dc.relation | Abdul Halim, N. D., Latif, M. T., Ahamad, F., Dominick, D., Chung, J. X., Juneng, L., & Khan, M. F. (2018). The long-term assessment of air quality on an island in Malaysia. Heliyon, 4(12). https://doi.org/10.1016/j.heliyon.2018.e01054
Acciani, G., Chiarantoni, E., Fornarelli, G., & Vergura, S. (2003). A feature extraction unsupervised neural network for an environmental data set. Neural Networks, 16(3–4), 427–436. https://doi.org/10.1016/S0893-6080(03)00014-5
Aggarwal, C. C., & Reddy, C. K. (2013). DATA Custering Algorithms and Applications. (C. K. R. Charu C. Aggarwal, Ed.). CRC Press.
Alpaydın, E. (2014). Introduction to machine learning. Methods in Molecular Biology, 1107, 105–128. https://doi.org/10.1007/978-1-62703-748-8-7
André, M., Perez, R., Soubdhan, T., Schlemmer, J., Calif, R., & Monjoly, S. (2019). Preliminary assessment of two spatio-temporal forecasting technics for hourly satellite-derived irradiance in a complex meteorological context. Solar Energy, 177(December 2018), 703–712. https://doi.org/10.1016/j.solener.2018.11.010
Arbolino, R., Carlucci, F., Cirà, A., Ioppolo, G., & Yigitcanlar, T. (2017). Efficiency of the EU regulation on greenhouse gas emissions in Italy: The hierarchical cluster analysis approach. Ecological Indicators, 81(May), 115–123. https://doi.org/10.1016/j.ecolind.2017.05.053
Arroyo, Á., Herrero, Á., Tricio, V., & Corchado, E. (2017). Analysis of meteorological conditions in Spain by means of clustering techniques. Journal of Applied Logic, 24, 76–89. https://doi.org/10.1016/j.jal.2016.11.026
Asadi Zarch, M. A., Sivakumar, B., & Sharma, A. (2015). Assessment of global aridity change. Journal of Hydrology, 520, 300–313. https://doi.org/10.1016/j.jhydrol.2014.11.033
Bador, M., Naveau, P., Gilleland, E., Castellà, M., & Arivelo, T. (2015). Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe. Weather and Climate Extremes, 9, 17–24. https://doi.org/10.1016/j.wace.2015.05.003
Ben-David, S., & Shalev-Shwartz, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Understanding Machine Learning: From Theory to Algorithms.
https://doi.org/10.1017/CBO9781107298019
Bramer, M. (2007). Principles of Data Mining. Springer. https://doi.org/10.1007/978-1-4471-4884-5_1
Calliari, E., Farnia, L., Ramieri, E., & Michetti, M. (2019). A network approach for moving from planning to implementation in climate change adaptation: evidence from southern Mexico. Environmental Science and Policy, 93(November 2017), 146–157. https://doi.org/10.1016/j.envsci.2018.11.025
Carro-Calvo, L., Ordóñez, C., García-Herrera, R., & Schnell, J. L. (2017). Spatial clustering and meteorological drivers of summer ozone in Europe. Atmospheric Environment, 167, 496–510. https://doi.org/10.1016/j.atmosenv.2017.08.050
Carvalho, M. J., Melo-Gonçalves, P., Teixeira, J. C., & Rocha, A. (2016). Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Physics and Chemistry of the Earth, 94, 22–28. https://doi.org/10.1016/j.pce.2016.05.001
Cashman, S. A., Meyer, D. E., Edelen, A. N., Ingwersen, W. W., Abraham, J. P., Barrett, W. M., … Smith, R. L. (2016). Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing. Environmental Science and Technology, 50(17), 9013–9025. https://doi.org/10.1021/acs.est.6b02160
Chen, J., Song, M., & Xu, L. (2015). Evaluation of environmental efficiency in China using data envelopment analysis. Ecological Indicators, 52, 577–583. https://doi.org/10.1016/j.ecolind.2014.05.008
Chen, L., & Jia, G. (2017). Environmental efficiency analysis of China’s regional industry : a data envelopment analysis (DEA) based approach. Journal of Cleaner Production, 142, 846–853. https://doi.org/10.1016/j.jclepro.2016.01.045
Chen, Y., Wang, L., Li, F., Du, B., Choo, K. K. R., Hassan, H., & Qin, W. (2017). Air quality data clustering using EPLS method. Information Fusion, 36, 225–232. https://doi.org/10.1016/j.inffus.2016.11.015
Chidean, M. I., Caamaño, A. J., Ramiro-Bargueño, J., Casanova-Mateo, C., & Salcedo-Sanz, S. (2018). Spatio-temporal analysis of wind resource in the Iberian Peninsula with data-coupled clustering. Renewable and Sustainable Energy Reviews, 81(June), 2684–2694. https://doi.org/10.1016/j.rser.2017.06.075
Chidean, M. I., Muñoz-Bulnes, J., Ramiro-Bargueño, J., Caamaño, A. J., & Salcedo-Sanz, S. (2015). Spatio-temporal trend analysis of air temperature in Europe and Western Asia using data-coupled clustering. Global and Planetary Change, 129, 45–55. https://doi.org/10.1016/j.gloplacha.2015.03.006
Clay, N., & King, B. (2019). Smallholders’ uneven capacities to adapt to climate change amid Africa’s ‘green revolution’: Case study of Rwanda’s crop intensification program. World Development, 116, 1–14. https://doi.org/S0305750X18304285
Conradt, T., Gornott, C., & Wechsung, F. (2016). Extending and improving regionalized winter wheat and silage maize yield regression models for Germany: Enhancing the predictive skill by panel definition through cluster analysis. Agricultural and Forest Meteorology, 216, 68–81. https://doi.org/10.1016/j.agrformet.2015.10.003
Deogun, J. S., & Raghavan, V. V. (1999). Data Mining : Research Trends , Challenges , and Applications, 1–29. https://doi.org/10.1.1.52.337
Erman, N., & Suklan, J. (2015). Performance of selected agglomerative clustering methods. Innovative Issues and Approaches in Social Sciences, 8(January). https://doi.org/10.12959/issn.1855-0541.IIASS-2015-no1-art11
Falquina, R., & Gallardo, C. (2017). Development and application of a technique for projecting novel and disappearing climates using cluster analysis. Atmospheric Research, 197(July), 224–231. https://doi.org/10.1016/j.atmosres.2017.06.031
Farah, S., Whaley, D., Saman, W., & Boland, J. (2019). Integrating Climate Change into Meteorological Weather Data for Building Energy Simulation. Energy and Buildings, 183, 749–760. https://doi.org/S0378778818323296
Franceschi, F., Cobo, M., & Figueredo, M. (2018). Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmospheric Pollution Research, 9(5), 912–922. https://doi.org/10.1016/j.apr.2018.02.006
Franco, D. G. de B., & Steiner, M. T. A. (2018). Clustering of solar energy facilities using a hybrid fuzzy c-means algorithm initialized by metaheuristics. Journal of Cleaner Production, 191, 445–457. https://doi.org/10.1016/j.jclepro.2018.04.207
Gallo, C., Faccilongo, N., & La Sala, P. (2017). Clustering analysis of environmental emissions: A study on Kyoto Protocol’s impact on member countries. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.07.194
Gan, G., Ma, C., & Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications. Philadelphia, Pennsylvania: SIAM - Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898718348
Ghayekhloo, M., Ghofrani, M., Menhaj, M. B., & Azimi, R. (2015). A novel clustering approach for short-term solar radiation forecasting. Solar Energy, 122, 1371–1383. https://doi.org/10.1016/j.solener.2015.10.053
Guo, Y., Gao, H., & Wu, Q. (2017). A meteorological information mining-based wind speed model for adequacy assessment of power systems with wind power. International Journal of Electrical Power and Energy Systems, 93, 406–413. https://doi.org/10.1016/j.ijepes.2017.05.031
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. San Francisco, CA, itd: Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-381479-1.00001-0
Han, S., Zhang, L. na, Liu, Y. qian, Zhang, H., Yan, J., Li, L., … Wang, X. (2019). Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio. Applied Energy, 236(December 2018), 973–984. https://doi.org/10.1016/j.apenergy.2018.12.059
Hao, Y., Dong, L., Liao, X., Liang, J., Wang, L., & Wang, B. (2019). A novel clustering algorithm based on mathematical morphology for wind power generation prediction. Renewable Energy, 136, 572–585. https://doi.org/10.1016/j.renene.2019.01.018
Hidalgo, J., Dumas, G., Masson, V., Petit, G., Bechtel, B., Bocher, E., … Mills, G. (2019). Comparison between local climate zones maps derived from administrative datasets and satellite observations. Urban Climate, 27(November 2017), 64–89. https://doi.org/10.1016/j.uclim.2018.10.004
Jiang, J., Ye, B., Xie, D., & Tang, J. (2017). Provincial-level carbon emission drivers and emission reduction strategies in China: Combining multi-layer LMDI decomposition with hierarchical clustering. Journal of Cleaner Production, 169, 178–190. https://doi.org/10.1016/j.jclepro.2017.03.189
Kalteh, A. M., Hjorth, P., & Berndtsson, R. (2008). Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environmental Modelling & Software, 23(7), 835–845.
https://doi.org/http://dx.doi.org/10.1016/j.envsoft.2007.10.001
Kanevski, M., Pozdnukhov, A., & Timonin, V. (2008). Machine Learning Algorithms for GeoSpatial Data. Applications and Software Tools. Iemss.Org, 320–327.
Khedairia, S., & Khadir, M. T. (2012). Impact of clustered meteorological parameters on air pollutants concentrations in the region of Annaba, Algeria. Atmospheric Research, 113, 89–101. https://doi.org/10.1016/j.atmosres.2012.05.002
Lausch, A., Schmidt, A., & Tischendorf, L. (2015). Data mining and linked open data – New perspectives for data analysis in environmental research. Ecological Modelling, 295, 5–17. https://doi.org/10.1016/j.ecolmodel.2014.09.018
Lee, J., & Kim, K. Y. (2018). Analysis of source regions and meteorological factors for the variability of spring PM10 concentrations in Seoul, Korea. Atmospheric Environment, 175(April 2017), 199–209. https://doi.org/10.1016/j.atmosenv.2017.12.013
Li, C., Sun, L., Jia, J., Cai, Y., & Wang, X. (2016). Risk assessment of water pollution sources based on an integrated k-means clustering and set pair analysis method in the region of Shiyan, China. Science of the Total Environment, 557–558, 307–316. https://doi.org/10.1016/j.scitotenv.2016.03.069
Li, S., Ma, H., & Li, W. (2017). Typical solar radiation year construction using k-means clustering and discrete-time Markov chain. Applied Energy, 205(May), 720–731. https://doi.org/10.1016/j.apenergy.2017.08.067
Lin, P., Peng, Z., Lai, Y., Cheng, S., Chen, Z., & Wu, L. (2018). Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets. Energy Conversion and Management, 177(July), 704–717. https://doi.org/10.1016/j.enconman.2018.10.015
Lokers, R., Knapen, R., Janssen, S., van Randen, Y., & Jansen, J. (2016). Analysis of Big Data technologies for use in agro-environmental science. Environmental Modelling and Software, 84, 494–504. https://doi.org/10.1016/j.envsoft.2016.07.017
Marzban, C., & Sandgathe, S. (2006). Cluster Analysis for Verification of Precipitation Fields. Weather and Forecasting, 21(5), 824–838. https://doi.org/10.1175/WAF948.1
Mayer, A., Winkler, R., & Fry, L. (2014). Classification of watersheds into integrated social and biophysical indicators with clustering analysis. Ecological Indicators, 45, 340–349. https://doi.org/10.1016/j.ecolind.2014.04.030
Meghea, I., Mihai, M., Lacatusu, I., & Iosub, I. (2012). Evaluation of Monitoring of Lead Emissions in Bucharest by Statistical Processing. Journal of Environmental Protection and Ecology, 13(2), 746–755.
Mokdad, F., & Haddad, B. (2017). Improved infrared precipitation estimation approaches based on k-means clustering: Application to north Algeria using MSG-SEVIRI satellite data. Advances in Space Research, 59(12), 2880–2900. https://doi.org/10.1016/j.asr.2017.03.027
Naik, A., & Samant, L. (2016). Correlation Review of Classification Algorithm Using Data Mining Tool: WEKA, Rapidminer, Tanagra, Orange and Knime. Procedia Computer Science, 85(Cms), 662–668. https://doi.org/10.1016/j.procs.2016.05.251
Nguyen, T. T., Kawamura, A., Tong, T. N., Nakagawa, N., Amaguchi, H., & Gilbuena, R. (2015). Clustering spatio-seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta, Vietnam. Journal of Hydrology, 522, 661–673. https://doi.org/10.1016/j.jhydrol.2015.01.023
Obradovic, V., Bjelica, D., Petrovic, D., Mihic, M., & Todorovic, M. (2016). Whether We are Still Immature to Assess the Environmental KPIs! Procedia - Social and
Behavioral Sciences, 226(October 2015), 132–139. https://doi.org/10.1016/j.sbspro.2016.06.171
Oshana, R. (2015). Principles of Parallel Computing. Multicore Software Development Techniques, 1–30. https://doi.org/10.1016/b978-0-12-800958-1.00001-2
Parente, J., Pereira, M. G., & Tonini, M. (2016). Space-time clustering analysis of wildfires: The influence of dataset characteristics, fire prevention policy decisions, weather and climate. Science of the Total Environment, 559, 151–165. https://doi.org/10.1016/j.scitotenv.2016.03.129
Pechenizkiy, M., Puuronen, S., & Tsymbal, A. (2008). Does relevance matter to data mining research? In Studies in Computational Intelligence (Vol. 118, pp. 251–275). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-78488-3_15
Pitchayadejanant, K., & Nakpathom, P. (2017). Data mining approach for arranging and clustering the agro-tourism activities in orchard. Kasetsart Journal of Social Sciences. https://doi.org/10.1016/j.kjss.2017.07.004
Pokorná, L., Kučerová, M., & Huth, R. (2018). Annual cycle of temperature trends in Europe, 1961–2000. Global and Planetary Change, 170(August), 146–162. https://doi.org/10.1016/j.gloplacha.2018.08.015
Reduction, D., Comparative, M., Arroyo-hernández, J., & Rica, C. (2016). Métodos de reducción de dimensionalidad : Análisis comparativo de los métodos APC , ACPP y ACPK. Uniciencia, 30(1), 115–122. https://doi.org/http://dx.doi.org/10.15359/ru.30-1.7
Ruzmaikin, A., & Guillaume, A. (2014). Clustering of atmospheric data by the deterministic annealing. Journal of Atmospheric and Solar-Terrestrial Physics, 120, 121–131. https://doi.org/10.1016/j.jastp.2014.09.009
Schäfer, E., Heiskanen, J., Heikinheimo, V., & Pellikka, P. (2016). Mapping tree species diversity of a tropical montane forest by unsupervised clustering of airborne imaging spectroscopy data. Ecological Indicators, 64, 49–58. https://doi.org/10.1016/j.ecolind.2015.12.026
Schneider, T., Hampel, H., Mosquera, P. V., Tylmann, W., & Grosjean, M. (2018). Paleo-ENSO revisited: Ecuadorian Lake Pallcacocha does not reveal a conclusive El Niño signal. Global and Planetary Change, 168(February), 54–66. https://doi.org/10.1016/j.gloplacha.2018.06.004
Shaukat, S. S., Rao, T. A., & Khan, M. A. (2016). Impact of sample size on principal component analysis ordination of an environmental data set: Effects on Eigenstructure. Ekologia Bratislava, 35(2), 173–190. https://doi.org/10.1515/eko-2016-0014
Sheridan, S. C., & Lee, C. C. (2011). The self-organizing map in synoptic climatological research. Progress in Physical Geography, 35(1), 109–119. https://doi.org/10.1177/0309133310397582
Sivaramakrishnan, T. R., & Meganathan, S. (2012). Point rainfall prediction using data mining technique. Research Journal of Applied Sciences, Engineering and Technology, 4(13), 1899–1902. https://doi.org/10.5120/14467-2750
Soubdhan, T., Abadi, M., & Emilion, R. (2014). Time dependent classification of solar radiation sequences using best information criterion. Energy Procedia, 57, 1309–1316. https://doi.org/10.1016/j.egypro.2014.10.121
Wang, X., Huang, G., Lin, Q., Nie, X., Cheng, G., Fan, Y., … Suo, M. (2013). A stepwise cluster analysis approach for downscaled climate projection - A Canadian case study. Environmental Modelling and Software, 49, 141–151.
https://doi.org/10.1016/j.envsoft.2013.08.006
Wrzesień, M., Treder, W., Klamkowski, K., & Rudnicki, W. R. (2018). Prediction of the apple scab using machine learning and simple weather stations. Computers and Electronics in Agriculture, (June 2017). https://doi.org/10.1016/j.compag.2018.09.026
Yadav, A. K., Malik, H., & Chandel, S. S. (2015). Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India. Renewable and Sustainable Energy Reviews, 52, 1093–1106. https://doi.org/10.1016/j.rser.2015.07.156
Yahyaoui, H., & Own, H. S. (2018). Unsupervised clustering of service performance behaviors. Information Sciences, 422, 558–571. https://doi.org/10.1016/j.ins.2017.08.065
Zheng, Y., Han, J., Huang, Y., Fassnacht, S. R., Xie, S., Lv, E., & Chen, M. (2017). Vegetation response to climate conditions based on NDVI simulations using stepwise cluster analysis for the Three-River Headwaters region of China. Ecological Indicators, (September 2016), 0–1. https://doi.org/10.1016/j.ecolind.2017.06.040
Zheng, Y., Han, J., Huang, Y., Fassnacht, S. R., Xie, S., Lv, E., … Sharma, A. (2016). Assessment of global aridity change. Ecological Indicators, 75(September 2016), 151–165. https://doi.org/10.1016/j.scitotenv.2015.11.063
Zuo, X., Hua, H., Dong, Z., & Hao, C. (2017). Environmental Performance Index at the Provincial Level for China 2006–2011. Ecological Indicators, 75, 48–56. https://doi.org/10.1016/j.ecolind.2016.12.016 | |