dc.contributorSilva Gomez, Edelberto
dc.contributorProductos Naturales Vegetales Bioactivos y Quimica EcoIogica
dc.creatorChaverra Daza, Klauss Estefan
dc.date.accessioned2020-07-15T22:48:23Z
dc.date.available2020-07-15T22:48:23Z
dc.date.created2020-07-15T22:48:23Z
dc.date.issued2020-06-12
dc.identifierChaverra Daza, Klauss (2020). Estudio de la actividad biológica de alquilglicerol lípidos análogos a compuestos de origen marino contra aislados de origen clínico (Universidad Nacional)
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77782
dc.description.abstractIn the present study we evaluated the anti-biofilm and anti-quorum sensing activity against 8 clinical isolates and 3 reference strains, using 15 alkylglycerols obtained by chemical synthesis, they are analogous to those present in nature. In the first step, we evaluated the growth inhibitory activity of each alkylglycerol in order to quantify the anti-biofilm activity using 50%, 25% and 12.5% of the MIC concentration through broth microdilution. Using the modified Stepanovic protocol, we obtained biolfilm inhibitions of up 83.9%, which varied according to the alkylglycerol concentration and bacterial genus. The production of violacein of Chromobacterium violaceum ATCC 12472 was used for demonstrating the anti-quourum sensing activity by mean of diffusion on agar and broth microdilution techniques, depending on concentration and technique used; some alkylglycerols led to a lower production of violacein from C. violaceum ATCC 12472. According to these results, alkylglycerols showed different effects depending on their concentration, the microorganism used and the number of chain carbon atoms and their unsaturation’s.
dc.description.abstractEn el presente estudio se evaluó la capacidad anti-biofilm y anti-quorum sensing contra 8 aislados clínicos y 3 cepas de referencia, usando 15 alquilglicerol lípidos obtenidos mediante síntesis química, los cuales son análogos a los presentes en la naturaleza. En primer lugar, se evaluó la capacidad inhibitoria de crecimiento de cada compuesto, para luego cuantificar la actividad anti-biofilm usando concentraciones al 50%, 25% y 12.5% de la MIC, mediante la técnica de microdilución en caldo. Utilizando el protocolo de Stepanovic modificado, se obtuvieron inhibiciones de la biopelícula de hasta un 83,9% las cuales variaban de acuerdo a la concentración y al género bacteriano. La producción de violaceína por parte de Chromobacterium violaceum ATCC 12472, fue usada para comprobar la actividad anti-quorum sensing mediante las técnicas de difusión en agar y microdilución en caldo; de acuerdo a la concentración y a la metodología usada, algunos compuestos generaban una disminución en la producción de violaceína por parte de la bacteria. De acuerdo a los resultados de los ensayos presentados en el documento, los alquilglicerol lípidos presentaron diferentes efectos dependientes de la concentración del compuesto, el microorganismo usado y el número de átomos de carbono e insaturaciones de la molécula
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAmara, N., Krom, B. P., Kaufmann, G. F., & Meijler, M. M. (2011). Macromolecular Inhibition of quorum sensing: Enzymes, antibodies, and beyond. Chemical Reviews, 111(1), 195–208. https://doi.org/10.1021/cr100101c
dc.relationBalzer, M., Witt, N., Flemming, H. C., & Wingender, J. (2010). Faecal indicator bacteria in river biofilms. Water Science and Technology, 61(5), 1105–1111. https://doi.org/10.2166/wst.2010.022
dc.relationBarnes, A. M. T., Ballering, K. S., & Leibman, R. S. (2012). Enterococcus faecalis produces abundant extracellular structures. MBio, 3(4), 1–9. https://doi.org/10.1128/mBio.00193-12.Editor
dc.relationBarragan Avilez, C. M. (2015). Sintesis de Alquilglicerolípidos y determinación de su actividad antifouling (Universidad Nacional de Colombia). Retrieved from http://www.bdigital.unal.edu.co/48913/
dc.relationBarriuso, J., Hogan, D. A., Keshavarz, T., & Martínez, M. J. (2018). Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiology Reviews, 42(5), 627–638. https://doi.org/10.1093/femsre/fuy022
dc.relationBassler, W.-L. N. and B. L. (2015). Bacterial Quorum-Sensing Network Architectures. Annu. Rev. Genet, 197–222. https://doi.org/10.1146/annurev-genet-102108-134304.Bacterial
dc.relationBecker, S., Soares, C., & Porto, L. M. (2009). Computational analysis suggests that virulence of Chromobacterium violaceum might be linked to biofilm formation and poly-NAG biosynthesis. Genetics and Molecular Biology, 32(3), 640–644. https://doi.org/10.1590/S1415-47572009000300031
dc.relationBilings, N., Birjiniuk, A., Samad, T. S., Doyle, P. S., & Ribbeck, K. (2016). Material properties of biofilms – key methods for understanding permeability and mechanics. Rep Prog Phys, 78(3), 33. https://doi.org/10.1088/0034-4885/78/3/036601.Material
dc.relationBlackledge, M. S., Worthington, R. J., & Melander, C. (2013). Biologically inspired strategies for combating bacterial biofilms. Current Opinion in Pharmacology, 13(5), 699–706. https://doi.org/10.1016/j.coph.2013.07.004
dc.relationBlunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., & Prinsep, M. R. (2017). Marine natural products. Nat. Prod. Rep., 34(3), 235–294. https://doi.org/10.1039/C6NP00124F
dc.relationBohlmann, M. K. (2007). Evidence-based guidelines for the investigation and medical treatment of recurrent miscarriage. Human Reproduction Br J Haematol, 22(132), 366–368. https://doi.org/10.1093/humrep/del349
dc.relationBraverman, N. E., Raymond, G. V, Rizzo, W. B., Moser, A. B., Mark, E., Stone, E. M., … Angeles, L. (2017). Peroxisome biogenesis disorders in the Zellweger spectrum: An overveiw of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab, 117(3), 313–321. https://doi.org/10.1016/j.ymgme.2015.12.009.
dc.relationBrissette, J. L., Cabacungan, E. A., & Pieringer, A. (1986). Studies on the Antibacterial Activity of Dodecylglycerol. The Journal of Biological Chemestry, 261(14), 6338–6345.
dc.relationCh’ng, J. H., Chong, K. K. L., Lam, L. N., Wong, J. J., & Kline, K. A. (2019). Biofilm-associated infection by enterococci. Nature Reviews Microbiology, 17(2), 82–94. https://doi.org/10.1038/s41579-018-0107-z
dc.relationChadha, T. (2014). Bacterial Biofilms: Survival Mechanisms and Antibiotic Resistance. Journal of Bacteriology & Parasitology, 05(03), 5–8. https://doi.org/10.4172/2155-9597.1000190
dc.relationChan, K. G., Liu, Y. C., & Chang, C. Y. (2015). Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence. Frontiers in Microbiology, 6(OCT), 1–7. https://doi.org/10.3389/fmicb.2015.01173
dc.relationChristensen, Gordon, E. a. (1985). Adherence of Coagulase-Negative Staphylococci to Plastic Tissue Culture Plates: a Quantitative Model for the Adherence of Staphylococci to Medical Device. Journal of Clinical Microbiology, 22(6), 996–1006. Retrieved from papers2://publication/uuid/E1D7238D-250A-4E23-AB70-BBB6A42974D4
dc.relationClara Barragán A et.al. (2018). Inhibition of quorum sensing by compounds from two Eunicea species and synthetic saturated alkylglycerols. VITAE, 25, 92–103. Retrieved from http://dx.doi.org/10.17533/udea.vitae.v25n2a05
dc.relationDa Silva, T. F., Eira, J., Lopes, A. T., Malheiro, A. R., Sousa, V., Luoma, A., … Brites, P. (2014). Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. Journal of Clinical Investigation, 124(6), 2560–2570. https://doi.org/10.1172/JCI72063
dc.relationDean, J. M., & Lodhi, I. J. (2018). Structural and functional roles of ether lipids. Protein and Cell, 9(2), 196–206. https://doi.org/10.1007/s13238-017-0423-5
dc.relationDevescovi, G., Kojic, M., Covaceuszach, S., Cámara, M., Williams, P., Bertani, I., … Venturi, V. (2017). Negative regulation of violacein biosynthesis in Chromobacterium violaceum. Frontiers in Microbiology, 8, 1–11. https://doi.org/10.3389/fmicb.2017.00349
dc.relationDobretsov, S., Teplitski, M., Bayer, M., Gunasekera, S., Proksch, P., & Paul, V. J. (2011). Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling, 27(8), 893–905. https://doi.org/10.1080/08927014.2011.609616
dc.relationEven-Tov, E., Omer Bendori, S., Valastyan, J., Ke, X., Pollak, S., Bareia, T., … Eldar, A. (2016). Social Evolution Selects for Redundancy in Bacterial Quorum Sensing. PLoS Biology, 14(2), 1–18. https://doi.org/10.1371/journal.pbio.1002386
dc.relationFernandez, D. (2017). Estudio de la Actividad Antibiofilm de Alquilgliceroles Análogos a Compuestos de Origen Marino (Universidad Nacional de Colombia). Retrieved from http://bdigital.unal.edu.co/64616/ Consultado 22-Oct-18
dc.relationGjermansen, M., Nilsson, M., Yang, L., & Tolker-Nielsen, T. (2010). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Molecular Microbiology, 75(4), 815–826. https://doi.org/10.1111/j.1365-2958.2009.06793.x
dc.relationGrandclément, C., Tannières, M., Moréra, S., Dessaux, Y., & Faure, D. (2015). Quorum quenching: Role in nature and applied developments. FEMS Microbiology Reviews, 40(1), 86–116. https://doi.org/10.1093/femsre/fuv038
dc.relationHobley, L., Harkins, C., MacPhee, C. E., & Stanley-Wall, N. R. (2015). Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbiology Reviews, 39(5), 649–669. https://doi.org/10.1093/femsre/fuv015
dc.relationHoshino, T. (2011). Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: Biosynthetic mechanism and pathway for construction of violacein core. Applied Microbiology and Biotechnology, 91(6), 1463–1475. https://doi.org/10.1007/s00253-011-3468-z
dc.relationHuseby, M. J., Kruse, A. C., Digre, J., Kohler, P. L., Vocke, J. A., Mann, E. E., … Earhart, C. A. (2010). Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14407–14412. https://doi.org/10.1073/pnas.0911032107
dc.relationJohnson, J. G., & Clegg, S. (2010). Role of MrkJ, a phosphodiesterase, in type 3 fimbrial xpression and Biofilm formation in Klebsiella pneumoniae. Journal of Bacteriology, 192(15), 3944–3950. https://doi.org/10.1128/JB.00304-10
dc.relationKamaeva, A. A., Vasilchenko, A. S., & Deryabin, D. G. (2014). Atomic force microscopy reveals a morphological differentiation of Chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone. PLoS ONE, 9(8). https://doi.org/10.1371/journal.pone.0103741
dc.relationKendall, M. M., & Sperandio, V. (2007). Quorum sensing by enteric pathogens. Current Opinion in Gastroenterology, 23(1), 10–15. https://doi.org/10.1097/MOG.0b013e3280118289
dc.relationKossei S. Edlbacher. (1915). Beiträge zur chemischen Kenntnis der Mineralkörper. Z. Physiol. Chem, 3, 194–198.
dc.relationKothari, V., Sharma, S., & Padia, D. (2017). Recent research advances on Chromobacterium violaceum. Asian Pacific Journal of Tropical Medicine, 10(8), 744–752. https://doi.org/10.1016/j.apjtm.2017.07.022
dc.relationKumon, H., Tomochika, K. I., Matunaga, T., Ohmori, H., & Ogawa, M. (1994). A Sandwich Cup Method for the Penetration Assay of Antimicrobial Agents through Pseudomonas Exopolysaccharides. Microbiology and Immunology, 38(8), 615–619. https://doi.org/10.1111/j.1348-0421.1994.tb01831.x
dc.relationKurihara, H., Goto, Y., Aida, M., Hosokawa, M., & Takahashi, K. (2017). Antibacterial Activity against Cariogenic Bacteria and Inhibition of Insoluble Glucan Production by Free Fatty Acids Obtained from Dried Gloiopeltis furcata. Fisheries Science, 65(1), 129–132. https://doi.org/10.2331/fishsci.65.129
dc.relationKweon, J. H. yan. (2014). Quorum quenching mediated approaches for control of membrane biofouling. International Journal of Biological Sciences, 10(5), 550–565. https://doi.org/10.7150/ijbs.9028
dc.relationLade, H., Paul, D., & Kweon, J. H. (2014). N -Acyl Homoserine Lactone-Mediated Quorum Sensing with Special Reference to Use of Quorum Quenching Bacteria in Membrane Biofouling Control. BioMed Research International, 2014, 1–25. https://doi.org/10.1155/2014/162584
dc.relationLaSarre, B., & Federle, M. J. (2013). Exploiting Quorum Sensing To Confuse Bacterial Pathogens. Microbiology and Molecular Biology Reviews, 77(1), 73–111. https://doi.org/10.1128/MMBR.00046-12
dc.relationLebeaux, D., Ghigo, J.-M., & Beloin, C. (2014). Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510–543. https://doi.org/10.1128/MMBR.00013-14
dc.relationLee, J., Wu, J., Deng, Y., Wang, J., Wang, C., Wang, J., … Zhang, L. H. (2013). A cell-cell communication signal integrates quorum sensing and stress response. Nature Chemical Biology, 9(5), 339–343. https://doi.org/10.1038/nchembio.1225
dc.relationLi, J., Wang, W., Xu, S. X., Magarvey, N. A., & McCormick, J. K. (2011). Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proceedings of the National Academy of Sciences of the United States of America, 108(8), 3360–3365. https://doi.org/10.1073/pnas.1017431108
dc.relationLister, J. L., & Horswill, A. R. (2014). Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Frontiers in Cellular and Infection Microbiology, 4(December), 1–9. https://doi.org/10.3389/fcimb.2014.00178
dc.relationLiu, Z., Wang, W., Zhu, Y., Gong, Q., Yu, W., & Lu, X. (2013). Antibiotics at subinhibitory concentrations improve the quorum sensing behavior of Chromobacterium violaceum. FEMS Microbiology Letters, 341(1), 37–44. https://doi.org/10.1111/1574-6968.12086
dc.relationLupp, C., & Ruby, E. G. (2005). Vibrio fischeri Uses Two Quorum-Sensing Systems for the Regulation of Early and Late Colonization Factors. 187(11), 3620–3629. https://doi.org/10.1128/JB.187.11.3620
dc.relationMadhani, H. D. (2011). Quorum sensing in fungi: Q&A. PLoS Pathogens, 7(10), 10–12. https://doi.org/10.1371/journal.ppat.1002301
dc.relationMagnusson, C. D., & Haraldsson, G. G. (2011). Ether lipids. Chemistry and Physics of Lipids, 164(5), 315–340. https://doi.org/10.1016/j.chemphyslip.2011.04.010
dc.relationMann, E. E., & Wozniak, D. (2012). Pseudomonas biofilm matrix composition and niche biology. Physiology and Behavior, 36(4), 893–916. https://doi.org/10.1111/j.1574-6976.2011.00322.x.
dc.relationMathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anollés, G., Rolfe, B. G., & Bauer, W. D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1444–1449. https://doi.org/10.1073/pnas.262672599
dc.relationMcclean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., … Williams, P. (1997). Quorum sensing and Chromobacterium violaceum : exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 143(January 1998), 3703-37 1 1. https://doi.org/10.1099/00221287-143-12-3703
dc.relationMeibom, K. L., & et.al. (2005). Chitin induces natural competence in Vibrio cholerae. Science, 310(5755), 1824–1827. https://doi.org/10.1126/science.1120096
dc.relationMielich-Süss, B., & Lopez, D. (2015). Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environmental Microbiology, 17(3), 555–565. https://doi.org/10.1111/1462-2920.12527
dc.relationMigiyama, Y., Kaneko, Y., Yanagihara, K., Morohoshi, T., Morinaga, Y., Nakamura, S., … Kohnob, S. (2013). Efficacy of AiiM, an N-acylhomoserine lactonase, against Pseudomonas aeruginosa in a mouse model of acute pneumonia. Antimicrobial Agents and Chemotherapy, 57(8), 3653–3658. https://doi.org/10.1128/AAC.00456-13
dc.relationMony, B. M., MacGregor, P., Ivens, A., Rojas, F., Cowton, A., Young, J., Matthews, K. (2014). Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature, 505(7485), 681–685. https://doi.org/10.1038/nature12864
dc.relationMorohoshi, T., Fukamachi, K., Kato, M., Kato, N., & Ikeda, T. (2010). Regulation of the Violacein Biosynthetic Gene Cluster by Acylhomoserine Lactone-Mediated Quorum Sensing in Chromobacterium violaceum ATCC 12472. Bioscience, Biotechnology, and Biochemistry, 74(10), 2116–2119. https://doi.org/10.1271/bbb.100385
dc.relationMulcahy, H., Charron-Mazenod, L., & Lewenza, S. (2010). Pseudomonas aeruginosa produces an extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient source. Environmental Microbiology, 12(6), 1621–1629. https://doi.org/10.1111/j.1462-2920.2010.02208.x
dc.relationNakatsuji, T., Kao, M. C., Fang, J. Y., Zouboulis, C. C., Zhang, L., Gallo, R. L., & Huang, C. M. (2009). Antimicrobial property of lauric acid against Propionibacterium acnes: Its therapeutic potential for inflammatory acne vulgaris. Journal of Investigative Dermatology, 129(10), 2480–2488. https://doi.org/10.1038/jid.2009.93
dc.relationOMS. (2018). Resistencia a los antibióticos (En linea). Retrieved from http://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antibióticos Consultado 22-Octubre-2018
dc.relationOrtega, C. B. N. (2006). QUÓRUM-SENSIG EN Bradyrhizobium japonicum: IDENTIFICACIÓN DE GENES IMPLICADOS Y DETECCIÓN Y PURIFICACIÓN DE AUTOINDUCTORES (En linea) (Universidad de Granada). Retrieved from https://dialnet.unirioja.es/servlet/tesis?codigo=72701. Consultado 22-Octubre-2018
dc.relationPapaioannou, E., Wahjudi, M., Nadal-Jimenez, P., Koch, G., Setroikromo, R., & Quax, W. J. (2009). Quorum-quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model. Antimicrobial Agents and Chemotherapy, 53(11), 4891–4897. https://doi.org/10.1128/AAC.00380-09
dc.relationPapenfort, K., & Bassler, B. L. (2016). Quorum sensing signal-response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576–588. https://doi.org/10.1038/nrmicro.2016.89
dc.relationPark, J., Jagasia, R., Kaufmann, G. F., Mathison, J. C., Ruiz, D. I., Moss, J. A., Janda, K. D. (2007). Infection Control by Antibody Disruption of Bacterial Quorum Sensing Signaling. Chemistry and Biology, 14(10), 1119–1127. https://doi.org/10.1016/j.chembiol.2007.08.013
dc.relationParkins, M. D., Ceri, H., & Storey, D. G. (2001). Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Molecular Microbiology, 40(5), 1215–1226. https://doi.org/10.1046/j.1365-2958.2001.02469.x
dc.relationPereira, C. S., Thompson, J. A., & Xavier, K. B. (2013). AI-2-mediated signalling in bacteria. FEMS Microbiology Reviews, 37(2), 156–181. https://doi.org/10.1111/j.1574-6976.2012.00345.x
dc.relationPompilio, A., De Nicola, S., Crocetta, V., Guarnieri, S., Savini, V., Carretto, E., & Di Bonaventura, G. (2015). New insights in Staphylococcus pseudintermedius pathogenicity: Antibiotic-resistant biofilm formation by a human wound-associated strain. BMC Microbiology, 15(1), 1–14. https://doi.org/10.1186/s12866-015-0449-x
dc.relationPratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation : roles of flagella , motility , chemotaxis and type I pili. Molecular Microbiology, 30, 285–293.
dc.relationRasamiravaka, T., Labtani, Q., Duez, P., & El Jaziri, M. (2015). The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Research International, 2015. https://doi.org/10.1155/2015/759348
dc.relationRasmussen, Thomas B., & Givskov, M. (2006). Quorum-sensing inhibitors as anti-pathogenic drugs. International Journal of Medical Microbiology, 296(2–3), 149–161. https://doi.org/10.1016/j.ijmm.2006.02.005
dc.relationRasmussen, Thomas Bovbjerg, Skindersoe, M. E., Bjarnsholt, T., Phipps, R. K., Christensen, K. B., Jensen, P. O., … Givskov, M. (2005). Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology, 151(5), 1325–1340. https://doi.org/10.1099/mic.0.27715-0
dc.relationReuter, K., Steinbach, A., & Helms, V. (2016). Interfering with Bacterial Quorum Sensing. Perspectives in Medicinal Chemistry, 8, 1–15. https://doi.org/10.4137/PMc.s13209
dc.relationRiedel, K., Hentzer, M., Geisenberger, O., Huber, B., Steidle, A., Wu, H., … Eberl, L. (2001). N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology, 147, 3249–3262. https://doi.org/10.1099/00221287-147-12-3249
dc.relationRoy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9, 522–554. https://doi.org/10.1080/21505594.2017.1313372
dc.relationSatpathy, S., Sen, S. K., Pattanaik, S., & Raut, S. (2016). Review on bacterial biofilm: An universal cause of contamination. Biocatalysis and Agricultural Biotechnology, 7, 56–66. https://doi.org/10.1016/j.bcab.2016.05.002
dc.relationSaville, R. M., Rakshe, S., Haagensen, J. A. J., Shukla, S., & Spormann, A. M. (2011). Energy-dependent stability of Shewanella oneidensis MR-1 biofilms. Journal of Bacteriology, 193(13), 3257–3264. https://doi.org/10.1128/JB.00251-11
dc.relationScutera, S., Zucca, M., & Savoia, D. (2014). Novel approaches for the design and discovery of quorum-sensing inhibitors. Expert Opinion on Drug Discovery, 9(4), 353–366. https://doi.org/10.1517/17460441.2014.894974
dc.relationSlipski, C. J., Zhanel, G. G., & Bay, D. C. (2018). Biocide Selective TolC-Independent Efflux Pumps in Enterobacteriaceae. Journal of Membrane Biology, 251(1), 15–33. https://doi.org/10.1007/s00232-017-9992-8
dc.relationSong, D., Meng, J., Cheng, J., Fan, Z., Chen, P., Ruan, H., … Shi, Y. (2019). Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution. Nature Microbiology, 4(1), 97–111. https://doi.org/10.1038/s41564-018-0290-8
dc.relationStelitano, V., Giardina, G., Paiardini, A., Castiglione, N., Cutruzzolà, F., & Rinaldo, S. (2013). C-di-GMP Hydrolysis by Pseudomonas aeruginosa HD-GYP Phosphodiesterases: Analysis of the Reaction Mechanism and Novel Roles for pGpG. PLoS ONE, 8(9), 1–13. https://doi.org/10.1371/journal.pone.0074920
dc.relationStepanović et.al. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40(2), 175–179. https://doi.org/10.1016/S0167-7012(00)00122-6
dc.relationSteven J. Projan, E. a. (1994). Glycerol monolaurate inhibits the production of β-lactamase, toxic shock syndrome toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. Journal of Bacteriology, 176(14), 4204–4209. https://doi.org/10.1128/jb.176.14.4204-4209.1994
dc.relationStoll, L. L., Figard, P. H., Yerram, N. R., Yorek, M. A., & Spector, A. A. (1989). 1-O-alkyl-2-acetyl-sn-glycerol: a platelet-activating factor metabolite with biological activity in vascular smooth muscle cells. Cell Regulation, 1(1), 13–25.
dc.relationSugimoto, S., Iwamoto, T., Takada, K., Okuda, K. I., Tajima, A., Iwase, T., & Mizunoe, Y. (2013). Staphylococcus epidermidis Esp degrades specific proteins associated with staphylococcus aureus biofilm formation and host-pathogen interaction. Journal of Bacteriology, 195(8), 1645–1655. https://doi.org/10.1128/JB.01672-12
dc.relationTaylor, J. R. (1997). Introduction To Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books.
dc.relationThoendel, M. (2012). Peptide signaling in the Staphylococci. Chem Rev., 111(1), 117–151. https://doi.org/10.1021/cr100370n.Peptide
dc.relationTomasz, A., & Hotchkiss, R. D. (1964). Regulation of the Transformability of Pneumococcal Cultures By Macromolecular Cell Products. Proceedings of the National Academy of Sciences, 51(3), 480–487. https://doi.org/10.1073/pnas.51.3.480
dc.relationTruchado, P., López-Gálvez, F., Gil, M. I., Tomás-Barberán, F. A., & Allende, A. (2009). Quorum sensing inhibitory and antimicrobial activities of honeys and the relationship with individual phenolics. Food Chemistry, 115(4), 1337–1344. https://doi.org/10.1016/j.foodchem.2009.01.065
dc.relationUrbanczyk, H., Ast, J. C., Higgins, M. J., Carson, J., & Dunlap, P. V. (2007). Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57(12), 2823–2829. https://doi.org/10.1099/ijs.0.65081-0
dc.relationVadakkan, K., Choudhury, A. A., Gunasekaran, R., Hemapriya, J., & Vijayanand, S. (2018). Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. Journal of Genetic Engineering and Biotechnology, 16(2), 239–252. https://doi.org/10.1016/j.jgeb.2018.07.001
dc.relationVan Houdt, R., & Michiels, C. W. (2005). Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology, 156(5–6), 626–633. https://doi.org/10.1016/j.resmic.2005.02.005
dc.relationVasavi, H. S., Arun, A. B., & Rekha, P. D. (2013). Inhibition of quorum sensing in Chromobacterium violaceum by Syzygium cumini L. and Pimenta dioica L. Asian Pacific Journal of Tropical Biomedicine, 3(12), 954–959. https://doi.org/10.1016/S2221-1691(13)60185-9
dc.relationVed, H. S., Gustow, E., & Pieringer, A. (1984). The Involvement of the Proteinase of Streptococcus fuecium ATCC 9790 in the Stimulation of Its Autolysin Activity by Dodecylglycerol. The Journal of Biological Chemestry, 259(13), 8122–8124.
dc.relationVlad, D. C., Dumitrascu, V., Cornianu, M., Voia, S. O., & Verdes, D. (2013). Functional and morphological alteration in deoxinivalenol ( DON ) induced liver and kidney injuries. 18(6), 8863–8872.
dc.relationWalters, M., & Sperandio, V. (2006). Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli. Infection and Immunity, 74(10), 5445–5455. https://doi.org/10.1128/IAI.00099-06
dc.relationWang, B., & Muir, T. W. (2016). Regulation of Virulence in Staphylococcus aureus: Molecular Mechanisms and Remaining Puzzles. Cell Chemical Biology, 23(2), 214–224. https://doi.org/10.1016/j.chembiol.2016.01.004
dc.relationWilkinson, A., Danino, V., Wisniewski-Dyé, F., Lithgow, J. K., & Downie, J. A. (2002). N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. Journal of Bacteriology, 184(16), 4510–4519. https://doi.org/10.1128/JB.184.16.4510-4519.2002
dc.relationWinzer, K., Hardie, K. R., Burgess, N., Doherty, N., Kirke, D., Holden, M. T. G., … Williams, P. (2002). LuxS : its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)- furanone. Microbiology, 148(2002), 909–922. https://doi.org/10.1099/00221287-148-4-909
dc.relationWon, S. R., Hong, M. J., Kim, Y. M., Li, C. Y., Kim, J. W., & Rhee, H. I. (2007). Oleic acid: An efficient inhibitor of glucosyltransferase. FEBS Letters, 581(25), 4999–5002. https://doi.org/10.1016/j.febslet.2007.09.045
dc.relationWood, P. L., Mankidy, R., Ritchie, S., Heath, D., Wood, J. A., Flax, J., & Goodenowe, D. B. (2010). Circulating plasmalogen levels and Alzheimer Disease Assessment Scale-Cognitive scores in Alzheimer patients. Journal of Psychiatry and Neuroscience, 35(1), 59–62. https://doi.org/10.1503/jpn.090059
dc.relationYoon, B. K., Jackman, J. A., Valle-González, E. R., & Cho, N. J. (2018). Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. International Journal of Molecular Sciences, 19(4). https://doi.org/10.3390/ijms19041114
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEstudio de la actividad biológica de alquilglicerol lípidos análogos a compuestos de origen marino contra aislados de origen clínico
dc.typeOtro


Este ítem pertenece a la siguiente institución