dc.contributorOlarte Dussan, Fredy Andrés
dc.contributorTecnología para la educación y la innovación
dc.creatorMoreno Rodríguez, Laura Andrea
dc.date.accessioned2021-04-29T14:27:22Z
dc.date.available2021-04-29T14:27:22Z
dc.date.created2021-04-29T14:27:22Z
dc.date.issued2021-04
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79457
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLos sistemas de realidad virtual y aumentada son tecnologías que han impuesto nuevas formas de interacción entre los usuarios y entornos simulados por computadora. Con diversos campos de aplicación, estos sistemas han demostrado tener potencial en el sector industrial para apoyar el entrenamiento de trabajadores en múltiples sectores. Sin embargo, se hace necesario desarrollar interfaces hombre-máquina cada vez más intuitivas y menos invasivas para lograr un alto impacto y aceptación por parte de los usuarios. Los guantes hápticos son dispositivos modernos alineados con este objetivo, pues gracias a un conjunto de sensores integrados, rastrean el movimiento de las manos y los dedos con precisión, permitiendo a los usuarios interactuar tanto con el mundo real a su alrededor, como con objetos virtuales agregados a la escena. A pesar de encontrar diferentes productos comercializados de este tipo, aplicaciones de realidad mixta para el sector industrial y múltiples proveedores de guantes hápticos, no existe una única solución general para diversos campos de la industria. De hecho, tampoco es posible reutilizar recursos entre proyectos debido a las grandes diferencias que enfrenta cada aplicación, en cuanto a requerimientos, herramientas y dispositivos implementados. Con el fin de aportar a la solución, en este proyecto se diseñó e implementó una librería de software para integrar rápidamente los guantes hápticos Captoglove a cualquier aplicación de realidad mixta desarrollada en Unity. Con esta librería se simplifica el desarrollo de aplicaciones dirigidas al entrenamiento industrial de trabajadores, al sintetizar el proceso de configuración, procesamiento de datos e interacción con objetos virtuales a través de gestos específicos y comúnmente encontrados en diferentes entornos de capacitación.
dc.description.abstractVirtual and augmented reality systems are technologies that have imposed new forms of interaction between users and computer simulated environments. With diverse fields of application, these systems have shown potential in the industrial sector to support the training of workers. However, it is necessary to develop intuitive and less invasive human-machine interfaces to achieve high impact and acceptance by the users. Haptic gloves are modern devices aligned with this objective, because a set of integrated sensors that track the movement of the hands and fingers with precision, allowing users to interact both with the real world around them, as with virtual objects added to the scene. Despite there are different commercialized products of this type, mixed reality applications for the industrial sector and multiple suppliers of haptic gloves, there is no an unique general solution for different fields of industry. In fact, it is also not possible to reuse resources among projects due to the great differences that each application faces, in terms of requirements, tools and implemented devices. In order to contribute to the solution, a software library was designed and implemented in this project to quickly integrate Captoglove haptic gloves to any mixed reality application developed in Unity. With this library, the development of applications for industrial worker training is simplified, by synthesizing the configuration process, data processing and interaction with virtual objects through specific gestures commonly found in different training environments.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisherDepartamento de Ingeniería de Sistemas e Industrial
dc.publisherFacultad de Ingeniería
dc.publisherBogotá
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationBlender. The software. https://www.blender.org/about/. Consultado: 2020-11-10.
dc.relationCaptoglove. Shop captoglove. https://www.captoglove.com/shop/, . Consultado: 2020-09-23.
dc.relationCaptoglove. Sdk captloglove. https://www.captoglove.com/sdks/, .
dc.relationS. Cawood and M. Fiala. Augmented Reality A Practical Guide. The Pragmatic Programmers, 2008.
dc.relationD. Crocker. Dictionary of aviation. A and C Black Business Information and Development, London, 2007.
dc.relationEnel-CODENSA. Nodo 6: Maniobras en sistemas de distribución de redes de energía eléctrica. 2020. Documento privado.
dc.relationF. Fahmi, F. Nainggolan, B. Siregar, Soeharwinto, and M. Zarlis. User experience study on crane operator erection simulator using senso glove in a virtual reality environment. 2020. IOP Conference Series: Materials Science and Engineering.
dc.relationFreepik. Counting hands showing different number of fingers premium vector. https://www.freepik.com/premium-vector/counting-hands-showing-different-number-fingers_4310322.htm. Consultado:2020-11-10.
dc.relationB. Furht and J. Carmigniani. Handbook of Augmented Reality. Springer Publishing Company, 2011.
dc.relationJ. Hahn, B. Ludwig, and C.Wolff. Augmented reality-based training of the pcb assembly process. 2015. MUM 15 Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia.
dc.relationS. Jeon and S. Choi. Haptic augmented reality: Taxonomy and an example of stiffness modulation. 2009. Teleoperators and Virtual Enviroments.
dc.relationY. Jia. Quaternions and rotations. http://graphics.stanford.edu/courses/cs348a-17-winter/Papers/quaternion.pdf, 2013.
dc.relationM. Kuriena, M. Kimb, M. Kopsidaa, and I. Brilakisa. Real-time simulation of construction workers using combined human body and hand tracking for robotic construction worker system. 2018. Automation in Construction.
dc.relationR. Lindeman, R. Page, Y. Yanagida, and J. Silbert. Towards full-body haptic feedback. 2004. Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST).
dc.relationJ. Linowes and K. Babilinski. Augmented Reality for Developers. Build practical augmentend reality applications with Unity, ARCore, ARKit and Vuforia. Packt, Birmingham, 2017.
dc.relationManus-VR. Manus. https://manus-vr.com/. Consultado: 2019-06-20.
dc.relationMicrosoft. What is .net? https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet. Consultado: 2020-10-31.
dc.relationP. Miligram and F. Kishino. A taxonomy of mixed reality visual displays. 1994. IEICE Transactions on Information and Systems. Vol. E77-D.
dc.relationNoitom-International-Inc. Hi5 vr glove. https://hi5vrglove.com/#features. Consultado: 2019-06-20.
dc.relationM. Oberweger, P. Wohlhart, and V. Lepetit. Hands deep in deep learning for hand pose estimation. 2015. Proceedings of the Computer Vision Winter workshop (CVWW).
dc.relationR. Oliveira, T. Farinha, H. Raposo, and N. Pires. Augmented reality and the future of maintenance. 2014. Proceedings of Maintenance Performance Measurement and Management (MPMM).
dc.relationOxford-University-Press. Oxford languages. https://www.lexico.com/es/. Consultado: 2020-10-11.
dc.relationT. Parisi. Learning Virtual Reality. Developing inmersive experiences and applications for desktop, web and mobile. OReilly Media, Inc., Sebastopol,CA, 2016.
dc.relationPerforador-2.0. ¿quién es el cuñero? https://perforador20.wordpress.com/2018/12/13/quien-es-el-cunero/. Consultado: 2020-12-01.
dc.relationV. Petrenko, F. Tebueva, V. Antonov, A. Apurin, and U. Zavolokina. Development of haptic gloves with vibration feedback as a tool for manipulation in virtual reality based on bend sensors and absolute orientation sensors. 2020. IOP Conference Series: Materials Science and Engineering.
dc.relationW. Piekarski and B. Thomas. Tinmith-hand: Unified suer interface technology for mobile outdoor augmented reality and indoor virtual reality. 2002. Proceedings of IEEE Virtual Reality.
dc.relationPTC-Inc. Vuforia. https://www.vuforia.com/. Consultado: 2020-09-23.
dc.relationM. Quandt, B. Knoke, C. Gorldt, M. Freitag, and K. Thoen. General requirments for industrial augmented reality applications. 2018. 51st CIRP Conference on Manufacturing Systems.
dc.relationT. Robertson, J. Bischof, M. Greyman, and E. Ilse. Reducing maintenance errors with wearable technology. 2018. 2018 Annual Reliability and Maintainability Symposium (RAMS).
dc.relationD. Schmalstieg and T. H ollerer. Augmented reality. Principles and practice. Addison-Wesley, Boston, 2016.
dc.relationJ. Serván, F. Mas, J. Menéndez, and J. Ríos. Using augmented in airbus a400m shop floor assemply work instructions. 2011. American Institute of Physics.
dc.relationH. Tan and A. Pentland. Tactual displays for sensory substitution and wearable computers. 2001. Fundamentls of Wearab~ne Computers and Augmented Reality.
dc.relationJ. Teh, A. Cheok, R. Peiris, Y. Choi, V. Thuong, and S. Lai. Huggy pajama: Amobile parent and child hujjing communication system. 2008. Proceedings of the International Conference on Interaction Design and Children (IDC).
dc.relationV. TM. Vive cosmos elite. https://www.vive.com/mx/. Consultado: 2020-11-21.
dc.relationD. Tsetserukou, K. Sato, and S. Tachi. Exointerfaces: Novel exosceleton haptic interfaces for virtual reality, aumgmented sport and rehabilitation. 2010. Proceedings of the ACM Augmented Human International Conference (A), article 1.
dc.relationUnity-Technologies. Unity documentation. monobehaviour. https://docs.unity3d.com/ScriptReference/MonoBehaviour.html. Consultado: 2020-10-12.
dc.relationUnity-Technologies. Unity documentation. plugins. https://docs.unity3d.com/es/530/Manual/Plugins.html. Consultado: 2020-10-31.
dc.relationUnity-Technologies. Unity. https://unity3d.com/unity, . Consultado: 2020-09-23.
dc.relationUnity-Technologies. Rotation and orientation in unity. https://docs.unity3d.com/2019.3/Documentation/Manual/QuaternionAndEulerRotationsInUnity.html,. Consultado: 2020-10-07.
dc.relationVR-Gluv. All-in-one force feedback gloves for vr training. https://www.vrgluv.com/#technology. Consultado: 2019-06-21.
dc.relationF. Wen, Z. Sun, T. He, Q. Shi, M. Zhu, Z. Zhang, L. Li, T. Zhang, and L. C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in vr/ar applications. 2020. WILEY-VCH Verlag GmbH Co.
dc.relationD. Williams II and J. Chianetta. Augments Essential Guide to Augmented Reality. Augmented, 2016.
dc.relationM. Zhu, Z. Sun, Z. Zhang, Q. Shi, T. He, H. Liu, T. Chen, and C. Lee. Haptic-feedback smart glove as a creative human-machine interface (hmi) for virtual/augmented reality applications. 2020. Science Advances.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDesarrollo de una herramienta de software para la integración de sensores hápticos a interfaces de realidad aumentada orientadas al entrenamiento industrial
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución