dc.contributor | Umaña Pérez, Yadi Adriana | |
dc.contributor | Grupo de Investigación en Hormonas | |
dc.creator | Correa Sánchez, Andrés Felipe | |
dc.date.accessioned | 2021-01-26T15:07:13Z | |
dc.date.available | 2021-01-26T15:07:13Z | |
dc.date.created | 2021-01-26T15:07:13Z | |
dc.date.issued | 2020-08-18 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78921 | |
dc.description.abstract | Cadherins are a superfamily of adhesion molecules with functions in cell recognition, tissue morphogenesis and tumour suppression. Among the members of this family, there is a subgroup of adhesion receptors coupled to G protein, that contain cadherin repeats on their N-terminus, called EGF LAG seven-pass G- typed receptor or CELSR. Three types of non-classical cadherins exist (CELSR 1,2 and 3), and they are involved in the mechanism of cell polarity by activation of the non-canonical Wnt signalling pathway in the epithelial tissue.
Recently, these cadherins have been found in the hematopoietic tissue, but their functional role is not clear. Due to the importance of adhesion molecules to promote migration processes in cancer, we studied the presence of CELSR family in an epithelial cell line derived from breast cancer MCF-7 and in cell lines from acute lymphoid leukaemia Jurkat and CCRF-CEM to evaluate functional involvement. A high expression level of the CELSR receptor was found in the MCF-7 cell line in comparison to the epithelial cell lines. Triple silencing of CELSR 1, 2 and 3 in MCF-7 decreased cell migration in response to the activation to the non-canonical Wnt signalling pathway, decreased of production of diacylglycerol was also seen without altering proliferation and cell viability. | |
dc.description.abstract | Las cadherinas son una superfamilia de moléculas de adhesión con funciones en reconocimiento celular, morfogénesis tisular y supresión tumoral. A esta familia pertenece un subgrupo de receptores de adhesión acoplados a proteína G, que contienen repeticiones de cadherina en su N-terminal, las cadherinas EGF LAG seven pass G-type receptor o CELSR. De estas cadherinas no clásicas existen 3 miembros (CELSR 1 a 3), y están involucradas en mecanismos de polaridad celular por activación de la vía de señalización Wnt no canónica en el tejido epitelial.
Recientemente, estas cadherinas se encontraron en el tejido hematopoyético, aunque su implicación funcional aún no es clara. Debido a la importancia que tienen las moléculas de adhesión en la promoción de los procesos migratorios en cáncer, este trabajo se centró en identificar la presencia de los miembros de la familia CELSR en la línea epitelial derivada de cáncer de seno MCF-7 y en las líneas celulares de leucemia linfoide aguda Jurkat y CCRF-CEM y evaluar su implicación funcional. Se encontró un mayor nivel de expresión de las cadherinas en la línea celular MCF-7 en comparación con líneas de leucemia. El silenciamiento triple de CELSR 1, 2 y 3, en MCF-7, disminuyó la migración celular en respuesta a la activación de la vía de señalización Wnt no canónica disminuyendo a su vez, la producción de diacilglicerol sin alterar la viabilidad ni la proliferación celular | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
dc.publisher | Departamento de Química | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | K. Ebnet, D. Kummer, T. Steinbacher, A. Singh, M. Nakayama, and M. Matis, “Regulation of cell polarity by cell adhesion receptors,” Semin. Cell Dev. Biol., vol. 81, pp. 2–12, 2018, doi: 10.1016/j.semcdb.2017.07.032. | |
dc.relation | A. C. Humphries and M. Mlodzik, “From instruction to output: Wnt/PCP signaling in development and cancer,” Curr. Opin. Cell Biol., vol. 51, pp. 110–116, Apr. 2018, doi: 10.1016/j.ceb.2017.12.005 | |
dc.relation | A. M. Goffinet and F. Tissir, “Seven pass cadherins CELSR1-3,” Semin. Cell Dev. Biol., vol. 69, pp. 102–110, 2017, doi: 10.1016/j.semcdb.2017.07.014. | |
dc.relation | Y. Saito, R. R. Desai, and S. K. Muthuswamy, “Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion,” Biochim. Biophys. Acta - Rev. Cancer, vol. 1869, no. 2, pp. 103–116, 2018, doi: 10.1016/j.bbcan.2017.12.001. | |
dc.relation | GLOBOCAN 2018, “Cancer Today. Global Cancer Observatory,” 2019. https://gco.iarc.fr/today/home (accessed Aug. 10, 2020). | |
dc.relation | K. Barzaman et al., “Breast cancer: Biology, biomarkers, and treatments,” Int. Immunopharmacol., vol. 84, no. April, p. 106535, Jul. 2020, doi: 10.1016/j.intimp.2020.106535. | |
dc.relation | C. Rejon, M. Al-Masri, and L. McCaffrey, “Cell Polarity Proteins in Breast Cancer Progression,” J. Cell. Biochem., no. March, pp. 2215–2223, 2016, doi: 10.1002/jcb.25553. | |
dc.relation | S. J. Chatterjee and L. McCaffrey, “Emerging role of cell polarity proteins in breast cancer progression and metastasis,” Breast Cancer Targets Ther., vol. 6, no. 0, pp. 15–27, 2014, doi: 10.2147/BCTT.S43764. | |
dc.relation | A. H. Allam, M. Charnley, and S. M. Russell, “Context-Specific Mechanisms of Cell Polarity Regulation,” J. Mol. Biol., vol. 430, no. 19, pp. 3457–3471, 2018, doi: 10.1016/j.jmb.2018.06.003. | |
dc.relation | M. T. Butler and J. B. Wallingford, “Planar cell polarity in development and disease,” Nat. Rev. Mol. Cell Biol., vol. 18, no. 6, pp. 375–388, 2017, doi: 10.1038/nrm.2017.11. | |
dc.relation | L. M. McCaffrey and I. G. Macara, “Epithelial organization, cell polarity and tumorigenesis,” Trends Cell Biol., vol. 21, no. 12, pp. 727–735, 2011, doi: 10.1016/j.tcb.2011.06.005. | |
dc.relation | C. F. Davey and C. B. Moens, “Planar cell polarity in moving cells: think globally, act locally,” Development, vol. 144, no. 2, pp. 187–200, 2017, doi: 10.1242/dev.122804. | |
dc.relation | L. Huang and S. K. Muthuswamy, “Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators,” Curr. Opin. Genet. Dev., vol. 20, no. 1, pp. 41–50, 2010, doi: 10.1016/j.gde.2009.12.001. | |
dc.relation | Y. Yang, “Wnt signaling in development and disease,” Cell Biosci., vol. 2, no. 1, p. 14, 2012, doi: 10.1186/2045-3701-2-14. | |
dc.relation | C. Y. Logan and R. Nusse, “The Wnt Signaling Pathway in Development and Disease,” Annu. Rev. Cell Dev. Biol., vol. 20, no. 1, pp. 781–810, 2004, doi: 10.1146/annurev.cellbio.20.010403.113126. | |
dc.relation | R. Nusse and H. Clevers, “Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities,” Cell, vol. 169, no. 6, pp. 985–999, 2017, doi: 10.1016/j.cell.2017.05.016. | |
dc.relation | E. Gómez-Orte, B. Sáenz-Narciso, S. Moreno, and J. Cabello, “Multiple functions of the noncanonical Wnt pathway,” Trends Genet., vol. 29, no. 9, pp. 545–553, 2013, doi: 10.1016/j.tig.2013.06.003. | |
dc.relation | J. Brasch, O. J. Harrison, B. Honig, and L. Shapiro, “Thinking outside the cell: How cadherins drive adhesion,” Trends Cell Biol., vol. 22, no. 6, pp. 299–310, 2012, doi: 10.1016/j.tcb.2012.03.004. | |
dc.relation | I. S. Gul, P. Hulpiau, Y. Saeys, and F. van Roy, “Evolution and diversity of cadherins and catenins,” Exp. Cell Res., vol. 358, no. 1, pp. 3–9, 2017, doi: 10.1016/j.yexcr.2017.03.001. | |
dc.relation | P. Hulpiau and F. van Roy, “Molecular evolution of the cadherin superfamily,” Int. J. Biochem. Cell Biol., vol. 41, no. 2, pp. 349–369, 2009, doi: 10.1016/j.biocel.2008.09.027. | |
dc.relation | A. Kourtidis, R. Lu, L. J. Pence, and P. Z. Anastasiadis, “A central role for cadherin signaling in cancer,” Exp. Cell Res., vol. 358, no. 1, pp. 78–85, 2017, doi: 10.1016/j.yexcr.2017.04.006. | |
dc.relation | A. V. Priest, O. Shafraz, and S. Sivasankar, “Biophysical basis of cadherin mediated cell-cell adhesion,” Exp. Cell Res., vol. 358, no. 1, pp. 10–13, 2017, doi: 10.1016/j.yexcr.2017.03.015. | |
dc.relation | F. van Roy, “Beyond E-cadherin: Roles of other cadherin superfamily members in cancer,” Nat. Rev. Cancer, vol. 14, no. 2, pp. 121–134, 2014, doi: 10.1038/nrc3647. | |
dc.relation | M. Sotomayor, R. Gaudet, and D. P. Corey, “Sorting out a promiscuous superfamily: Towards cadherin connectomics,” Trends Cell Biol., vol. 24, no. 9, pp. 524–536, 2014, doi: 10.1016/j.tcb.2014.03.007. | |
dc.relation | C. J. Formstone, “7TM-Cadherins: Developmental Roles and Future Challenges,” in Advances in Experimental Medicine and Biology, vol. 706, 2010, pp. 14–36. | |
dc.relation | W. S. Chen et al., “Asymmetric Homotypic Interactions of the Atypical Cadherin Flamingo Mediate Intercellular Polarity Signaling,” Cell, vol. 133, no. 6, pp. 1093–1105, 2008, doi: 10.1016/j.cell.2008.04.048. | |
dc.relation | C. J. Formstone and P. F. R. Little, “The flamingo-related mouse Celsr family (Celsr1-3) genes exhibit distinct patterns of expression during embryonic development,” Mech. Dev., vol. 109, no. 1, pp. 91–94, 2001, doi: 10.1016/S0925-4773(01)00515-9. | |
dc.relation | P. Arvind, J. Nair, S. Jambunathan, K. Vijay, and J. Shanker, “CELSR2-PSRC1-SORT1 gene expression and association with coronary artery disease and plasma lipid levels in an Asian Indian cohort,” J. Cardiol., vol. 64, no. 5, pp. 339–346, 2014, doi: 10.1016/j.jjcc.2014.02.012. | |
dc.relation | T. Vilboux et al., “CELSR2, encoding a planar cell polarity protein, is a putative gene in Joubert syndrome with cortical heterotopia, microophthalmia, and growth hormone deficiency,” Am. J. Med. Genet. Part A, vol. 173, no. 3, pp. 661–666, 2017, doi: 10.1002/ajmg.a.38005. | |
dc.relation | E. Einarsdottir et al., “CELSR2 is a candidate susceptibility gene in idiopathic scoliosis,” PLoS One, vol. 12, no. 12, pp. 1–14, 2017, doi: 10.1371/journal.pone.0189591. | |
dc.relation | X. J. Wang et al., “Understanding cadherin EGF LAG seven-pass G-type receptors,” J. Neurochem., vol. 131, no. 6, pp. 699–711, 2015, doi: 10.1111/jnc.12955. | |
dc.relation | M. Kaucká et al., “The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of b-lymphocyte migration,” Cancer Res., vol. 73, no. 5, pp. 1491–1501, 2013, doi: 10.1158/0008-5472.CAN-12-1752. | |
dc.relation | K. VanderVorst, J. Hatakeyama, A. Berg, H. Lee, and K. L. Carraway, “Cellular and molecular mechanisms underlying planar cell polarity pathway contributions to cancer malignancy,” Semin. Cell Dev. Biol., pp. 1–10, 2017, doi: 10.1016/j.semcdb.2017.09.026. | |
dc.relation | D. Nagarajan and S. E. B. McArdle, “Immune Landscape of Breast Cancers,” Biomedicines, vol. 6, no. 1, p. 20, Feb. 2018, doi: 10.3390/biomedicines6010020. | |
dc.relation | M. K. Hasan et al., “Wnt5a induces ROR1 to recruit cortactin to promote breast-cancer migration and metastasis,” npj Breast Cancer, vol. 5, no. 1, pp. 1–11, 2019, doi: 10.1038/s41523-019-0131-9. | |
dc.relation | K. VanderVorst, C. A. Dreyer, S. E. Konopelski, H. Lee, H. Y. H. Ho, and K. L. Carraway, “Wnt/PCP signaling contribution to carcinoma collective cell migration and metastasis,” Cancer Res., vol. 79, no. 8, pp. 1719–1729, 2019, doi: 10.1158/0008-5472.CAN-18-2757. | |
dc.relation | R. Zeng et al., “Multiple roles of WNT5A in breast cancer,” Med. Sci. Monit., vol. 22, pp. 5058–5067, 2016, doi: 10.12659/MSM.902022. | |
dc.relation | Y. Zhu et al., “Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell migration in MCF-7 breast cancer cells,” Cell. Signal., vol. 25, no. 5, pp. 1075–1085, 2013, doi: 10.1016/j.cellsig.2013.01.015. | |
dc.relation | Y. Zhu et al., “Dvl2-Dependent Activation of Daam1 and RhoA Regulates Wnt5a-Induced Breast Cancer Cell Migration,” PLoS One, vol. 7, no. 5, p. e37823, May 2012, doi: 10.1371/journal.pone.0037823. | |
dc.relation | W. Strober, “Trypan Blue Exclusion Test of Cell Viability,” Curr. Protoc. Immunol., vol. 111, no. 1, p. A3.B.1-A3.B.3, 2015, doi: 10.1002/0471142735.ima03bs111. | |
dc.relation | Y. Jian, C. George, Z. Irena, C. Ioana, R. Steve, and L. Madden Thomas, “Primer- BLAST: A tool to design target-specific primers for polymerase chain reaction,” BMC Bioinformatics, vol. 13, no. 1, p. 134, 2012. | |
dc.relation | P. Stothard, “The Sequence Manipulation Suite,” Biotechniques, vol. 28, no. 6, 2000, doi: 10.2144/00286ir01. | |
dc.relation | M. W. Pfaffl, “A new mathematical model for relative quantification in real-time RT-PCR,” Nucleic Acids Res., vol. 29, no. 9, pp. 45e – 45, May 2001, doi: 10.1093/nar/29.9.e45. | |
dc.relation | J. Schindelin et al., “Fiji: an open-source platform for biological-image analysis,” Nat. Methods, vol. 9, no. 7, pp. 676–682, 2012, doi: 10.1038/nmeth.2019. | |
dc.relation | H. A. Safdari, S. Pandey, A. K. Shukla, and S. Dutta, “Illuminating GPCR Signaling by Cryo-EM,” Trends Cell Biol., vol. 28, no. 8, pp. 591–594, 2018, doi: 10.1016/j.tcb.2018.06.002. | |
dc.relation | D. Hilger, M. Masureel, and B. K. Kobilka, “Structure and dynamics of GPCR signaling complexes,” Nat. Struct. Mol. Biol., vol. 25, no. 1, pp. 4–12, 2018, doi: 10.1038/s41594-017-0011-7. | |
dc.relation | R. Petryszak et al., “Expression Atlas update - An integrated database of gene and protein expression in humans, animals and plants,” Nucleic Acids Res., vol. 44, no. D1, pp. D746–D752, 2016, doi: 10.1093/nar/gkv1045. | |
dc.relation | N. Manjunath, H. Wu, S. Subramanya, and P. Shankar, “Lentiviral delivery of short hairpin RNAs,” Adv. Drug Deliv. Rev., vol. 61, no. 9, pp. 732–745, 2009, doi: 10.1016/j.addr.2009.03.004. | |
dc.relation | A. Alfranca, M. R. Campanero, and J. M. Redondo, “New Methods for Disease Modeling Using Lentiviral Vectors,” Trends Mol. Med., vol. 24, no. 10, pp. 825–837, 2018, doi: 10.1016/j.molmed.2018.08.001. | |
dc.relation | C. Borsotti, E. Borroni, and A. Follenzi, “Lentiviral vector interactions with the host cell,” Curr. Opin. Virol., vol. 21, pp. 102–108, 2016, doi: 10.1016/j.coviro.2016.08.016. | |
dc.relation | S. Etienne-Manneville, “Polarity proteins in migration and invasion,” Oncogene, vol. 27, no. 55, pp. 6970–6980, 2008, doi: 10.1038/onc.2008.347. | |
dc.relation | N. Prieto-Dominguez, C. Parnell, and Y. Teng, “Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges,” Cells, vol. 8, no. 3, p. 255, 2019, doi: 10.3390/cells8030255. | |
dc.relation | P. Aspenström, “Integration of signalling pathways regulated by small GTPases and calcium,” Biochim. Biophys. Acta - Mol. Cell Res., vol. 1742, no. 1–3, pp. 51–58, 2004, doi: 10.1016/j.bbamcr.2004.09.029. | |
dc.relation | H. Wada, H. Tanaka, S. Nakayama, M. Iwasaki, and H. Okamoto, “Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain,” Development, vol. 133, no. 23, pp. 4749–4759, 2006, doi: 10.1242/dev.02665. | |
dc.relation | Y. Qu et al., “Atypical cadherins Celsr1-3 differentially regulate migration of facial branchiomotor neurons in mice,” J. Neurosci., vol. 30, no. 28, pp. 9392–9401, 2010, doi: 10.1523/JNEUROSCI.0124-10.2010. | |
dc.relation | K. S. K. S. Louis and A. C. A. C. Siegel, “Mammalian Cell Viability,” in Methods in Molecular Biology, vol. 740, no. 1, 2011, p. p.7-12. | |
dc.relation | P. Kumar, A. Nagarajan, and P. D. Uchil, “Analysis of cell viability by the MTT assay,” Cold Spring Harb. Protoc., vol. 2018, no. 6, pp. 469–471, 2018, doi: 10.1101/pdb.prot095505. | |
dc.relation | D. C. Wright, “Mechanisms of calcium-induced mitochondrial biogenesis and GLUT4 synthesis,” Appl. Physiol. Nutr. Metab., vol. 32, no. 5, pp. 840–845, 2007, doi: 10.1139/H07-062. | |
dc.relation | Y. Rai et al., “Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition,” Sci. Rep., vol. 8, no. 1, pp. 1–15, 2018, doi: 10.1038/s41598-018-19930-w. | |
dc.relation | S. Carrasco and I. Mérida, “Diacylglycerol, when simplicity becomes complex,” Trends Biochem. Sci., vol. 32, no. 1, pp. 27–36, 2007, doi: 10.1016/j.tibs.2006.11.004. | |
dc.relation | S. U. Jayasinghe, A. T. Tankeu, and F. Amati, “Reassessing the Role of Diacylglycerols in Insulin Resistance,” Trends Endocrinol. Metab., vol. 30, no. 9, pp. 618–635, 2019, doi: 10.1016/j.tem.2019.06.005. | |
dc.relation | J. C. Gómez-Fernández and S. Corbalán-García, “Diacylglycerols, multivalent membrane modulators,” Chem. Phys. Lipids, vol. 148, no. 1, pp. 1–25, 2007, doi: 10.1016/j.chemphyslip.2007.04.003. | |
dc.relation | T. Usui et al., “Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled,” Cell, vol. 98, no. 5, pp. 585–595, 1999, doi: 10.1016/S0092-8674(00)80046-X. | |
dc.relation | D. Devenport, “The cell biology of planar cell polarity,” J. Cell Biol., vol. 207, no. 2, pp. 171–179, 2014, doi: 10.1083/jcb.201408039. | |
dc.relation | L. B. Luna-Ulloa, J. G. Hernández-Maqueda, M. C. Castañeda-Patlán, and M. Robles-Flores, “Protein kinase C in Wnt signaling: Implications in cancer initiation and progression,” IUBMB Life, vol. 63, no. 10, pp. 915–921, 2011, doi: 10.1002/iub.559. | |
dc.relation | Ş. Comşa, A. M. Cîmpean, and M. Raica, “The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research.,” Anticancer Res., vol. 35, no. 6, pp. 3147–54, Jun. 2015, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/26026074. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | CELSR en los procesos de polaridad en una línea celular de cáncer de seno | |
dc.type | Otro | |