dc.contributor | Troncoso, Julieta | |
dc.contributor | Neurofisiología Comportamental | |
dc.creator | Bolivar Baquero, Oscar Andres | |
dc.date.accessioned | 2021-09-22T00:58:57Z | |
dc.date.available | 2021-09-22T00:58:57Z | |
dc.date.created | 2021-09-22T00:58:57Z | |
dc.date.issued | 2021-09-03 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80253 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Distintos modelos de lesión de nervios periféricos en ratas se han utilizado ampliamente para estudiar los cambios estructurales que ocurren, no solamente en las neuronas directamente afectadas, sino también en otras estructuras del sistema nervioso central relacionadas con el procesamiento sensoriomotor. El Grupo de Neurofisiología Comportamental, de la Universidad Nacional de Colombia, además de describir cambios a nivel morfológico, molecular y electrofisiológico generados en la corteza motora primaria de vibrisas por la lesión del nervio facial en ratas, ha descrito una disminución de la plasticidad a largo plazo en la sinapsis comisural CA3CA1 del hipocampo, asociada a este tipo de lesión. Sumado a ello, se ha encontrado un aumento en los niveles plasmáticos de corticosterona, una disminución en la consolidación de la memoria espacial y un aumento de la activación microglial en el hipocampo de animales con axotomía del nervio facial. En este trabajo se analizó la morfología neuronal de las células piramidales de las regiones CA3 y CA1 del hipocampo en ratas con lesión reversible o irreversible del nervio facial. Para este fin, se realizó una tinción del tejido cerebral con el método Golgi-cox en animales lesionados y sacrificados a distintos tiempos post-lesión, que se compararon con cerebros de animales control. Se evaluó la complejidad dendrítica mediante el análisis de Sholl y se calculó la densidad de espinas dendríticas de las regiones basal y apical. Se encontró que ambos tipos de lesión son capaces de producir disminuciones significativas en: 1) la complejidad del árbol dendrítico; 2) la longitud total de dendritas y 3) el número de espinas dendríticas. No obstante, se evidencia una tendencia a la recuperación de estas modificaciones en animales con lesión reversible del nervio facial (es decir, que son capaces de recuperar la función motora tras la lesión). Esta tendencia de reversión de las modificaciones está correlacionada con la recuperación funcional que los sujetos demuestran entre los días postoperatorios 14 y 35. Se concluye que la lesión del nervio facial, con la posibilidad de recuperación funcional o no, es capaz de producir cambios anatómicos en las neuronas piramidales de las regiones CA1 y CA3 del hipocampo. Dichos cambios denotan una reducción general de la complejidad del árbol dendrítico y de la densidad de espinas, que tiende a revertirse si hay recuperación de la función motora. (Texto tomado de la fuente) | |
dc.description.abstract | Several models of peripheral nerve injury in rats have been widely used to study the structural changes that occur in the injured neurons and other central nervous system structures related to sensorimotor processing. The Behavioral Neurophysiology Group (Universidad Nacional de Colombia), has described morphological, molecular and electrophysiological changes in the vibrissae primary motor cortex associated with facial nerve injury in rats. Moreover, recently it has been reported a decrease in long-term potentiation of hippocampal CA3-to-CA1 commissural synapse, related with this type of peripheral injury. In addition, it has been found increased corticosterone plasmatic levels, impediment in spatial memory consolidation, and hippocampal microglial activation in animals with facial nerve axotomy. In this work we analyzed the neuronal morphology of hippocampal CA3 and CA1 pyramidal cells in animals with reversible or irreversible facial nerve injury. For this purpose, brain tissue of injured animals sacrificed at different post-lesion times, were staining with Golgi-cox method and compared with control brains. It was found that both irreversible and reversible facial nerve injury produced significant decreases in 1) complexity of the dendritic tree; 2) dendrites total length; and 3) dendritic spine’s density. However, a trend toward recovery of these modifications is evident in animals with reversible facial nerve injury (i.e., that are able to recover motor function after injury). This trend is correlated with the recovery of motor function between 14- and 35-days post-injury. It is concluded that facial nerve injury produced significant changes in hippocampal CA1 and CA3 pyramidal neurons morphology. Such changes demonstrate a general reduction in the complexity of the dendritic tree and spine density, which tends to reverse if recovery of motor function is allowed. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Biología | |
dc.publisher | Departamento de Biología | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá - Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Achour, S. B., & Pascual, S. O. (2010). Glia: the many ways to modulate synaptic plasticity. Neurochemistry international, 57(4), 440-445. | |
dc.relation | Adamsky, A., & Goshen, I. (2017). Astrocytes in memory function: Pioneering findings and future directions. Neuroscience. Adibi, M. (2019). Whisker-mediated touch system in rodents: from neuron to behavior. Frontiers in systems neuroscience, 13, 40. | |
dc.relation | Alonso, M., Medina, J. H., & Pozzo-Miller, L. (2004). ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learning & memory, 11(2), 172-178. | |
dc.relation | Amaral, D. G., & Witter, M. P. (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 31(3), 571-591. | |
dc.relation | Anderson, K. J., Scheff, S. W., & DeKosky, S. T. (1986). Reactive synaptogenesis in hippocampal area CA1 of aged and young adult rats. Journal of Comparative Neurology, 252(3), 374-384. | |
dc.relation | Aronoff, R., Matyas, F., Mateo, C., Ciron, C., Schneider, B., & Petersen, C. C. (2010). Long‐range connectivity of mouse primary somatosensory barrel cortex. European Journal of Neuroscience, 31(12), 2221-2233. | |
dc.relation | Aston-Jones, G., Chiang, C., & Alexinsky, T. (1991). Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress in brain research, 88, 501-520. | |
dc.relation | Berg, R. W., & Kleinfeld, D. (2003). Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. Journal of neurophysiology, 89(1), 104-117. | |
dc.relation | Bosman, L., Houweling, A., Owens, C., Tanke, N., Shevchouk, O., Rahmati, N., Teunissen, W., Ju, C., Gong, W., Koekkoek, S., Zeeuw, C. (2011). Anatomical pathways involved in generating and sensing rhythmic whisker movements. Frontiers in Integrative Neuroscience. 5(53). | |
dc.relation | Bourne, J. N., & Harris, K. M. (2008). Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci., 31, 47-67. | |
dc.relation | Brankačk, J., & Buzsáki, G. (1986). Hippocampal responses evoked by tooth pulp and acoustic stimulation: depth profiles and effect of behavior. Brain research, 378(2), 303-314. | |
dc.relation | Brecht, M., Preilowski, B., & Merzenich, M. M. (1997). Functional architecture of the mystacial vibrissae. Behavioural brain research, 84(1-2), 81-97. | |
dc.relation | Broadbent, N. J., Squire, L. R., & Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proceedings of the National Academy of Sciences, 101(40), 14515-14520. | |
dc.relation | Brun, V. H., Leutgeb, S., Wu, H. Q., Schwarcz, R., Witter, M. P., Moser, E. I., & Moser, M. B. (2008). Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron, 57(2), 290-302. | |
dc.relation | Bryan, G. K., & Riesen, A. H. (1989). Deprived somatosensory‐motor experience in stumptailed monkey neocortex: Dendritic spine density and dendritic branching of layer IIIB pyramidal cells. Journal of Comparative Neurology, 286(2), 208-217. | |
dc.relation | Burwell, R. D., & Amaral, D. G. (1998). Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Journal of comparative neurology, 398(2), 179-205. | |
dc.relation | Carvell, G. E., & Simons, D. J. (1990). Biometric analyses of vibrissal tactile discrimination in the rat. Journal of Neuroscience, 10(8), 2638-2648. | |
dc.relation | Cerón, J., & Troncoso, J. (2016). Alteraciones de las células de la microglia del sistema nervioso central provocadas por lesiones del nervio facial. Biomédica, 36(4), 619-631. | |
dc.relation | Conrad, C. D., Ortiz, J. B., & Judd, J. M. (2017). Chronic stress and hippocampal dendritic complexity: methodological and functional considerations. Physiology & behavior, 178, 66-81. | |
dc.relation | Cramer, N. P., Li, Y., & Keller, A. (2007). The whisking rhythm generator: a novel mammalian network for the generation of movement. Journal of neurophysiology, 97(3), 2148-2158. | |
dc.relation | Curtis, J. C., & Kleinfeld, D. (2009). Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nature neuroscience, 12(4), 492. | |
dc.relation | Dani, J. A., & Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol., 47, 699-729. | |
dc.relation | Deschênes, M., Veinante, P., & Zhang, Z. W. (1998). The organization of corticothalamic projections: reciprocity versus parity. Brain research reviews, 28(3), 286-308. | |
dc.relation | Desmond, N. L., Scott, C. A., Jane Jr, J. A., & Levy, W. B. (1994). Ultrastructural identification of entorhinal cortical synapses in CA1 stratum lacunosum‐moleculare of the rat. Hippocampus, 4(5), 594-600. | |
dc.relation | Dirección para la Acción Integral contra Minas Antipersonal - Descontamina Colombia, (2018). Víctimas de Minas Antipersonal y Municiones sin Explosionar. Colombia: Recuperado de: http://www.accioncontraminas.gov.co/estadisticas/Paginas/victimas-minas-antipersonal.aspx | |
dc.relation | Donoghue, J. P., Suner, S., & Sanes, J. N. (1990). Dynamic organization of primary motor cortex output to target muscles in adult rats II. Rapid reorganization following motor nerve lesions. Experimental Brain Research, 79(3), 492-503. Dörfl, J. (1982). The musculature of the mystacial vibrissae of the white mouse. Journal of anatomy, 135(Pt 1), 147. | |
dc.relation | Ebara, S., Kumamoto, K., Matsuura, T., Mazurkiewicz, J. E., & Rice, F. L. (2002). Similarities and differences in the innervation of mystacial vibrissal follicle–sinus complexes in the rat and cat: a confocal microscopic study. Journal of Comparative Neurology, 449(2), 103-119. | |
dc.relation | Empson, R. M., & Heinemann, U. (1995). The perforant path projection to hippocampal area CA1 in the rat hippocampal‐entorhinal cortex combined slice. The Journal of physiology, 484(3), 707-720. | |
dc.relation | Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399(6731), 66. | |
dc.relation | Eroglu, C., & Barres, B. A. (2010). Regulation of synaptic connectivity by glia. Nature, 468(7321), 223. Erzurumlu, R. S., Bates, C. A., & Killackey, H. P. (1980). Differential organization of thalamic projection cells in the brain stem trigeminal complex of the rat. Brain research, 198(2), 427-433. | |
dc.relation | Fasick, V., Spengler, R. N., Samankan, S., Nader, N. D., & Ignatowski, T. A. (2015). The hippocampus and TNF: Common links between chronic pain and depression. Neuroscience & Biobehavioral Reviews, 53, 139-159. | |
dc.relation | Fiore, N. T., & Austin, P. J. (2016). Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation?. Brain, behavior, and immunity, 56, 397-411. | |
dc.relation | Fiore, N. T., & Austin, P. J. (2018). Glial-cytokine-neuronal Adaptations in the Ventral Hippocampus of Rats with Affective Behavioral Changes Following Peripheral Nerve Injury. Neuroscience, 390, 119-140. | |
dc.relation | Fitch, J. M., Juraska, J. M., & Washington, L. W. (1989). The dendritic morphology of pyramidal neurons in the rat hippocampal CA3 area. I. Cell types. Brain research, 479(1), 105-114. | |
dc.relation | Gall, C., McWILLIAMS, R. A. N. D. A. L. L., & Lynch, G. (1979). The effect of collateral sprouting on the density of innervation of normal target sites: implications for theories on the regulation of the size of developing synaptic domains. Brain research, 175(1), 37-47. | |
dc.relation | Globus, A., & Scheibel, A. B. (1967). The effect of visual deprivation on cortical neurons: a Golgi study. Experimental neurology, 19(3), 331-345. | |
dc.relation | Goldowitz, D., Scheff, S. W., & Cotman, C. W. (1979). The specificity of reactive synaptogenesis: a comparative study in the adult rat hippocampal formation. Brain research, 170(3), 427-441. | |
dc.relation | Gomez-Pinilla, F., & Gomez, A. G. (2011). The influence of dietary factors in central nervous system plasticity and injury recovery. PM&R, 3(6), S111-S116. | |
dc.relation | Gordon, T., & Borschel, G. H. (2017). The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Experimental neurology, 287, 331-347. | |
dc.relation | Granon, S., Vidal, C., Thinus-Blanc, C., Changeux, J. P., & Poucet, B. (1994). Working memory, response selection, and effortful processing in rats with medial prefrontal lesions. Behavioral neuroscience, 108(5), 883. | |
dc.relation | Griffin, J. W., Hogan, M. V., Chhabra, A. B., & Deal, D. N. (2013). Peripheral nerve repair and reconstruction. Jbjs, 95(23), 2144-2151. | |
dc.relation | Grinevich, V., Brecht, M., & Osten, P. (2005). Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing. Journal of Neuroscience, 25(36), 8250-8258. | |
dc.relation | Grion, N., Akrami, A., Zuo, Y., Stella, F., & Diamond, M. E. (2016). Coherence between rat sensorimotor system and hippocampus is enhanced during tactile discrimination. PLoS biology, 14(2), e1002384. | |
dc.relation | Groves, T. R., Wang, J., Boerma, M., & Allen, A. R. (2017). Assessment of Hippocampal Dendritic Complexity in Aged Mice Using the Golgi-Cox Method. Journal of visualized experiments: JoVE, (124). | |
dc.relation | Guić-Robles, E., Valdivieso, C., & Guajardo, G. (1989). Rats can learn a roughness discrimination using only their vibrissal system. Behavioural brain research, 31(3), 285-289. | |
dc.relation | Gustafson, J. W., & Felbain-Keramidas, S. L. (1977). Behavioral and neural approaches to the function of the mystacial vibrissae. Psychological bulletin, 84(3), 477. | |
dc.relation | Hadlock, T. A., Heaton, J., Cheney, M., & Mackinnon, S. E. (2005). Functional recovery after facial and sciatic nerve crush injury in the rat. Archives of facial plastic surgery, 7(1), 17-20. | |
dc.relation | Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. | |
dc.relation | Han, Z. S., Buhl, E. H., Lörinczi, Z., & Somogyi, P. (1993). A High Degree of Spatial Selectivity in the Axonal and Dendritic Domains of Physiologically Identified Local‐circuit Neurons in the Dentate Gyms of the Rat Hippocampus. European Journal of Neuroscience, 5(5), 395-410. | |
dc.relation | Hattox, A. M., Priest, C. A., & Keller, A. (2002). Functional circuitry involved in the regulation of whisker movements. Journal of Comparative Neurology, 442(3), 266-276. | |
dc.relation | Henstrom, D., Hadlock, T., Lindsay, R., Knox, C. J., Malo, J., Vakharia, K. T., & Heaton, J. T. (2012). The convergence of facial nerve branches providing whisker pad motor supply in rats: implications for facial reanimation study. Muscle & nerve, 45(5), 692-697. | |
dc.relation | Herfst, L. J., & Brecht, M. (2008). Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat. Journal of neurophysiology, 99(6), 2821-2832. | |
dc.relation | Herman, J. P., Schafer, M. K., Young, E. A., Thompson, R., Douglass, J., Akil, H., & Watson, S. J. (1989). Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. Journal of Neuroscience, 9(9), 3072-3082. | |
dc.relation | Hong, E. Y., Beak, S. K., & Lee, H. S. (2010). Dual projections of tuberomammillary neurons to whisker-related, sensory and motor regions of the rat. Brain research, 1354, 64-73. | |
dc.relation | Horvat, A., Schwaiger, F. W., Hager, G., Bröcker, F., Streif, R., Knyazev, P. G., ... & Kreutzberg, G. W. (2001). A novel role for protein tyrosine phosphatase shp1 in controlling glial activation in the normal and injured nervous system. Journal of Neuroscience, 21(3), 865-874. | |
dc.relation | Huang, L., Yang, X. J., Huang, Y., Sun, E. Y., & Sun, M. (2016). Ketamine protects gamma oscillations by inhibiting hippocampal LTD. PLoS One, 11(7), e0159192. | |
dc.relation | Ishizuka, N., Weber, J., & Amaral, D. G. (1990). Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. Journal of comparative neurology, 295(4), 580-623. | |
dc.relation | Jacobsen, J. P., & Mørk, A. (2006). Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex, of the rat. Brain research, 1110(1), 221-225. | |
dc.relation | Killackey, H. P., and Sherman, S. M. (2003). Corticothalamic projections from the rat primary somatosensory cortex. J. Neurosci. 23, 7381–7384. | |
dc.relation | Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 321(5885), 53-57. | |
dc.relation | Kossut, M. (1998). Experience-dependent changes in function and anatomy of adult barrel cortex. Experimental brain research, 123(1-2), 110-116. | |
dc.relation | Krout, K., Belzer, R., Loewy, A. 2002. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. Journal of Comparative Neurology. 448(1), 53-101. | |
dc.relation | Landgrebe, M., Laskawi, R., & Wolff, J. R. (2000). Transient changes in cortical distribution of S100 proteins during reorganization of somatotopy in the primary motor cortex induced by facial nerve transection in adult rats. European Journal of Neuroscience, 12(10), 3729-3740. | |
dc.relation | Laskawi, R., Landgrebe, L., & Wolff, J. R. (1996). Electron microscopical evidence of synaptic reorganization in the contralateral motor cortex of adult rats following facial nerve lesion. ORL, 58(5), 266-270. | |
dc.relation | Lee, S. K., & Wolfe, S. W. (2000). Peripheral nerve injury and repair. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 8(4), 243-252. | |
dc.relation | Lee, S., Carvell, G. E., & Simons, D. J. (2008). Motor modulation of afferent somatosensory circuits. Nature neuroscience, 11(12), 1430. | |
dc.relation | Leiser, S. C., and Moxon, K. A. (2006). Relationship between physiological response type (RA and SA) and vibrissal receptive field of neurons within the rat trigeminal ganglion. J. Neurophysiol. 95, 3129–3145. doi: 10.1152/jn.00157.2005 | |
dc.relation | Levine, N. D., Rademacher, D. J., Collier, T. J., O’Malley, J. A., Kells, A. P., San Sebastian, W., ... & Steece-Collier, K. (2013). Advances in thin tissue Golgi-Cox impregnation: fast, reliable methods for multi-assay analyses in rodent and non-human primate brain. Journal of neuroscience methods, 213(2), 214-227. | |
dc.relation | Liston, C., & Gan, W. B. (2011). Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proceedings of the National Academy of Sciences, 108(38), 16074-16079. | |
dc.relation | Liu, X. G., Pang, R. P., Zhou, L. J., Wei, X. H., & Zang, Y. (2016). Neuropathic pain: sensory nerve injury or motor nerve injury?. Translational Research in Pain and Itch, 59-75. | |
dc.relation | Liu, Y., Zhou, L. J., Wang, J., Li, D., Ren, W. J., Peng, J., ... & Liu, X. G. (2017). TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. Journal of Neuroscience, 37(4), 871-881. | |
dc.relation | Lynch, M. A. (2015). Neuroinflammatory changes negatively impact on LTP: A focus on IL-1β. Brain research, 1621, 197-204. | |
dc.relation | Magarinos, A. M., Li, C. J., Toth, J. G., Bath, K. G., Jing, D., Lee, F. S., & McEwen, B. S. (2011). Effect of brain‐derived neurotrophic factor haploinsufficiency on stress‐induced remodeling of hippocampal neurons. Hippocampus, 21(3), 253-264. | |
dc.relation | Maletic-Savatic, M., Malinow, R., & Svoboda, K. (1999). Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science, 283(5409), 1923-1927. | |
dc.relation | Matesz, C. (1981). Peripheral and central distribution of fibres of the mesencephalic trigeminal root in the rat.Neurosci. Lett. 27, 13–17. | |
dc.relation | Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., Aronoff, R., and Petersen, C. C. H. (2010). Motor control by sensory cortex. Science 330, 1240–1243. | |
dc.relation | McEwen, B. S. (2016). Stress-induced remodeling of hippocampal CA3 pyramidal neurons. Brain research, 1645, 50-54. McKenna, J. T., & Vertes, R. P. (2004). Afferent projections to nucleus reuniens of the thalamus. Journal of comparative neurology, 480(2), 115-142. | |
dc.relation | Michaëlsson, H., Andersson, M., Svensson, J., Karlsson, L., Ehn, J., Culley, G., ... & Seth, H. (2019). The novel antidepressant ketamine enhances dentate gyrus proliferation with no effects on synaptic plasticity or hippocampal function in depressive‐like rats. Acta Physiologica, 225(4), e13211. | |
dc.relation | Milatovic, D., Montine, T. J., Zaja‐Milatovic, S., Madison, J. L., Bowman, A. B., & Aschner, M. (2010). Morphometric analysis in neurodegenerative disorders. Current protocols in toxicology, 46(1), 12-16. | |
dc.relation | Moran LB, Graeber MB (2004) The facial nerve axotomy model. Brain Res Brain Res Rev 44:154–178. Moran, L. B., & Graeber, M. B. (2004). The facial nerve axotomy model. Brain Research Reviews, 44(2-3), 154-178. | |
dc.relation | Moreno, C., Vivas, O., Lamprea, N. P., Lamprea, M. R., Múnera, A., & Troncoso, J. (2010). Vibrissal paralysis unveils a preference for textural rather than positional novelty in the one-trial object recognition task in rats. Behavioural brain research, 211(2), 229-235. | |
dc.relation | Múnera, A., Cuestas, D. M., & Troncoso, J. (2012). Peripheral facial nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells. Neuroscience, 223, 140-151. | |
dc.relation | Naber, P. A., Caballero-Bleda, M., Jorritsma-Byham, B., & Witter, M. P. (1997). Parallel input to the hippocampal memory system through peri-and postrhinal cortices. Neuroreport, 8(11), 2617-2621. | |
dc.relation | National Research Council. (2010). Guide for the care and use of laboratory animals. National Academies Press. Nguyen, Q. T., & Kleinfeld, D. (2005). Positive feedback in a brainstem tactile sensorimotor loop. Neuron, 45(3), 447-457. | |
dc.relation | Noble, J., Munro, C. A., Prasad, V. S., & Midha, R. (1998). Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. Journal of Trauma and Acute Care Surgery, 45(1), 116-122. | |
dc.relation | Odebode, T. O., & Ologe, F. E. (2006). Facial nerve palsy after head injury: case incidence, causes, clinical profile and outcome. Journal of Trauma and Acute Care Surgery, 61(2), 388-391. | |
dc.relation | OKeefe, J., & Conway, D. H. (1978). Hippocampal place units in the freely moving rat: why they fire where they fire. Experimental brain research, 31(4), 573-590. | |
dc.relation | Olmstead, D. N., Mesnard-Hoaglin, N. A., Batka, R. J., Haulcomb, M. M., Miller, W. M., & Jones, K. J. (2015). Facial nerve axotomy in mice: a model to study motoneuron response to injury. Journal of visualized experiments: JoVE, (96). | |
dc.relation | Olsen, G. M., & Witter, M. P. (2010). Thalamically defined parts of the parietal cortex show different projections to the parahippocampal region in the rat, Abstract 101.5. Society of Neuroscience. San Diego. | |
dc.relation | Pan, Y. A., Misgeld, T., Lichtman, J. W., & Sanes, J. R. (2003). Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. Journal of Neuroscience, 23(36), 11479-11488. | |
dc.relation | Patarroyo, W. E., García-Perez, M., Lamprea, M., Múnera, A., & Troncoso, J. (2017). Vibrissal paralysis produces increased corticosterone levels and impairment of spatial memory retrieval. Behavioural brain research, 320, 58-66. | |
dc.relation | Pavlides, C., Watanabe, Y., & McEwen, B. S. (1993). Effects of glucocorticoids on hippocampal long‐term potentiation. Hippocampus, 3(2), 183-192. | |
dc.relation | Paxinos, G. (Ed.). (2014). The rat nervous system. Academic press. | |
dc.relation | Pereira, A., Ribeiro, S., Wiest, M., Moore, L. C., Pantoja, J., Lin, S. C., & Nicolelis, M. A. (2007). Processing of tactile information by the hippocampus. Proceedings of the National Academy of Sciences, 104(46), 18286-18291. | |
dc.relation | Petersen, C. C., & Sakmann, B. (2000). The excitatory neuronal network of rat layer 4 barrel cortex. Journal of Neuroscience, 20(20), 7579-7586. | |
dc.relation | Pfister, B. J., Gordon, T., Loverde, J. R., Kochar, A. S., Mackinnon, S. E., & Cullen, D. K. (2011). Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Critical Reviews™ in Biomedical Engineering, 39(2). | |
dc.relation | Pinganaud, G., Bernat, I., Buisseret, P., & Buisseret‐Delmas, C. (1999). Trigeminal projections to hypoglossal and facial motor nuclei in the rat. Journal of Comparative Neurology, 415(1), 91-104. | |
dc.relation | Pradilla, G., Vesga, B. E., & León-Sarmiento, F. E. (2003). Estudio neuroepidemiológico nacional (EPINEURO) colombiano. Revista Panamericana de Salud Pública, 14, 104-111. | |
dc.relation | Rappert, A., Bechmann, I., Pivneva, T., Mahlo, J., Biber, K., Nolte, C., ... & Kettenmann, H. (2004). CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. Journal of Neuroscience, 24(39), 8500-8509. | |
dc.relation | Ren, W. J., Liu, Y., Zhou, L. J., Li, W., Zhong, Y., Pang, R. P., ... & Liu, X. G. (2011). Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-α in rodents. Neuropsychopharmacology, 36(5), 979-992. | |
dc.relation | Sachdev, R. N., Sato, T., & Ebner, F. F. (2002). Divergent movement of adjacent whiskers. Journal of neurophysiology, 87(3), 1440-1448. | |
dc.relation | Sala-Catala, J., Torrero, C., Regalado, M., Salas, M., & Ruiz-Marcos, A. (2005). Movements restriction and alterations of the number of spines distributed along the apical shafts of layer V pyramids in motor and primary sensory cortices of the peripubertal and adult rat. Neuroscience, 133(1), 137-145. | |
dc.relation | Sanders VM, Jones KJ (2006) Role of immunity in recovery from a peripheral nerve injury. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 1:11–19. | |
dc.relation | Sanes, J. N., Suner, S., & Donoghue, J. P. (1990). Dynamic organization of primary motor cortex output to target muscles in adult rats I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Experimental Brain Research, 79(3), 479-491. | |
dc.relation | Scheibel, A. B. (1979). The hippocampus: organizational patterns in health and senescence. Mechanisms of ageing and development, 9(1-2), 89-102. | |
dc.relation | Schiffman, H. R., Lore, R., Passafiume, J., & Neeb, R. (1970). Role of vibrissae for depth perception in the rat (Rattus norvegicus). Animal behaviour, 18, 290-292. | |
dc.relation | Seddon, H. J. (1947). The use of autogenous grafts for the repair of large gaps in peripheral nerves. British Journal of Surgery, 35(138), 151-167. | |
dc.relation | Shetty, A. K., & Turner, D. A. (1995). Intracerebroventricular kainic acid alters calbindin and non-phosphorylated neurofilament immunoreactivity in adult hippocampus. J. comp. Neurol, 363, 1-19. | |
dc.relation | Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of anatomy, 87(Pt 4), 387. | |
dc.relation | Smith, M. A., Makino, S., Kvetnansky, R., & Post, R. M. (1995). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. Journal of Neuroscience, 15(3), 1768-1777. Špaček, J. (1989). Dynamics of the Golgi method: a time-lapse study of the early stages of impregnation in single sections. Journal of neurocytology, 18(1), 27-38. | |
dc.relation | Spruston, N., & McBain, C. (2007). Structural and functional properties of hippocampal neurons. The hippocampus book, 133-201. | |
dc.relation | Steward, O., & Scoville, S. A. (1976). Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. Journal of Comparative Neurology, 169(3), 347-370. | |
dc.relation | Sunderland, S. (1945). Blood supply of the sciatic nerve and its popliteal divisions in man. Archives of Neurology & Psychiatry, 54(4), 283-289. | |
dc.relation | Symons, L. A., & Tees, R. C. (1990). An examination of the intramodal and intermodal behavioral consequences of long‐term vibrissae removal in rats. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 23(8), 849-867. | |
dc.relation | Taube, J. S. (1998). Head direction cells and the neurophysiological basis for a sense of direction. Progress in neurobiology, 55(3), 225-256. | |
dc.relation | Terzis, J. K., & Smith, K. L. (1990). The peripheral nerve: structure, function, and reconstruction. Raven Press. Timofeeva, E., Dufresne, C., Sík, A., Zhang, Z. W., & Deschênes, M. (2005). Cholinergic modulation of vibrissal receptive fields in trigeminal nuclei. Journal of Neuroscience, 25(40), 9135-9143. | |
dc.relation | Toldia, J., Laskawi, R., Landgrebe, M., & Wolff, J. R. (1996). Biphasic reorganization of somatotopy in the primary motor cortex follows facial nerve lesions in adult rats. Neuroscience letters, 203(3), 179-182. | |
dc.relation | Torrado-Arévalo, R., Troncoso, J., & Múnera, A. (2021). Facial nerve axotomy induces changes on hippocampal CA3-to-CA1 long-term synaptic plasticity. Neuroscience. | |
dc.relation | Torres-Fernández, O. (2006). La técnica de impregnación argéntica de Golgi. Conmemoración del centenario del premio nobel de Medicina (1906) compartido por Camillo Golgi y Santiago Ramón y Cajal. Biomédica, 26(4), 498-508. | |
dc.relation | Troncoso, J., & Múnera, A. (2008). Cambios inducidos en la corteza motora primaria de la cara por lesión periférica del nervio facial contralateral. Acta Biológica Colombiana, 13, 220. | |
dc.relation | Tsien, J. Z., Huerta, P. T., & Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor–dependent synaptic plasticity in spatial memory. Cell, 87(7), 1327-1338 | |
dc.relation | Tyrtyshnaia, A. A., Manzhulo, I. V., Konovalova, S. P., & Zagliadkina, A. A. (2019). Neuropathic pain causes a decrease in the dendritic tree complexity of hippocampal CA3 pyramidal neurons. Cells Tissues Organs, 208(3-4), 89-100. | |
dc.relation | Tyrtyshnaia, A., & Manzhulo, I. (2020). Neuropathic Pain Causes Memory Deficits and Dendrite Tree Morphology Changes in Mouse Hippocampus. Journal of pain research, 13, 345. | |
dc.relation | und Halbach, O. V. B. (2013). Analysis of morphological changes as a key method in studying psychiatric animal models. Cell and tissue research, 354(1), 41-50. | |
dc.relation | Urrego, D., Múnera, A., & Troncoso, J. (2011). Retracción a largo plazo del árbol dendrítico de neuronas piramidales córtico-faciales por lesiones periféricas del nervio facial. Biomédica, 31(4). | |
dc.relation | Urrego, D., Troncoso, J., & Múnera, A. (2015). Layer 5 pyramidal neurons’ dendritic remodeling and increased microglial density in primary motor cortex in a murine model of facial paralysis. BioMed research international, 2015. Valverde, P. (1967). Apical dendritic spines of the visual cortex and light deprivation in the mouse. Experimental Brain Research, 3(4), 337-352. | |
dc.relation | Van Strien, N. M., Cappaert, N. L. M., & Witter, M. P. (2009). The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network. Nature Reviews Neuroscience, 10(4), 272. | |
dc.relation | Veinante, P., & Deschênes, M. (1999). Single-and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. Journal of Neuroscience, 19(12), 5085-5095. | |
dc.relation | Veinante, P., Deschênes, M. (1999). Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J. Neurosci. 19: 5085-5095. | |
dc.relation | Verma, A., & Moghaddam, B. (1996). NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. Journal of Neuroscience, 16(1), 373-379. | |
dc.relation | Vertes, R. P., Hoover, W. B., Do Valle, A. C., Sherman, A., & Rodriguez, J. J. (2006). Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. Journal of comparative neurology, 499(5), 768-796. | |
dc.relation | Waller, A. V. (1850). XX. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philosophical transactions of the Royal society of London, (140), 423-429. | |
dc.relation | Wang, G., Cheng, Y., Gong, M., Liang, B., Zhang, M., Chen, Y., ... & Xu, J. (2013). Systematic correlation between spine plasticity and the anxiety/depression-like phenotype induced by corticosterone in mice. Neuroreport, 24(12), 682-687. | |
dc.relation | Watson, C., Paxinos, G., & Puelles, L. (Eds.). (2012). The mouse nervous system. Academic Press. Williams, M. N., Zahm, D. S., & Jacquin, M. F. (1994). Differential foci and synaptic organization of the principal and spinal trigeminal projections to the thalamus in the rat. European Journal of Neuroscience, 6(3), 429-453. | |
dc.relation | Wineski, L. E. (1985). Facial morphology and vibrissal movement in the golden hamster. Journal of Morphology, 183(2), 199-217. | |
dc.relation | Woolley, C. S., Gould, E., & McEwen, B. S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain research, 531(1-2), 225-231. | |
dc.relation | Wouterlood, F. G., Saldana, E., & Witter, M. P. (1990). Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris‐leucoagglutinin. Journal of Comparative Neurology, 296(2), 179-203. | |
dc.relation | Xiong, H. (2008). Hippocampus and spatial memory. In Neuroimmune Pharmacology (pp. 55-64). Springer, Boston, MA. Yin, B. S., Wang, H. B., Gong, D. Q., Li, G., & Gao, L. (2011). Effects of xylazine on glutamate and GABA contents in the hippocampus and thalamencephal in the rat. Bulletin of Veterinary Institute in Pulawy, 55(3), 537-539. | |
dc.relation | Yuste, R., & Bonhoeffer, T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual review of neuroscience, 24(1), 1071-1089. | |
dc.relation | Zaqout, S., & Kaindl, A. M. (2016). Golgi-Cox staining step by step. Frontiers in neuroanatomy, 10, 38. Zerari‐Mailly, F., Pinganaud, G., Dauvergne, C., Buisseret, P., & Buisseret‐Delmas, C. (2001). Trigemino‐reticulo‐facial and trigemino‐reticulo‐hypoglossal pathways in the rat. Journal of Comparative Neurology, 429(1), 80-93. | |
dc.relation | Zhao, Y. F., Yang, H. W., Yang, T. S., Xie, W., & Hu, Z. H. (2021). TNF-α-mediated peripheral and central inflammation are associated with increased incidence of PND in acute postoperative pain. BMC anesthesiology, 21(1), 1-10. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Evaluación de los cambios morfológicos en neuronas hipocampales producidos por lesión del nervio facial en ratas | |
dc.type | Trabajo de grado - Maestría | |