, la lectura de resumen y primera selección de artículos para revisión completa; en segundo lugar, la verificación de criterios de inclusión y exclusión de artículos seleccionados y literatura de búsqueda manual. RESULTADOS: La búsqueda inicial arrojó 108 registros, sin embargo, solo 30 artículos cumplieron los criterios de inclusión y exclusión establecidos. Posteriormente se realizó una calificación de cada estudio por parte de dos investigadores de manera independiente y se calificó el riesgo de sesgos por medio de la herramienta JBI. Unos de los biomarcadores más frecuentemente evaluados fueron los micronúcleos en sangre periférica, los cuales arrojaron un OR 3.21 (IC 95%: 2.39-4.04) entre los expuestos a formaldehído vs los controles, sin embargo, los estudios incluidos eran heterogéneos (I2=99%) entre sí, motivo por el cual se realizó un metanálisis de efectos aleatorios. DISCUSIÓN: Se encontró un riesgo intermedio a alto de sesgos en todos los estudios realizados, lo que dificulta el análisis de los datos y limita contar con homogeneidad en los datos y genera alta variabilidad de cada ítem evaluado en los diferentes grupos de estudio. Además de que no se cuenta con un gold estándar para comparar los biomarcadores propuestos en cada estudio, lo que genera la dificultad de la realización de un análisis cuantitativo de los datos obtenidos. Se encontraron resultados que mostraban asociación de las alteraciones de los biomarcadores con exposición y otros estudios con resultados disímiles. CONCLUSIONES: Es imperioso la ejecución de estudios con mejor calidad metodológica, que usen criterios estandarizados, donde haya control de las diferentes variables para minimizar el sesgo y en el cual se escojan diferentes poblaciones a nivel mundial dado que han sido pocos países se han interesado en evaluar a su población trabajadora. Con los estudios y biomarcadores evaluados, se logra continuar confirmando que las mediciones ambientales hacen parte de la vigilancia y que vigilancia y que no se cuenta con ningún biomarcador específico para FA. (Texto tomado de la fuente)
dc.description.abstractINTRODUCTION: Formaldehyde is a chemical substance classified by the International Agency for Research on Cancer (IARC), as a group I substance, which means that it has been confirmed that it is capable of causing cancer in humans. It has been identified as the cause of nasopharyngeal cancer, acute myeloid leukemia and sinusoidal cancer, it is also known as genotoxic, mutagenic and sensitizing the skin and airways. This is a substance widely used in different work environments, mainly in hospital environments and in industry, for its properties as a preservative, biocide and intermediate product for the manufacture of sheets, resins and wood. Knowing its harmful effects on health, it is imperative to medically carry out workers through control and monitoring of environmental detection and, additionally, an occupational medical examination accompanied by biomarkers that can closely monitor exposure and also alert possible reversible effects on health; However, although many efforts and investigations have been made to identify one or several biomarkers that allow monitoring of exposed workers, the results of the evidence showed wide differences, which leads to a confusing situation when making decisions in the industry. occupational surveillance. OBJECTIVE: To systematically review the available evidence to evaluate the different applicable biomarkers in occupational medical surveillance of formaldehyde exposure. METHODOLOGY: A search was carried out in the EMBASE, LILACS, MEDLINE, CHOCRANE LIBRARY, PUBCHEM databases, as well as a manual search based on the references of the selected articles and a search in the OPENGREY database with the keywords formaldehyde, biological monitoring, occupational exposure, and the MESH terms Formaldehyde, biological monitoring, biomarkers, occupational exposure, DNA adducts, protein adducts, antibodies, genotoxicity. Articles from January 2000 to October 2020 were included. A two-step strategy was used. Firstly, the abstract reading and first selection of articles for full review; second, the verification of inclusion and exclusion criteria of selected articles and manual search literature. RESULTS: The initial search yielded 108 records, however, only 30 articles met the established inclusion and exclusion criteria. Subsequently, each study was rated independently by two investigators and risk of bias was rated using the JBI tool. One of the most frequently evaluated biomarkers was micronuclei in peripheral blood, which yielded an OR 3.21 (95% CI: 2.39-4.04) between those exposed to formaldehyde vs. controls, however, the included studies were heterogeneous (I2=99 %) with each other, which is why a random-effects meta-analysis was performed. DISCUSSION: An intermediate to high risk of bias was found in all the studies carried out, which makes data analysis difficult and contributes to the difficulty of their homogeneity and the high variability of each item evaluated in the different study groups. In addition to the fact that there is no gold standard to compare the biomarkers proposed in each study, which makes it difficult to carry out a quantitative analysis of the data obtained. Results were found that showed association of biomarker alterations with exposure and other studies with dissimilar results CONCLUSIONS: It is imperative to carry out studies with better methodological quality, that use standardized criteria, where there is control of the different variables to minimize bias and in which different populations are chosen worldwide, given that few countries have been interested in Assess your working population. With the studies and biomarkers evaluated, it is possible to continue confirming that environmental measurements are part of surveillance and that and there is no specific biomarker for formaldehyde.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Medicina - Maestría en Toxicología
dc.publisherDepartamento de Toxicología
dc.publisherFacultad de Medicina
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationOhmichi K, Komiyama M, Matsuno Y, Takanashi Y, Miyamoto H, Kadota T, et al. Formaldehyde exposure in a gross anatomy laboratory--personal exposure level is higher than indoor concentration. Environ Sci Pollut Res Int [Internet]. 2006 Mar [cited 2018 Apr 29];13(2):120–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16612901
dc.relationIARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC Monogr Eval Carcinog risks to humans [Internet]. 2006 [cited 2018 Nov 22];88:1–478. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17366697
dc.relationMinisterio del Trabajo;, Instituto Nacional de Cancerología. Sistema de Vigilancia Epidemiológica del Cáncer Ocupacional en Colombia -SIVECAO [Internet]. [cited 2018 Apr 26]. Available from: http://fondoriesgoslaborales.gov.co/documents/publicaciones/guias/SIVECAO.pdf
dc.relationMinisterio del Trabajo. Decreto Número 1477 de 2014 [Internet]. [cited 2018 Nov 21]. Available from: http://www.mintrabajo.gov.co/documents/20147/36482/decreto_1477_del_5_de_agosto_de_2014.pdf/b526be63-28ee-8a0d-9014-8b5d7b299500
dc.relationArias A, Suárez O, Hoyos M, Cortés C. Perfil Nacional de Sustancias Químicas en Colombia [Internet]. 2012 [cited 2019 Mar 5]. Available from: http://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/sustancias_químicas_y_residuos_peligrosos/Perfil_Nacional_de_Sustancias_Quimicas_en_Colombia_2012.pdf
dc.relationVilladiego Molinares M, Ramírez Martínez J, Rodriguez Pulido A. Formaldehído en ambientes laborales: revisión de la literatura y propuesta de vigilancia ocupacional. Rev la Fac Med ISSN 0120-0011, ISSN-e 2357-3848, Vol 68, No 3, 2020, págs 425-437 [Internet]. 2020 [cited 2021 Dec 28];68(3):425–37. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=7774465&info=resumen&idioma=ENG
dc.relationManeli MH, Smith P, Khumalo NP. Elevated formaldehyde concentration in “Brazilian keratin type” hair-straightening products: A cross-sectional study. J Am Acad Dermatol [Internet]. 2014 Feb [cited 2018 Apr 26];70(2):276–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24332313
dc.relationPeteffi GP, Antunes MV, Carrer C, Valandro ET, Santos S, Glaeser J, et al. Environmental and biological monitoring of occupational formaldehyde exposure resulting from the use of products for hair straightening. Environ Sci Pollut Res [Internet]. 2015 Jan 9 [cited 2018 May 15];23(1):908–17. Available from: http://link.springer.com/10.1007/s11356-015-5343-4
dc.relationSalthammer T. The formaldehyde dilemma [Internet]. Vol. 218, International Journal of Hygiene and Environmental Health. 2015 [cited 2018 Apr 26]. p. 433–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25772784
dc.relationAir Quality Guidelines for Europe Second Edition. [cited 2018 Apr 26]; Available from: http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf
dc.relationCasanova-Schmitz, T B Starr HDH. Differentiation between Metabolic Incorporation and Covalent Binding in the Labeling of Macromolecules in the Rat Nasal Mucosa and Bone Marrow by Inhaled [j4C]-and [3H]Formaldehyde Differentiation between Metabolic Incorporation and Covalent Binding in th.
dc.relationDisease A for TS and. Toxicological Profile for Formaldehyde U.S. Department of Health and Human Services, Public Health Services, Agency for Toxic Substances and Disease Registry, [Internet]. 1999 [cited 2022 Jan 8]; Available from: https://www.atsdr.cdc.gov/toxprofiles/tp111.pdf
dc.relationHe RQ, Lu J, Miao JY. Formaldehyde stress. Sci China Life Sci. 2010;53(12):1399–404.
dc.relationHeck HD, Casanova-Schmitz M, Dodd PB, Schachter EN, Witek TJ TT. Formaldehyde (CH2O) concentrations in the blood of humans and Fischer-344 rats exposed to CH2O under controlled conditions. Am Ind Hyg Assoc J [Internet]. 1985 Jan 1 [cited 2022 Jan 8];46(1):1–3. Available from: https://pubmed.ncbi.nlm.nih.gov/4025145/
dc.relationEnviromental Protection Agency (EPA). Review of the environmental protection agency’s draft IRIS assessment of formaldehyde. Review of the Environmental Protection Agency’s Draft IRIS Assessment of Formaldehyde. National Academies Press; 2011. 1–190 p.
dc.relationHeck HD, Casanova-Schmitz M, Dodd PB, Schachter EN, Witek TJ TT. Formaldehyde (CH2O) concentrations in the blood of humans and Fischer-344 rats exposed to CH2O under controlled conditions. Am Ind Hyg Assoc J [Internet]. 1985 Jan 1 [cited 2022 Jan 8];46(1):1–3. Available from: https://pubmed.ncbi.nlm.nih.gov/4025145/
dc.relationChiarella P, Tranfo G, Pigini D, Carbonari D. Is it possible to use biomonitoring for the quantitative assessment of formaldehyde occupational exposure? Biomark Med [Internet]. 2016 Dec [cited 2018 Apr 26];10(12):1287–303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27924628
dc.relationConaway CC, Whysner J, Verna LK, Williams GM. Formaldehyde mechanistic data and risk assessment: Endogenous protection from DNA adduct formation. Pharmacol Ther. 1996;71(1–2):29–55.
dc.relationMcGhee JD, Von Hippel PH. Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. Biochemistry [Internet]. 1975 Mar 1 [cited 2022 Jan 9];14(6):1281–96. Available from: https://pubmed.ncbi.nlm.nih.gov/235285/
dc.relationMcGhee JD, Von Hippel PH. Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. Biochemistry [Internet]. 1975 Mar 1 [cited 2022 Jan 9];14(6):1281–96. Available from: https://pubmed.ncbi.nlm.nih.gov/235285/ 19. Lu K, Moeller B, Doyle-Eisele M, McDonald J, Swenberg JA. Molecular dosimetry of N2-hydroxymethyl-dG DNA adducts in rats exposed to formaldehyde. Chem Res Toxicol. 2011 Feb;24(2):159–61
dc.relationKautiainen A, Törnqvist M, Svensson K O-GS. Adducts of malonaldehyde and a few other aldehydes to hemoglobin. Carcinogenesis [Internet]. 1989 Nov [cited 2021 Aug 30];10(11):2123–30. Available from: https://pubmed.ncbi.nlm.nih.gov/2805232/
dc.relationYu R, Lai Y, Hartwell HJ, Moeller BC, Doyle-Eisele M, Kracko D, et al. Formation, accumulation, and hydrolysis of endogenous and exogenous formaldehyde-induced DNA damage. Toxicol Sci. 2015;146(1):170–82.
dc.relationChang JCF, Gross EA, Swenberg JA, Barrow CS. Nasal cavity deposition, histopathology, and cell proliferation after single or repeated formaldehyde exposures in B6C3F1 mice and F-344 rats. Toxicol Appl Pharmacol [Internet]. 1983 [cited 2022 Jan 9];68(2):161–76. Available from: https://pubmed.ncbi.nlm.nih.gov/6857658/
dc.relationENVIRONMENTAL PROTECTION AGENCY. Toxicological Review of Formaldehyde-Inhalation assessment. Rev Lit Arts Am [Internet]. 2010;39(110):759–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22050403
dc.relationNohmi T, Fukushima S. Thresholds of genotoxic carcinogens : from mechanisms to regulation.
dc.relationCasanova M, Heck H d. A. Further studies of the metabolic incorporation and covalent binding of inhaled [3H]- and [14C]formaldehyde in Fischer-344 rats: effects of glutathione depletion. Toxicol Appl Pharmacol [Internet]. 1987 Jun 15 [cited 2022 Jan 25];89(1):105–21. Available from: https://pubmed.ncbi.nlm.nih.gov/2438809/
dc.relationKerns WD, Pavkov KL, Donofrio DJ, Gralla EJ, Swenberg JA. Carcinogenicity of Formaldehyde in Rats and Mice after Long-Term Inhalation Exposure [Internet]. Vol. 43, CANCER RESEARCH. 1983 [cited 2018 Sep 24]. Available from: https://pdfs.semanticscholar.org/4934/80a0265146138a95a750507619aedf276d0f.pdf
dc.relationMonticello TM, Swenberg JA, Gross EA, Leininger JR, Kimbell JS, Seilkop S, et al. Correlation of Regional and Nonlinear Formaldehyde-induced Nasal Cancer with Proliferating Populations of Cells. Cancer Res. 1996;56(5).
dc.relationThompson CM, Gentry R, Fitch S, Lu K, Clewell HJ. An updated mode of action and human relevance framework evaluation for Formaldehyde-Related nasal tumors. Crit Rev Toxicol [Internet]. 2020;50(10):919–52. Available from: https://doi.org/10.1080/10408444.2020.1854679
dc.relationAndersen ME, Clewell HJ, Bermudez E, Dodd DE, Willson GA, Campbell JL, et al. Formaldehyde: Integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound. Toxicol Sci [Internet]. 2010 Dec [cited 2018 Apr 26];118(2):716–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20884683
dc.relationMolina Aragonés J, Bausà Peris R, Carreras Valls R, Carrillo Castillo A, Fiblà Nicolau F, Gaynés Palou E, et al. Toxicidad del formaldehido en trabajadores profesionalmente expuestos. Revisión bibliográfica. Arch Prev Riesgos Labor [Internet]. 2018 [cited 2022 Apr 30];21(3):128–57. Available from: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1578-25492018000300003&lng=es&nrm=iso&tlng=es
dc.relationThrasher JD, Wojdani A, Cheung G, Heuser G. Evidence for formaldehyde antibodies and altered cellular immunity in subjects exposed to formaldehyde in mobile homes. Arch Environ Health [Internet]. 1987 Dec [cited 2018 Apr 29];42(6):347–50. Available from: http://www.tandfonline.com/doi/abs/10.1080/00039896.1987.9934357
dc.relationThrasher JD, Broughton A, Micevich P. Antibodies and immune profiles of individuals occupationally exposed to formaldehyde: six case reports. Am J Ind Med [Internet]. 1988 [cited 2018 Apr 29];14(4):479–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2973232
dc.relationIm H, Oh E, Mun J, Khim J-Y, Lee E, Kang H-S, et al. Evaluation of Toxicological Monitoring Markers Using Proteomic Analysis in Rats Exposed to Formaldehyde. J Proteome Res [Internet]. 2006 Jun [cited 2018 Sep 5];5(6):1354–66. Available from: http://pubs.acs.org/doi/abs/10.1021/pr050437b
dc.relationNational Toxicology Program(NTP). Formaldehyde. 14th Rep Carcinog [Internet]. 2016 [cited 2018 Apr 29];155(2000):82. Available from: https://ntp.niehs.nih.gov/ntp/roc/content/profiles/formaldehyde.pdf
dc.relationKitaeva L V, Kitaev EM, Pimenova MN. The cytopathic and cytogenetic sequelae of chronic inhalational exposure to formaldehyde on female germ cells and bone marrow cells in rats. Tsitologiia [Internet]. 1990 [cited 2018 Sep 24];32(12):1212–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2103083
dc.relationKitaeva L V, Mikheeva EA, Shelomova LF, Shvartsman PI. Genotoxic effect of formaldehyde in somatic human cells in vivo. Genetika [Internet]. 1996 Sep [cited 2018 Sep 24];32(9):1287–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9026467
dc.relationZhang L, Beane Freeman LE, Nakamura J, Hecht SS, Vandenberg JJ, Smith MT, et al. Formaldehyde and leukemia: Epidemiology, potential mechanisms, and implications for risk assessment. Environmental and Molecular Mutagenesis. 2010.
dc.relationZhang L, Tang X, Rothman N, Vermeulen R, Ji Z, Shen M, et al. Occupational Exposure to Formaldehyde, Hematotoxicity, and Leukemia-Specific Chromosome Changes in Cultured Myeloid Progenitor Cells. Cancer Epidemiol Biomarkers Prev [Internet]. 2010 Jan 1 [cited 2018 Apr 26];19(1):80–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20056626
dc.relationViegas S, Ladeira C, Nunes C, Malta-Vacas J, Gomes M, Brito M, et al. Genotoxic effects in occupational exposure to formaldehyde: A study in anatomy and pathology laboratories and formaldehyde-resins production. J Occup Med Toxicol [Internet]. 2010 Aug 20 [cited 2018 Apr 26];5(1):25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20727169
dc.relationHauptmann M, Stewart PA, Lubin JH, Beane Freeman LE, Hornung RW, Herrick RF, et al. Mortality from lymphohematopoietic malignancies and brain cancer among embalmers exposed to formaldehyde. J Natl Cancer Inst [Internet]. 2009 Dec 16 [cited 2018 Sep 5];101(24):1696–708. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19933446
dc.relationGentry R, Thompson CM, Franzen A, Salley J, Albertini R, Lu K, et al. Using mechanistic information to support evidence integration and synthesis: a case study with inhaled formaldehyde and leukemia. Crit Rev Toxicol [Internet]. 2020;50(10):885–918. Available from: https://doi.org/10.1080/10408444.2020.1854678
dc.relationMcgregor D, Bolt H, Cogliano V, Richter-Reichhelm H-B. Formaldehyde and Glutaraldehyde and Nasal Cytotoxicity: Case Study Within the Context of the 2006 IPCS Human Framework for the Analysis of a Cancer Mode of Action for Humans For personal use only. Crit Rev Toxicol. 2006;36:821–35.
dc.relationKim K-H, Jahan SA, Lee J-T. Exposure to Formaldehyde and Its Potential Human Health Hazards. J Environ Sci Heal Part C [Internet]. 2011 Oct [cited 2018 Apr 26];29(4):277–99. Available from: http://www.tandfonline.com/doi/abs/10.1080/10590501.2011.629972
dc.relationBateman DN, Good AM, Laing WJ, Kelly CA. TOXBASE: poisons information on the internet. Emerg Med J [Internet]. 2002 [cited 2022 Jan 9];19(1):31–4. Available from: https://pubmed.ncbi.nlm.nih.gov/11777868/
dc.relationKulle TJ. Acute Odor and Irritation Response in Healthy Nonsmokers with Formaldehyde Exposure. http://dx.doi.org/103109/08958379308998389 [Internet]. 2008 [cited 2022 Jan 9];5(3):323–32. Available from: https://www.tandfonline.com/doi/abs/10.3109/08958379308998389
dc.relationSchwensen JF, Friis UF, Menné T, Flyvholm MA, Johansen JD. Contact allergy to preservatives in patients with occupational contact dermatitis and exposure analysis of preservatives in registered chemical products for occupational use. Int Arch Occup Environ Health. 2017;90(4):319–33.
dc.relationRajaeifard A, Neghab M. Ventilatory disorder induced by formaldehyde exposure. Toxicol Lett [Internet]. 2006 Sep 20 [cited 2018 Apr 26];164:S122. Available from: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0378427406004516
dc.relationMinisterio de la Protección Social. Guía de Atención integral de Salud Ocupacional Basada en la Evidencia para Asma Ocupacional. 2008 [cited 2022 Jan 9];1–158. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/gatiso-asma.pdf
dc.relationLino-dos-Santos-Franco A, Correa-Costa M, dos Santos Durão ACC, Ligeiro de Oliveira AP, Breithaupt-Faloppa AC, Bertoni J de A, et al. Formaldehyde induces lung inflammation by an oxidant and antioxidant enzymes mediated mechanism in the lung tissue. Toxicol Lett [Internet]. 2011 Dec [cited 2018 Apr 29];207(3):278–85. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378427411015542
dc.relationVandenplas O, Fievez P, Delwiche JP, Boulanger J, Thimpont J. Persistent asthma following accidental exposure to formaldehyde. Allergy [Internet]. 2004 Jan [cited 2022 Jan 9];59(1):115–6. Available from: https://pubmed.ncbi.nlm.nih.gov/14674947/
dc.relationYao Y, Liang W, Zhu L, Duan Y, Jin Y, He L. Relationship between the concentration of formaldehyde in the air and asthma in children: a meta-analysis. Int J Clin Exp Med [Internet]. 2015 Jun 30 [cited 2022 Jan 9];8(6):8358. Available from: /pmc/articles/PMC4538175/
dc.relationOrduz CE GJ. Asma Ocupacional por Formaldehído. Rev Neumol [Internet]. 2018; Available from: https://encolombia.com/medicina/revistas-medicas/neumologia/vn-153/neum15303trabajos4/
dc.relationHauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. Mortality from Solid Cancers among Workers in Formaldehyde Industries. Am J Epidemiol [Internet]. 2004 Jun 15 [cited 2018 Sep 5];159(12):1117–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15191929
dc.relationTulpule K, Dringen R. Formaldehyde in brain: an overlooked player in neurodegeneration? J Neurochem [Internet]. 2013 Oct [cited 2022 Jan 9];127(1):7–21. Available from: https://pubmed.ncbi.nlm.nih.gov/23800365/
dc.relationKilburn KH. Neurobehavioral Impairment and Seizures from Formaldehyde. Arch Environ Heal An Int J [Internet]. 1994 Feb [cited 2018 Nov 22];49(1):37–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8117145
dc.relationKilburn KH. Neurobehavioral Impairment and Seizures from Formaldehyde. Arch Environ Heal An Int J [Internet]. 1994 Feb [cited 2018 Nov 22];49(1):37–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8117145
dc.relationZhang L, Steinmaus C, Eastmond DA, Xin XK, Smith MT. Formaldehyde exposure and leukemia: A new meta-analysis and potential mechanisms. Mutat Res Mutat Res [Internet]. 2009 Mar [cited 2018 Apr 26];681(2–3):150–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18674636
dc.relationChiarella P, Tranfo G, Pigini D, Carbonari D. Is it possible to use biomonitoring for the quantitative assessment of formaldehyde occupational exposure? Biomark Med [Internet]. 2016 Dec 7 [cited 2018 May 15];10(12):1287–303. Available from: http://www.futuremedicine.com/doi/10.2217/bmm-2016-0146
dc.relationCoggon D, Harris EC, Poole J, Palmer KT. Extended follow-up of a cohort of british chemical workers exposed to formaldehyde. J Natl Cancer Inst [Internet]. 2003 Nov 5 [cited 2018 Sep 5];95(21):1608–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14600093
dc.relationEL PARLAMENTO EUROPEO Y EL CONSEJO DE LA UNIÓN EUROPEA. DIRECTIVA 2004/37/CE DEL PARLAMENTO EUROPEO Y DEL CONSEJO [Internet]. [cited 2018 Nov 19]. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:158:0050:0076:ES:PDF
dc.relationUnited States Department of Health, Education, and Welfare PH, Service, Center for Disease Control NI for OS, and Health. Criteria for a Recommended Standard, Occupational Exposure to Formldehyde, DHEW (NIOSH) Publication 77-126. [Internet]. [cited 2018 Sep 24]. Available from: https://www.cdc.gov/niosh/pdfs/77-126a.pdf?id=10.26616/NIOSHPUB77126
dc.relationAuerbach C, Moutschen-Dahmen M, Moutschen J. Genetic and cytogenetical effects of formaldehyde and related compounds. Mutat Res [Internet]. 1977 [cited 2018 Sep 24];39(3–4):317–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/331091
dc.relationObe G, Beek B. Mutagenic activity of aldehydes. Drug Alcohol Depend [Internet]. [cited 2018 Sep 24];4(1–2):91–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/574448
dc.relationSwenberg JA, Kerns WD, Mitchell RI, Gralla EJ, Pavkov KL. Induction of squamous cell carcinomas of the rat nasal cavity by inhalation exposure to formaldehyde vapor. Cancer Res [Internet]. 1980 Sep [cited 2018 Nov 19];40(9):3398–402. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7427950
dc.relationEnvironmental Protection Agency. Report to Congress on Indoor Air Quality, Volume II: Assessment and Control of Indoor Air Pollution, 1989. 1989.
dc.relationPira E, Romano C, Verga F, La Vecchia C. Mortality from lymphohematopoietic neoplasms and other causes in a cohort of laminated plastic workers exposed to formaldehyde. Cancer Causes Control [Internet]. 2014 Oct 23 [cited 2018 Nov 21];25(10):1343–9. Available from: http://link.springer.com/10.1007/s10552-014-0440-0
dc.relationBeane Freeman LE, Blair A, Lubin JH, Stewart PA, Hayes RB, Hoover RN, et al. Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries: the National Cancer Institute Cohort. J Natl Cancer Inst [Internet]. 2009 May 20 [cited 2018 Sep 5];101(10):751–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19436030
dc.relationBeane Freeman LE, Blair A, Lubin JH, Stewart PA, Hayes RB, Hoover RN, et al. Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries: the National Cancer Institute Cohort. J Natl Cancer Inst [Internet]. 2009 May 20 [cited 2018 Sep 5];101(10):751–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19436030
dc.relationMarsh GM, Youk AO. Reevaluation of mortality risks from nasopharyngeal cancer in the formaldehyde cohort study of the National Cancer Institute. Regul Toxicol Pharmacol [Internet]. 2005 Aug [cited 2018 Sep 24];42(3):275–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15978711
dc.relationACGIH. TLVs and BEIs Threshold Limit Values, for chemical substances and Physical Agents. Biological Exposure Indices.2022. 2022. 1–280 p.
dc.relationMinisterio de trabajo y asuntos sociales. Límites de exposición profesional para agentes químicos en España 2021 [Internet]. 2022 [cited 2022 Feb 8]. Available from: http://cpage.mpr.gob.es
dc.relationNielsen GD, Larsen ST, Wolkoff P. Recent trend in risk assessment of formaldehyde exposures from indoor air. Arch Toxicol [Internet]. 2013 Jan [cited 2018 Apr 26];87(1):73–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23179754
dc.relationThavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K. Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol [Internet]. 2012 Sep [cited 2018 Nov 22];16(3):400–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23248474
dc.relationPiva Peteffi ab G, Basso da Silva luciano, Zilles Hahn roberta, Venzon antunes M, rhoden liliane, elias anschau M, et al. Simple and fast headspace-gas chromatographic determination of formic acid in urine: application to the assessment of occupational exposure to formaldehyde. Appl Res Toxicol [Internet]. 2015 [cited 2018 Apr 26];11:40–5. Available from: http://www.appliedrestoxicol.com/Artigos/Vol1Num1/Art_06.pdf
dc.relationFarmer EE DC. Reactive electrophile species. J Curr Opin Plant Biol 10(4) [Internet]. 2007 [cited 2021 Aug 26];10(4):380–386. Available from: www.sciencedirect.com
dc.relationChang JR XD. Effects of formaldehyde on the activity of superoxide dismutases and glutathione peroxidase and the concentration of malondialdehyde. J Hyg Res [Internet]. 2006 [cited 2021 Aug 26];35(5):653–655. Available from: https://pubmed.ncbi.nlm.nih.gov/17086726/
dc.relationBasu AK. Molecular Sciences DNA Damage, Mutagenesis and Cancer. [cited 2022 Jan 6]; Available from: www.mdpi.com/journal/ijms
dc.relationBarker S, Weinfeld M, Murray D. DNA–protein crosslinks: their induction, repair, and biological consequences. Mutat Res Mutat Res. 2005 Mar 1;589(2):111–35.
dc.relationRidpath JR, Nakamura A, Tano K, Luke AM, Sonoda E, Arakawa H, et al. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res [Internet]. 2007 Dec 1 [cited 2022 Jan 6];67(23):11117–22. Available from: https://pubmed.ncbi.nlm.nih.gov/18056434/
dc.relationCohen Hubal EA, Schlosser PM, Conolly RB, Kimbell JS. Comparison of Inhaled Formaldehyde Dosimetry Predictions with DNA–Protein Cross-Link Measurements in the Rat Nasal Passages. Toxicol Appl Pharmacol. 1997 Mar 1;143(1):47–55.
dc.relationSchmid O, Speit G. Genotoxic effects induced by formaldehyde in human blood and implications for the interpretation of biomonitoring studies. Mutagenesis [Internet]. 2007 Jan [cited 2022 Jan 6];22(1):69–74. Available from: https://pubmed.ncbi.nlm.nih.gov/17158519/
dc.relationMerk O, Speit G. Significance of Formaldehyde-Induced DNA-Protein Crosslinks for Mutagenesis. Environ Mol Mutagen. 1998;32:260–8.
dc.relationBono R, Vincenti M, Schiliro T, Scursatone E, Pignata C, Gilli G. N -Methylenvaline in a group of subjects occupationally exposed to formaldehyde ଝ. 2006;161:10–7.
dc.relationArango V S. Biomarcadores para la evaluación de riesgo en la salud humana. Rev Fac Nac Salud Pública [Internet]. 2011 [cited 2018 Nov 23];30(1):75–82. Available from: http://www.scielo.org.co/pdf/rfnsp/v30n1/v30n1a09.pdf
dc.relationAlbertini R, Bird M, Doerrer N, Needham L, Robison S, Sheldon L, et al. The use of biomonitoring data in exposure and human health risk assessments. Environ Health Perspect [Internet]. 2006 Nov [cited 2018 May 20];114(11):1755–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17107864
dc.relationOlive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc [Internet]. 2006 Jun [cited 2018 Nov 6];1(1):23–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17406208
dc.relationCosta S., Costa C., Valdiglesias V., Coelho P., Silva S., Silva Santos L., Porto B., Laffon B. TJP. Abstracts of the 12th International Comet Assay Workshop held at the University of Navarra, Pamplona, Spain, 29–31 August 2017 (https://icaw.vito.be/). Mutagenesis [Internet]. 2017 Dec 31 [cited 2018 May 15];32(6):e1–28. Available from: https://academic.oup.com/mutage/article/32/6/e1/4844756
dc.relationTonina, E., Garcete, T., Samaniego, M.J., Aveiro, R., Aranda, A.G., Ortiz, J., Benítez, C., Widjaja, P., Castiglioni, D.M., Segovia, J.L., & Diana DF. TEST DEL COMETA EN SANGRE PERIFÉRICA DE ESTUDIANTES FUMADORES DE LA FACULTAD DE CIENCIAS DE LA SALUD, UNIVERSIDAD CATÓLICA NUESTRA SEÑORA DE LA ASUNCIÓN. Cienc e Investig Med Estud Latinoam. 2017 Apr 3;22(1).
dc.relationMozaffarieh M, Schoetzau A, Sauter M, Grieshaber M, Orgül S, Golubnitschaja O, et al. Comet assay analysis of single–stranded DNA breaks in circulating leukocytes of glaucoma patients. Mol Vis [Internet]. 2008 Aug 29 [cited 2022 May 3];14:1584. Available from: /pmc/articles/PMC2526097/
dc.relationPitarque M, Vaglenov A, Nosko M, Hirvonen A, Norppa H, Creus A, et al. Evaluation of DNA damage by the Comet assay in shoe workers exposed to toluene and other organic solvents. Mutat Res - Genet Toxicol Environ Mutagen. 1999 Apr 26;441(1):115–27.
dc.relationFenech M. The micronucleus assay determination of chromosomal level DNA damage. Methods Mol Biol [Internet]. 2008 [cited 2018 May 16];410:185–216. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18642602
dc.relationRuíz-Bernés S, Flores-García A, Luisa Ramos-Ibarra M, Raquel Moya-García M, Aguíar-García P, Sánchez-Gutiérrez R, et al. Micronúcleos en células de mucosa bucal como biomarcador de riesgo para cáncer. Rev Fuente nueva época Año [Internet]. [cited 2018 Nov 6];4(13). Available from: http://dspace.uan.mx:8080/jspui/bitstream/123456789/930/1/13-5 Micronucleos.pdf
dc.relationTolbert PE, Shy CM, Allen JW. Micronuclei and other nuclear anomalies in buccal smears: a field test in snuff users. Am J Epidemiol [Internet]. 1991 Oct 15 [cited 2018 Nov 23];134(8):840–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1951279
dc.relationTorres-Bugarín O, Guadalupe Zavala-Cerna M, Macriz-Romero N, Flores-García A, Luisa Ramos-Ibarra M, en Olivia Torres-Bugarín DC. Procedimientos básicos de la prueba de micronúcleos y anormalidades nucleares en células exfoliadas de mucosa oral. [cited 2018 Nov 6]; Available from: www.medigraphic.org.mx
dc.relationCosta S, García-Lestón J, Coelho M, Coelho P, Costa C, Silva S, et al. Cytogenetic and Immunological Effects Associated with Occupational Formaldehyde Exposure. J Toxicol Environ Heal Part A [Internet]. 2013 Feb 15 [cited 2018 Apr 26];76(4–5):217–29. Available from: http://www.tandfonline.com/doi/abs/10.1080/15287394.2013.757212
dc.relationDecordier I, Mateuca R, Kirsch-Volders M. Micronucleus assay and labeling of centromeres with FISH technique. Methods Mol Biol [Internet]. 2011 [cited 2022 Jan 24];691:115–36. Available from: https://pubmed.ncbi.nlm.nih.gov/20972750/
dc.relationNatarajan AT. Chromosome aberrations: past, present and future. Mutat Res. 2002;504:3–16.
dc.relationTucker JD, Preston RJ. Chromosome aberrations, micronuclei, aneuploidy, sister chromatid exchanges, and cancer risk assessment. Mutat Res. 1996;365:147–59.
dc.relationInstitute NHGR. Anomalías Cromosómicas [Internet]. [cited 2022 Jan 24]. Available from: https://www.genome.gov/node/14706
dc.relationSunada S, Haskins JS, Kato TA. Sister chromatid exchange as a genotoxic stress marker. In: Methods in Molecular Biology [Internet]. Humana Press Inc.; 2019 [cited 2020 Sep 19]. p. 61–8. Available from: https://pubmed.ncbi.nlm.nih.gov/31267420/
dc.relationWilson DM, Thompson LH. Molecular mechanisms of sister-chromatid exchange. Mutat Res Mol Mech Mutagen. 2007 Mar 1;616(1–2):11–23.
dc.relationMortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res - Fundam Mol Mech Mutagen. 2000 Nov 20;455(1–2):29–60.
dc.relationRoberts LJ, Milne GL. Isoprostanes. 2009 [cited 2021 Aug 25]; Available from: http://www.jlr.org
dc.relationVianed D, Suárez M, Lázaro L, Del Valle Pérez O, Gabriela L, Domínguez D, et al. Metodología y aplicaciones de la citometría de flujo para el inmunofenotipaje de las leucemias agudas Methodology and applications of flow cytometry for immunophenotyping of acute leukemias. Rev Cuba Hematol, Inmunol y Hemoter [Internet]. 2015 [cited 2022 Jan 6];31(3):242–53. Available from: http://scielo.sld.cu
dc.relationHosgood HD, Zhang L, Tang X, Vermeulen R, Hao Z, Shen M, et al. Occupational exposure to formaldehyde and alterations in lymphocyte subsets. Am J Ind Med. 2013;56(2):252–7.
dc.relationZhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, et al. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics. 2011;6(3):293–9.
dc.relationRodríguez Dorantes Mauricio, Téllez Ascencio Nelly, Cerbón Marco A., López Marisol CA. Metilación del ADN: un fenómeno epigenético de importancia médica. Rev invest clín [Internet]. 2004 [cited 2022 May 3];56(1):56–1. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0034-83762004000100010
dc.relationLutz W, Nowakowska-Świrta E. Gene p53 mutations, protein p53, and anti-p53 antibodies as biomarkers of cancer process. Int J Occup Med Environ Health [Internet]. 2002 [cited 2022 May 3];15(3):209–18. Available from: https://pubmed.ncbi.nlm.nih.gov/12462448/
dc.relationTorrens M. Interpretación Clínica del Hemograma. Rev Médica Clínica Las Condes [Internet]. 2015 Nov 1 [cited 2020 Oct 4];26(6):713–25. Available from: http://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-interpretaciyn-clynica-del-hemograma-S0716864015001480
dc.relationKim CW, Song JS, Ahn YS, Park SH, Park JW NJ, CS H. Asma por formaldehído. Update en Alergia [Internet]. 2007 [cited 2020 Oct 4];1(4):440–5. Available from: www.jarpyo.es
dc.relationCaliff RM. Minireview Biomarker definitions and their applications. Exp Biol Med. 2018;243:213–21.
dc.relationJulian PT Higgins, Sally Green. Manual Cochrane de revisiones sistemáticas de intervenciones [Internet]. 5.1.0. 2011 [cited 2020 Oct 4]. Available from: https://es.cochrane.org/sites/es.cochrane.org/files/public/uploads/Manual_Cochrane_510_reduit.pdf
dc.relationUrrutia G, Bonfill X. Revisiones sistemáticas: una herramienta clave para la toma de decisiones clínicas y sanitarias. Rev Esp Salud Publica [Internet]. 2014 [cited 2021 Aug 19];88(1):1–3. Available from: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1135-57272014000100001&lng=es&nrm=iso&tlng=es
dc.relationMombaque dos Santos W, Regina Secoli S, Alves de Araújo Püschel V. El enfoque del Joanna Briggs Institute para revisiones sistemáticas. 2018 [cited 2021 Aug 19]; Available from: www.eerp.usp.br/rlae
dc.relationSite Home Page | Joanna Briggs Institute [Internet]. [cited 2022 Jan 11]. Available from: https://jbi.global/
dc.relationMoola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Qureshi R, Mattis P, Lisy K MP-F. Chapter 7: Systematic reviews of etiology and risk. JBI Man Evid Synth. 2020;
dc.relationMinisterio de Salud. Resolución 8430 de 1993. Minist Salud y Protección Soc República Colomb. 1993;1993(Octubre 4):1–19.
dc.relationHopf NB, Bolognesi C, Danuser B, Wild P. Biological monitoring of workers exposed to carcinogens using the buccal micronucleus approach: A systematic review and meta-analysis [Internet]. Vol. 781, Mutation Research - Reviews in Mutation Research. Elsevier B.V.; 2019 [cited 2020 Sep 10]. p. 11–29. Available from: https://pubmed.ncbi.nlm.nih.gov/31416572/
dc.relationRegazzoni LG, Grigoryan H, Ji Z, Chen X, Daniels SI, Huang D, et al. Using lysine adducts of human serum albumin to investigate the disposition of exogenous formaldehyde in human blood. Toxicol Lett [Internet]. 2017 Feb 15 [cited 2022 Jan 23];268:26–35. Available from: https://pubmed.ncbi.nlm.nih.gov/28104429/
dc.relationZendehdel R, Fazli Z, Mazinani M. Neurotoxicity effect of formaldehyde on occupational exposure and influence of individual susceptibility to some metabolism parameters. Environ Monit Assess. 2016 Nov 1;188(11).
dc.relationChappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. Mutat Res Rev Mutat Res [Internet]. 2016 Apr 1 [cited 2022 Jan 23];768:27–45. Available from: https://pubmed.ncbi.nlm.nih.gov/27234561/
dc.relationFornander L, Graff P, Wåhlén K, Ydreborg K, Flodin U, Leanderson P, et al. Airway Symptoms and Biological Markers in Nasal Lavage Fluid in Subjects Exposed to Metalworking Fluids. Stewart JP, editor. PLoS One [Internet]. 2013 Dec 31 [cited 2018 Apr 26];8(12):e83089. Available from: http://dx.plos.org/10.1371/journal.pone.0083089
dc.relationGuo YJ, Lin DF, Yi JH, Kuang D, Deng HX, Li XH, Zhang ZH WT. The increase of micronuclei frequencies of peripheral blood lymphocyte in plywood workers exposed accumulatively to formaldehyde. Chinese J Ind Hyg Occup Dis [Internet]. 2012 [cited 2022 Jan 23];17–20. Available from: https://pubmed.ncbi.nlm.nih.gov/22730682/
dc.relationSpeit G, Ladeira C, Linsenmeyer R, Schütz P, Högel J. Re-evaluation of a reported increased micronucleus frequency in lymphocytes of workers occupationally exposed to formaldehyde. Mutat Res [Internet]. 2012 May 15 [cited 2022 Jan 23];744(2):161–6. Available from: https://pubmed.ncbi.nlm.nih.gov/22405975/
dc.relationGoldstein BD. Hematological and toxicological evaluation of formaldehyde as a potential cause of human leukemia. Hum Exp Toxicol [Internet]. 2011 Jul [cited 2022 Jan 23];30(7):725–35. Available from: https://pubmed.ncbi.nlm.nih.gov/20729258/
dc.relationWieslander G, Norbäck D. Ocular symptoms, tear film stability, nasal patency, and biomarkers in nasal lavage in indoor painters in relation to emissions from water-based paint. Int Arch Occup Environ Health [Internet]. 2010 Oct [cited 2022 Jan 23];83(7):733–41. Available from: https://pubmed.ncbi.nlm.nih.gov/20549228/
dc.relationJakab MG, Klupp T, Besenyei K, Biró A, Major J, Tompa A. Formaldehyde-induced chromosomal aberrations and apoptosis in peripheral blood lymphocytes of personnel working in pathology departments. Mutat Res [Internet]. 2010 Apr 30 [cited 2022 Jan 23];698(1–2):11–7. Available from: https://pubmed.ncbi.nlm.nih.gov/20193773/
dc.relationNeuss S, Speit G. Further characterization of the genotoxicity of formaldehyde in vitro by the sister chromatid exchange test and co-cultivation experiments. Mutagenesis [Internet]. 2008 Sep [cited 2022 Jan 23];23(5):355–7. Available from: https://pubmed.ncbi.nlm.nih.gov/18477654/
dc.relationIarmarcovai G, Bonassi S, Sari-Minodier I, Baciuchka-Palmaro M, Botta A, Orsière T. Exposure to genotoxic agents, host factors, and lifestyle influence the number of centromeric signals in micronuclei: a pooled re-analysis. Mutat Res [Internet]. 2007 Feb 3 [cited 2022 Jan 23];615(1–2):18–27. Available from: https://pubmed.ncbi.nlm.nih.gov/17198715/
dc.relationSoogarun S, Suwansaksri J W V. High sister chromatid exchange among a sample of traffic policemen in Bangkok, Thailand - PubMed. Southeast Asian J Trop Med Public Heal [Internet]. 2006 [cited 2022 Jan 23]; Available from: https://pubmed.ncbi.nlm.nih.gov/17120983/
dc.relationKleber M, Föllmann W, Blaszkewicz M. Assessing the genotoxicity of industrial cutting fluids under conditions of use. Toxicol Lett [Internet]. 2004 Jun 15 [cited 2022 Jan 23];1(151):211–7. Available from: https://www.infona.pl//resource/bwmeta1.element.elsevier-d113fbee-b10b-3625-8390-1b7905da3cec
dc.relationSuruda A, Schulte P, Boeniger M, Hayes RB, Livingston GK, Steenland K, Stewart P, Herrick R, Douthit D FM. Cytogenetic effects of formaldehyde exposure in students of mortuary science. Cancer Epidemiol Biomarkers Prev [Internet]. 1993 [cited 2022 Jan 23];2:453–60. Available from: https://www.researchgate.net/publication/14979372_Cytogenetic_effects_of_formaldehyde_exposure_in_students_of_mortuary_science
dc.relationKirsch-Volders M, Fenech M, Bolognesi C. Validity of the Lymphocyte Cytokinesis-Block Micronucleus Assay (L-CBMN) as biomarker for human exposure to chemicals with different modes of action: A synthesis of systematic reviews. Mutat Res Genet Toxicol Environ Mutagen [Internet]. 2018 Dec 1 [cited 2022 Jan 23];836(Pt A):47–52. Available from: https://pubmed.ncbi.nlm.nih.gov/30389162/
dc.relationMai W, Liu X, Su G, Zhou W, Wen Z, Lu D. Elevation of Circulating Th17/Th22 Cells Exposed to Low-Level Formaldehyde and Its Relevance to Formaldehyde-Induced Occupational Allergic Contact Dermatitis. J Occup Environ Med [Internet]. 2017 Sep 1 [cited 2022 Jan 23];59(9):817–21. Available from: https://pubmed.ncbi.nlm.nih.gov/28697061/
dc.relationBassig BA, Zhang L, Vermeulen R, Tang X, Li G, Hu W, et al. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene. Carcinogenesis [Internet]. 2016 Jul 1 [cited 2022 Jan 23];37(7):692–700. Available from: https://pubmed.ncbi.nlm.nih.gov/27207665/
dc.relationAglan MA, Mansour GN. Hair straightening products and the risk of occupational formaldehyde exposure in hairstylists. Drug Chem Toxicol [Internet]. 2020;43(5):488–95. Available from: https://doi.org/10.1080/01480545.2018.1508215
dc.relationBarbosa E, Laura A, Peteffi GP, Schneider A, Müller D, Rovaris D, et al. Increase of global DNA methylation patterns in beauty salon workers exposed to low levels of formaldehyde. 2019;1304–14
dc.relationPala M, Ugolini D, Ceppi M, Rizzo F, Maiorana L, Bolognesi C, et al. Occupational exposure to formaldehyde and biological monitoring of Research Institute workers. Cancer Detect Prev [Internet]. 2008 Jan [cited 2018 Apr 26];32(2):121–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18639989
dc.relationBono, R., Romanazzi, V., Munnia, A., Piro, S., Allione, A., Ricceri, F., Guarrera, S., Pignata, C., Matullo, G., Wang, P., Giese, R. W., & Peluso M. Malondialdehyde-deoxyguanosine adduct formation in workers of pathology wards: the role of air formaldehyde exposure. Chem Res Toxicol [Internet]. 2012 Aug 16 [cited 2021 Aug 25];23(8):1342–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20707408/
dc.relationAttia D, Mansour N, Taha F, Seif El Dein A. Assessment of lipid peroxidation and p53 as a biomarker of carcinogenesis among workers exposed to formaldehyde in the cosmetic industry. Toxicol Ind Health [Internet]. 2016 Jun 5 [cited 2018 Nov 21];32(6):1097–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25193344
dc.relationSouza AD, Devi R. Cytokinesis blocked micronucleus assay of peripheral lymphocytes revealing the genotoxic effect of formaldehyde exposure. Clin Anat [Internet]. 2014 Apr [cited 2018 May 15];27(3):308–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23893659
dc.relationOrsière, T., Sari-Minodier, I., Iarmarcovai, G, Botta A. Genotoxic risk assessment of pathology and anatomy laboratory workers exposed to formaldehyde by use of personal air sampling and analysis of DNA damage in peripheral lymphocytes. 2006;605:30–41.
dc.relationCosta S, Coelho P, Costa C, Silva S, Mayan O, Santos LS, et al. Genotoxic damage in pathology anatomy laboratory workers exposed to formaldehyde. Toxicology [Internet]. 2008 Oct 30 [cited 2022 Jan 14];252(1–3):40–8. Available from: https://pubmed.ncbi.nlm.nih.gov/18721846/
dc.relationCosta S, Coelho P, Costa C, Silva S, Mayan O, Santos LS, et al. Occupational Exposure to Formaldehyde: Genotoxic Risk Evaluation By Comet Assay And Micronucleus Test Using Human Peripheral Lymphocytes. Toxicology. 2011;252(1–3):40–8
dc.relationCosta S, García-Lestón J, Coelho M, Coelho P, Costa C, Silva S, et al. Cytogenetic and Immunological Effects Associated with Occupational Formaldehyde Exposure. J Toxicol Environ Heal Part A [Internet]. 2013 Feb 15 [cited 2018 May 15];76(4–5):217–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23514064
dc.relationCosta S, Costa C, Madureira J, Valdiglesias V, Teixeira-Gomes A, Guedes de Pinho P, et al. Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility. Environ Res [Internet]. 2019 Dec 1 [cited 2020 Sep 10];179:108740. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0013935119305377
dc.relationLadeira C, Viegas S, Carolino E, Prista J, Gomes MC, Brito M. Genotoxicity biomarkers in occupational exposure to formaldehyde—The case of histopathology laboratories. Mutat Res Toxicol Environ Mutagen [Internet]. 2011 Mar 18 [cited 2018 Apr 26];721(1):15–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21256246
dc.relationLadeira C, Viegas S, Carolino E, Gomes MC, Brito M. The influence of genetic polymorphisms in XRCC3 and ADH5 genes on the frequency of genotoxicity biomarkers in workers exposed to formaldehyde. Environ Mol Mutagen [Internet]. 2013 Apr;54(3):213–21. Available from: http://search.ebscohost.com/login.aspx?direct=true&db=cmedm&AN=23355119&lang=es&site=ehost-live
dc.relationLadeira C, Pádua M, Veiga L, Viegas S, Carolino E, Gomes MC, et al. Influence of serum levels of Vitamins A, D, and E as well as Vitamin D receptor polymorphisms on micronucleus frequencies and other biomarkers of genotoxicity in workers exposed to formaldehyde. J Nutrigenet Nutrigenomics. 2016;8(4–6):205–14.
dc.relationJiang S, Yu L, Cheng J, Leng S, Dai Y, Zhang Y, et al. Genomic damages in peripheral blood lymphocytes and association with polymorphisms of three glutathione S-transferases in workers exposed to formaldehyde. 2010;695:9–15.
dc.relationBouraoui S, Mougou S, Brahem A, Tabka F, Ben Khelifa H, Harrabi I, et al. A combination of micronucleus assay and fluorescence in situ hybridization analysis to evaluate the genotoxicity of formaldehyde. Arch Environ Contam Toxicol [Internet]. 2012 Feb;64(2):337–44. Available from: http://search.ebscohost.com/login.aspx?direct=true&db=cmedm&AN=23132144&lang=es&site=ehost-live
dc.relationLin D, Guo Y, Yi J, Kuang D, Li X, Deng H, et al. Occupational exposure to formaldehyde and genetic damage in the peripheral blood lymphocytes of plywood workers. J Occup Health [Internet]. 2013;55(4):284–91. Available from: https://www.jstage.jst.go.jp/article/joh/55/4/55_12-0288-OA/_pdf/-char/en
dc.relationPeteffi GP, Da Silva LB, Antunes MV, Wilhelm C, Valandro ET, Glaeser J, et al. Evaluation of genotoxicity in workers exposed to low levels of formaldehyde in a furniture manufacturing facility. Toxicol Ind Health [Internet]. 2015 Oct 9 [cited 2018 Apr 26];32(10):1763–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25971585
dc.relationAydın S, Canpınar H, Ündeğer Ü, Güç D, Çolakoğlu M, Kars A, et al. Assessment of immunotoxicity and genotoxicity in workers exposed to low concentrations of formaldehyde. Arch Toxicol [Internet]. 2013 Jan 26 [cited 2018 Nov 21];87(1):145–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23100157
dc.relationCosta S, Carvalho S, Costa C, Coelho P, Silva S, Santos LS, et al. Increased levels of chromosomal aberrations and DNA damage in a group of workers exposed to formaldehyde. Mutagenesis [Internet]. 2015 Jul 1 [cited 2018 May 15];30(4):463–73. Available from: https://academic.oup.com/mutage/article-lookup/doi/10.1093/mutage/gev002
dc.relationZendehdel R, Vahabi M, Sedghi R. Estimation of formaldehyde occupational exposure limit based on genetic damage in some Iranian exposed workers using benchmark dose method. 2018;
dc.relationLan Q, Smith MT, Tang X, Guo W, Vermeulen R, Ji Z, et al. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde. Carcinogenesis. 2014;36(1):160–7.
dc.relationLan Q, Smith MT, Tang X, Guo W, Vermeulen R, Ji Z, et al. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde. Carcinogenesis. 2014;36(1):160–7.
dc.relationCosta S, Teixeira JP. Formaldehyde: Human exposure, metabolism and potential health effects. Formaldehyde: Synthesis, Applications and Potential Health Effects. 2015.
dc.relationSavage JRK. Classification and relationships of induced chromosomal structural changes. Annot J Med Genet. 1975;12:103–22.
dc.relationJia X, Jia Q, Zhang Z, Gao W, Zhang X, Niu Y, et al. Effects of Formaldehyde on Lymphocyte Subsets and Cytokines in the Peripheral Blood of Exposed Workers. Fugmann SD, editor. PLoS One [Internet]. 2014 Aug 26 [cited 2018 Nov 21];9(8):e104069. Available from: https://dx.plos.org/10.1371/journal.pone.0104069
dc.relationShaham J, Bomstein Y, Gurvich R, Rashkovsky M, Kaufman Z. DNA-protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde. Occup Environ Med. 2003;60(6):403–9.
dc.relationLadeira C, Viegas S, Carolino E, Prista J, Gomes MC, Brito M. Genotoxicity biomarkers in occupational exposure to formaldehyde-The case of histopathology laboratories. Mutat Res - Genet Toxicol Environ Mutagen [Internet]. 2011 [cited 2018 May 15];721(1):15–20. Available from: https://ac-els-cdn-com.ezproxy.unal.edu.co/S1383571811000155/1-s2.0-S1383571811000155-main.pdf?_tid=e50fc88b-150a-46d4-9c58-a7aa624f3874&acdnat=1526429303_f90144a4f78f755b5b3569c6229edca1
dc.relationWHO. Air Quality Guidelines for Europe Second Edition. 2010;1–287.
dc.relationKautiainen A, Törnqvist M, Anderstam B, Vaca CE. In vivo hemoglobin dosimetry of malonaldehyde and ethene in mice after induction of lipid peroxidation. effects of membrane lipid fatty acid composition. Carcinogenesis. 1991 Jun;12(6):1097–102.
dc.relationCarraro E, Gasparini S, Gilli G. Identification of a chemical marker of environmental exposure to formaldehyde. Environ Res [Internet]. 1999 [cited 2022 Jan 14];80(2 Pt 1):132–7. Available from: https://pubmed.ncbi.nlm.nih.gov/10092405/
dc.relationBonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis [Internet]. 2007 Mar [cited 2022 Jan 14];28(3):625–31. Available from: https://pubmed.ncbi.nlm.nih.gov/16973674/
dc.relationDafeng Lin1, Yaojing Guo1, Jihu Yi2, Dan Kuang1, Xiaohai Li1, Huaxin Deng1, et al. Occupational Exposure to Formaldehyde and Genetic Damage in the Peripheral Blood Lymphocytes of Plywood Workers. J Occup Heal [Internet]. 2013 [cited 2018 May 15];55. Available from: https://www.jstage.jst.go.jp/article/joh/55/4/55_12-0288-OA/_pdf/-char/en
dc.relationHolland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, et al. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat Res [Internet]. 2008 Jul [cited 2022 Jan 14];659(1–2):93–108. Available from: https://pubmed.ncbi.nlm.nih.gov/18514568/
dc.relationIARC WORKING GROUP ON THE EVALUATION OF THE CARCINOGENIC RISK OF CHEMICALS TO HUMANS. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans - Volume 88 - Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol [Internet]. 2006 [cited 2018 Sep 5]. Available from: http://monographs.
dc.relationSzende B, Tyihák E. Effect of formaldehyde on cell proliferation and death. 2010;34:1273–82.
dc.relationBollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res [Internet]. 2007 Feb 1 [cited 2022 Feb 10];67(3):876–80. Available from: https://pubmed.ncbi.nlm.nih.gov/17283117/
dc.relationAydın S, Canpınar H, Ündeğer Ü, Güç D, Çolakoğlu M, Kars A, et al. Assessment of immunotoxicity and genotoxicity in workers exposed to low concentrations of formaldehyde. Arch Toxicol. 2013;87(1):145–53.
dc.relationSeow WJ, Zhang L, Vermeulen R, Tang X, Hu W, Bassig BA, et al. Circulating immune/inflammation markers in Chinese workers occupationally exposed to formaldehyde. Carcinogenesis [Internet]. 2015 Aug [cited 2018 Nov 21];36(8):852–7. Available from: https://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgv055
dc.relationGallart MT. Interleuquinas y su papel en las respuestas inmunes. [cited 2022 Jan 19]; Available from: https://www.esteve.org/wp-content/uploads/2018/01/136632.pdf
dc.relationRomanazzi V, Pirro V, Bellisario V, Mengozzi G, Peluso M, Pazzi M, et al. Science of the Total Environment 15-F 2t isoprostane as biomarker of oxidative stress induced by tobacco smoke and occupational exposure to formaldehyde in workers of plastic laminates. Sci Total Environ [Internet]. 2013;442:20–5. Available from: http://dx.doi.org/10.1016/j.scitotenv.2012.10.057
dc.relationAnnesi-Maesano I, Dab W. Air pollution and the lung: Epidemiological approach. Medecine/Sciences. 2006;22(6–7):589–94.
dc.relationJones KH, York TP, Juusola J, Ferreira-Gonzalez A, Maes HH, Jackson-Cook C. Genetic and environmental influences on spontaneous micronuclei frequencies in children and adults: a twin study. Mutagenesis [Internet]. 2011 Nov [cited 2022 Jan 19];26(6):745. Available from: /pmc/articles/PMC3198889/
dc.relationStrange RC, Jones PW, Fryer AA. Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett [Internet]. 2000 Mar 15 [cited 2022 Jan 20];112–113:357–63. Available from: https://pubmed.ncbi.nlm.nih.gov/10720752/
dc.relationValko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006 Mar 10;160(1):1–40.
dc.relationDringen R, Brandmann M, Hohnholt MC, Blumrich EM. Glutathione-Dependent Detoxification Processes in Astrocytes. Neurochem Res [Internet]. 2015 Dec 1 [cited 2022 Jan 20];40(12):2570–82. Available from: https://pubmed.ncbi.nlm.nih.gov/25428182/
dc.relationGonzalez FJ. The 2006 Bernard B. Brodie Award Lecture. Cyp2e1. Drug Metab Dispos [Internet]. 2007 [cited 2022 Jan 21];35(1):1–8. Available from: https://pubmed.ncbi.nlm.nih.gov/17020953/
dc.relationJi Y, Tulin A V. The roles of PARP1 in gene control and cell differentiation. Curr Opin Genet Dev. 2010 Oct 1;20(5):512–8.
dc.relationDokal I. Fanconi’s anaemia and related bone marrow failure syndromes. Br Med Bull [Internet]. 2006 Jan 1 [cited 2022 Jan 21];77–78(1):37–53. Available from: https://academic.oup.com/bmb/article/77-78/1/37/324287
dc.relationHess CJ, Ameziane N, Schuurhuis GJ, Errami A, Denkers F, Kaspers GJL, et al. Hypermethylation of the FANCC and FANCL promoter regions in sporadic acute leukaemia. Cell Oncol [Internet]. 2008 [cited 2022 Jan 21];30(4):299–306. Available from: https://pubmed.ncbi.nlm.nih.gov/18607065/
dc.relationKottemann M, Smogorzewska A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature, 493(7432), 356–363 | 10.1038/nature11863. Nature [Internet]. 2013 Jan 17 [cited 2022 Jan 21];493(356). Available from: https://pubmed.ncbi.nlm.nih.gov/23325218/
dc.relationBrenneman MA, Weiss AE, Nickoloff JA, Chen DJ. XRCC3 is required for efficient repair of chromosome breaks by homologous recombination. Mutat Res Repair. 2000 Mar 20;459(2):89–97.
dc.relationJust W, Zeller J, Riegert C, Speit G. Genetic polymorphisms in the formaldehyde dehydrogenase gene and their biological significance. Toxicol Lett [Internet]. 2011 Nov 30 [cited 2022 Jan 20];207(2):121–7. Available from: https://pubmed.ncbi.nlm.nih.gov/21920416/
dc.relationRaimondi S, Johansson H, Maisonneuve P, Gandini S. Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis [Internet]. 2009 [cited 2022 Jan 20];30(7):1170–80. Available from: https://pubmed.ncbi.nlm.nih.gov/19403841/
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleBiomarcadores para la vigilancia médica ocupacional a formaldehído: Una revisión sistemática de la literatura
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución