dc.contributorBrochero, Helena Luisa Margarita
dc.contributorGarcía Morantes, Jenny Liliana
dc.creatorGuzmán Rojas, Daniela
dc.date.accessioned2022-07-07T18:39:14Z
dc.date.available2022-07-07T18:39:14Z
dc.date.created2022-07-07T18:39:14Z
dc.date.issued2022-05
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81692
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractTetragonisca angustula es una especie del Neotrópico, conocida como abeja angelita, que se ha adaptado a ambientes con alta presión antrópica por lo que es la especie más ampliamente utilizada para cría artificial. Es posible que su amplia distribución geográfica, desde México hasta Argentina, posibilite diferentes poblaciones con características genéticas distintivas que les permiten adaptarse a los ambientes naturales que ocupan. Se presentan aquí para ocho poblaciones de abejas forrajeras de Tetragonisca angustula de Colombia, los resultados de análisis utilizando morfometría lineal de caracteres morfológicos asociados con percepción visual, olfativa y de motricidad, así como los cambios en el tamaño y forma alar utilizando morfometría geométrica. Estos resultados se complementan con el análisis de secuencias de la región minibarcode de la subunidad I del gen citocromo oxidasa I para Colombia obtenidas en este estudio y las registradas para Brasil y Costa Rica. De manera general, se encontró que la longitud de la tibia posterior y la distancia interantenal constituyen caracteres robustos para discriminar entre poblaciones de la abeja angelita. De manera general, con todos los análisis, las poblaciones de Villavicencio, Meta y Medellín, Antioquia se caracterizaron particularmente y aparecen como poblaciones separadas de las demás y claramente distinguibles por rasgos morfológicos y moleculares, en tanto que las poblaciones de Cundinamarca, con excepción de Fusagasugá formaron un macro-grupo. Medellín fue la población con mayor riqueza genética seguida de Villavicencio, en tanto que Fusagasugá siempre estuvo separada de las demás poblaciones de Cundinamarca cuando se analizó el ADNmt de sus poblaciones. La altitud, el tipo de nido del cual provienen las abejas, ya sea natural o de caja racional, pero de manera particular, la ubicación geográfica de poblaciones separadas por las cordilleras, constituyeron factores fundamentales moldeando los caracteres morfológicos y genéticos de las poblaciones estudiadas. Debido a que se reconocieron poblaciones claramente diferenciadas, debe evitarse el traslado de nidos y preservar las poblaciones naturales de la abeja angelita en Colombia como parte de su soberanía en biodiversidad y territorio. (Texto tomado de la fuente)
dc.description.abstractTetragonisca angustula is a species of the neotropics, known as little angel bee, which has adapted to environments with high anthropic pressure making it the most widely used species for artificial breeding. It is possible that their wide geographical distribution, from Mexico to Argentina, allows different populations with distinctive genetic characteristics that allow them to adapt to the natural environments they occupy. Presented here for eight populations of forage bees of Tetragonisca angustula of Colombia, the results of analysis using linear morphometry of morphological characters associated with visual, olfactory and motor perception, as well as changes in size and wing shape using geometric morphometry. These results are complemented by the analysis of sequences of the minibarcode region of subunit I of cytochrome oxidase I gene for Colombia obtained in this study and those recorded for Brazil and Costa Rica. In general, it was found that the length of the posterior tibia and the interantenal distance constitute robust characters to discriminate between populations of the little angel bee In general, with all the analyses, the populations of Villavicencio, Meta and Medellín, Antioquia were particularly characterized and appear as separate populations from the others and clearly distinguishable by morphological and molecular traits, while the populations of Cundinamarca, with the exception of Fusagasugá, formed a macro-group. Medellin was the population with the highest genetic richness followed by Villavicencio, while Fusagasugá was always separated from the other populations of Cundinamarca when the mtDNA of its populations was analyzed. The altitude, the type of nest from which bees come, either natural or rational box, but in particular, the geographical location of populations separated by mountain ranges, were fundamental factors shaping the morphological and genetic characteristics of the populations studied. Because clearly differentiated populations were recognized, nest relocation should be avoided and the natural populations of the little angel bee in Colombia should be preserved as part of its sovereignty over biodiversity and territory.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Entomología
dc.publisherEscuela de biociencias
dc.publisherFacultad de Ciencias
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relation1. Ab Hamid, S., Sharifuddin, M., Thevan, K., y Hashim, N. 2016. Distribution and Morphometrical Variations of Stingless Bees (Apidae: Meliponini) In Urban and Forest Areas of Penang Island, Malaysia. Journal of Tropical Resources and Sustainable Science. (4): 1-5.
dc.relation2. Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., y Ronquist, F. (2004). Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics. 20(3): 407–415. doi:10.1093/bioinformatics/btg42
dc.relation3. Arias, M. C., y Sheppard, W. S. 2005. Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular phylogenetics and evolution, 37(1): 25-35. Doi: https://doi.org/10.1016/j.ympev.2005.02.017
dc.relation4. Attasopa, K., Bänziger, H., Disayathanoowa, T. ,y Packer, L. 2018. A new species of Lepidotrigona (Hymenoptera: Apidae) from Thailand with the description of males of L. flavibasis and L. doipaensis and comments on asymmetrical genitalia in bees. Zootaxa 4442 (1): 063–082. https://doi.org/10.11646/zootaxa.4442.1.3
dc.relation5. Aytekin, M. A., Terzo, M., Rasmont, P., y Çağatay, N. 2007. Landmark based geometric morphometric analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). In Annales de la Société Entomologique de France. 43(1): 95-102. Doi: https://doi.org/10.1080/00379271.2007.10697499
dc.relation6. Azevedo, D. D. O., Matiello‐Guss, C. P., Rönnau, M., Zanuncio, J. C., y Serrão, J. E. 2008. Post‐embryonic development of the antennal sensilla in Melipona quadrifasciata anthidioides (Hymenoptera: Meliponini). Microscopy Research and Technique. 71(3): 196-200. Doi: https://doi.org/10.1002/jemt.20539
dc.relation7. Baitala, T. V., Mangolin, C. A., de Alencar, V., de Toledo, A., y Ruvolo-Takasusuki, M. C. C. 2006. RAPD polymorphism in Tetragonisca angustula (Hymenoptera; Meliponinae, Trigonini) populations. Sociobiology, 48(3): 861-874.
dc.relation8. Balbuena, M. S., y Farina, W. M. 2020. Chemosensory reception in the stingless bee Tetragonisca angustula. Journal of Insect Physiology.125. Doi: https://doi.org/10.1016/j.jinsphys.2020.104076
dc.relation9. Barbosa, F. M., Alves, R. M. D. O., Souza, B. D. A., y Carvalho, C. A. L. D. 2013. Nest architecture of the stingless bee Geotrigona subterranea (Friese, 1901)(Hymenoptera: Apidae: Meliponini). Biota Neotropica. 13(1)¨: 147-152. Doi:10.1590/S1676-06032013000100017
dc.relation10. Barbiéri, C., y Francoy, TM. 2020. Theoretical model for interdisciplinary analysis of human activities: Meliponiculture as an activity that promotes sustainability. Ambiente y Sociedade 23. https://doi.org/10.1590/1809-4422asoc20190020r2vu2020L4AO
dc.relation11. Barragán, H. 2020.Efectos de la elevación sobre la alometría sensorial en la abeja de la miel, Apis mellifera. Tesis de pregrado. Universidad del Rosario. Bogotá, Colombia. Pp 2-17.
dc.relation12. Barth, F. G., Hrncir, M., y Jarau, S. 2008. Signals and cues in the recruitment behavior of stingless bees (Meliponini). Journal of Comparative Physiology. 194(4): 313-327. Doi:10.1007/s00359-008-0321-7
dc.relation13. Barth A., Fernandes A., Pompolo Sd., y Costa M.A. 2011. Occurrence of B chromosomes in Tetragonisca Latreille, 1811 (Hymenoptera, Apidae, Meliponini): a new contribution to the cytotaxonomy of the genus. Genetics and Molecular Biology 34(1):77-9. doi.org/10.1590/S1415-47572010005000100
dc.relation14. Baudier, K. M., Ostwald, M. M., Grüter, C., Segers, F. H. I. D., Roubik, D. W., Pavlic, T. P., … y Fewell, J. H. 2019. Changing of the guard: mixed specialization and flexibility in nest defense (Tetragonisca angustula ). Behavioral Ecology 30(4):1041–1049. doi:10.1093/beheco/arz047
dc.relation15. Baudier, K. M., Bennett, M. M., Ostwald, M. M., Hart, S., Pavlic, T. P., y Fewell, J. H. 2020. Age-based changes in kairomone response mediate task partitioning in stingless bee soldiers (Tetragonisca angustula ). Behavioral Ecology and Sociobiology, 74(10). doi:10.1007/s00265-020-02902-4
dc.relation16. Beye, M., Hasselmann, M., Fondrk, M. K., Page Jr, R. E., y Omholt, S. W. 2003. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell, 114(4): 419-429.Doi: https://doi.org/10.1016/S0092-8674(03)00606-8
dc.relation17. Bharath MP., Chinniah, C., Jayaraj, J., Suresh, K., Balamohan., TN., y Vellaikumar., S. 2019. Foraging performance of stingless bee, Tetragonula iridipennis Smith (Hymenoptera: Apidae) during winter season in Madurai, Tamil Nadu. International Journal of Chemical Studies 7(6): 360-364.
dc.relation18. Brochero, H., y García- Morantes, J. 2021. Importancia de la genética de las abejas en meliponicultura en La abeja angelita Tetragonisca angustula : biología, ecología, genética y potencial mercado de su miel en Colombia. En La abeja angelita Tetragonisca angustula: biología, ecología, genética y potencial mercado de su miel en Colombia.Centro Editorial Facultad de Ciencias Agrarias, Universidad Nacional de Colombia. Pp 27-44.
dc.relation19. Boomsma, J. J., Huszár, D. B., y Pedersen, J. S. 2014. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Animal Behaviour. 92: 241-252. Doi: https://doi.org/10.1016/j.anbehav.2014.03.005
dc.relation20. Boongird, S. 2011. Aspects of culturing, reproductive behavior, and colony formation in the stingless bee Tetragonula fuscobalteata (Hymenoptera: Apidae: Meliponini). Journal of the Kansas Entomological Society. 84(3): 190-196.Doi: https://doi.org/10.2317/JKES101108.1
dc.relation21. Bookstein F.L., 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge. Bookstein F.L., 1996. Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology 58: 313–365.
dc.relation22. Bookstein, F. L. 1996. Combining the Tools of Geometric Morphometrics. Advances in Morphometrics, 131–151. doi:10.1007/978-1-4757-9083-2_12
dc.relation23. Brown, M. T., y Wicker, L. R. 2000. Discriminant Analysis. Handbook of Applied Multivariate Statistics and Mathematical Modeling, 209–235. doi:10.1016/b978-012691360-6/50009-4
dc.relation24. Byatt, M., Chapman, N., Latty, T. y Oldroyd, B. 2015. The genetic consequences ot the anthropogenic movement of social bees. Springer, Doi: 10.1007/s00040-015-0441-
dc.relation25. Camargo ,JMF., y Pedro, SRM. 2013. Meliponini Lepeletier, En: Moure JS, Urban D, Melo GAR, Orgs. Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region. 1836. Online version. URL: http://moure.cria.org.br/catalogue?id=34135
dc.relation26. Carvalho, C. A., Sodré, G. S., Fonseca, A. A., Alves, R. M., Souza, B. A., y Clarton, L. 2009. Physicochemical characteristics and sensory profile of honey samples from stingless bees (Apidae: Meliponinae) submitted to a dehumidification process. Anais da Academia Brasileira de Ciências, 81(1): 143-149.Doi: DOI:10.1590/S0001-37652009000100015
dc.relation27. Castanheira, E. B., Contel, E. P. B. 2005. Geographic variation in Tetragonisca angustula (Hymenoptera, Apidae, Meliponinae). Journal of apicultural research, 44(3): 101-105. Doi: https://doi.org/10.1080/00218839.2005.11101157
dc.relation28. Singh, H. K., y Chauhan, A. 2020. Beekeeping in Nagaland with Stingless Bees: Present and Future. RASSA Journal of Science for Society. 2(1): 41-45.
dc.relation29. Chuttong, B., Chanbang, Y., y Burgett, M. 2014. Meliponiculture: Stingless bee beekeeping in Thailand. Bee world. 91(2): 41-45.Doi: https://doi.org/10.1080/0005772X.2014.11417595
dc.relation30. Cortopassi-Laurino M., Imperatriz-Fonseca V.L., Roubik D.W., Dollin A., Heard T., Aguilar I., Venturieri G., Nogueira-Neto P. 2006. Global meliponiculture: challenges and opportunities. Apidologie 37:275-92. doi:10.1051/apido:2006027
dc.relation31. De Maesschalck, R., Jouan-Rimbaud, D., y Massart, D. L. 2000. The mahalanobis distance. Chemometrics and intelligent laboratory systems. 50(1): 1-18. Doi: https://doi.org/10.1016/S0169-7439(99)00047-7
dc.relation32. Deora, T., Gundiah, N., y Sane, S. P. 2017. Mechanics of the thorax in flies. Journal of Experimental Biology.220(8): 1382-1395. Doi: https://doi.org/10.1242/jeb.128363
dc.relation33. Desjardins, P., y Conklin, D. 2010. NanoDrop microvolume quantitation of nucleic acids. Journal of Visualized Experiments. 45. doi: 10.3791/2565
dc.relation34. Dobson, H. E., y Bergström, G. 2000. The ecology and evolution of pollen odors. Plant Systematics and Evolution. 222(1): 63-87. Doi: 10.1007/978-3-7091-6306-1_4
dc.relation35. Dos Santos, C. F., Menezes, C., Imperatriz-Fonseca, V. L., y Arias, M. C. 2013. A scientific note on diploid males in a reproductive event of a eusocial bee. Apidologie, 44(5): 519-521.
dc.relation36. Dos Santos, C. F., Imperatriz-Fonseca, V. L., y Arias, M. C. 2016. Relatedness and dispersal distance of eusocial bee males on mating swarms. Entomological Science 19(3): 245–254. doi:10.1111/ens.12195
dc.relation37. Dos Santos, C. F. 2018. Cooperation and antagonism over time: a conflict faced by males of Tetragonisca angustula in nests. Insectes Sociaux 65(3): 465–471. doi:10.1007/s00040-018-0633-8
dc.relation38. Dötterl, S., y Jürgens, A. 2005. Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides?. Plant Systematics and Evolution. 255(1): 99-109. Doi:10.1007/s00606-005-0344-2
dc.relation39. Dyer, A. G., Streinzer, M., y Garcia, J. 2016. Flower detection and acuity of the Australian native stingless bee Tetragonula carbonaria Sm. Journal of Comparative Physiology. 202(9): 629-639. Doi:10.1007/s00359-016-1107-y
dc.relation40. Dziak, J. J., Coffman, D. L., Lanza, S. T., Li, R., y Jermiin, L. S. 2020. Sensitivity and specificity of information criteria. Briefings in bioinformatics. 21(2): 553-565. https://doi.org/10.1093/bib/bbz016
dc.relation41. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research. 32(5), 1792-1797.Doi: https://doi.org/10.1093/nar/gkh340
dc.relation42. Efin, A., Atmowidi, T., Sri Prawasti, T. 2019. Short Communication: Morphological characteristics and morphometric of Stingless Bee (Apidae: Hymenoptera) from Banten Province, Indonesia. Biodiversitas. 20(6): 1693-1698. DOI: 10.13057/biodiv/d200627
dc.relation43. Engel, M. S. 2001. Monophyly and extensive extinction of advanced eusocial bees: Insights from an unexpected Eocene diversity. Proceedings of the National Academy of Sciences 98(4): 1661–1664. doi:10.1073/pnas.98.4.1661
dc.relation44. Engel, M. S., Herhold, H., Davis, S., Wang, B., y Thomas, J. 2021. Stingless bees in Miocene amber of southeastern China (Hymenoptera: Apidae). Journal of Melittology, (105): 1–83. https://doi.org/10.17161/jom.i105.15734
dc.relation45. Engel, M. S., Rasmussen, C. 2019. Corbiculate Bees. Encyclopedia of Social Insects. Doi: 10.1007/978-3-319-90306-4_30-1
dc.relation46. Fierro, M. M., Cruz-Lopez, L., Sanchez, D., Villanueva-Gutierrez, R., y Vandame, R. (2012). Effect of biotic factors on the spatial distribution of stingless bees (Hymenoptera: Apidae, Meliponini) in fragmented neotropical habitats. Neotropical Entomology. 41(2): 95-104. Doi:10.1007/s13744-011-0009-5
dc.relation47. Fisher, R. A. 1930. Inverse probability. Mathematical Proceedings of the Cambridge Philosophical Society 26(4): 528-535.
dc.relation48. Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals Eugen. 7:179–188.
dc.relation49. Francisco, F. O., Nunes-Silva, P., Francoy, T. M., Wittmann, D., Imperatriz-Fonseca, V. L., Arias, M. C., y Morgan, E. D. 2008. Morphometrical, biochemical and molecular tools for assessing biodiversity. An example in Plebeia remota (Holmberg, 1903)(Apidae, Meliponini). Insectes Sociaux, 55(3): 231-237.
dc.relation50. Francisco, F. D. O., Santiago, L. R., y Arias, M. C. 2013. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study. Genetics and molecular biology. 36(1): 118-123. DOI:10.1590/S1415-47572013000100017
dc.relation51. Francisco FO, Santiago LR, Brito RM, Oldroyd BP, Arias MC .2014. Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie 45:1–9
dc.relation52. Francisco, F. O., Santiago, L. R., Mizusawa, Y. M., Oldroyd, B. P., Arias, M. C. 2015. Genetic structure of the stingless bee Tetragonisca angustula. bioRxiv. Doi: https://doi.org/10.1101/026740.
dc.relation53. Francisco F., Santiago L., Mizusawa Y., Oldroyd B., y Arias M.C. 2017. Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers. Insect Science 24(5):877-90. doi: 10.1111/17447917.12371
dc.relation54. Françoso, E., y Arias, M. C. 2013. Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini‐barcode. Molecular ecology resources, 13(5): 844-850. Doi: https://doi.org/10.1111/1755-0998.12135
dc.relation55. Francoy, T. M., Grassi, M. L., Imperatriz-Fonseca, V. L., de Jesús May-Itzá, W., y Quezada-Euán, J. J. G. 2011. Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie, 42(4): 499-507. DOI:10.1007/s13592-011-0013-0
dc.relation56. Francoy T.M., Bonatti V., Viraktamath S., y Rajankar B. 2016. Wing morphometrics indicates the existence of two distinct phenotypic clusters within population of Tetragonula iridipennis (Apidae: Meliponini) from India. Insectes Sociaux 63:109-15. doi:10.1007/s00040-015-0442-2
dc.relation57. Fruciano C. 2016. Measurement error in geometric morphometrics. Development Genes and Evolution (226);139–58. doi:10.1007/s00427-016-0537-4
dc.relation58. Fuenmayor, C. A., Díaz-Moreno, A. C., Zuluaga-Domínguez, C. M., y Quicazán, M. C. 2013.Honey of Colombian stingless bees: Nutritional characteristics and physicochemical quality indicators. In Pot-Honey (pp. 383-394). Springer, New York, NY.
dc.relation59. Galvani, G. L., Soto, E. M., Canavoso, L. E., y Settembrini, B. P. 2019. Fat body morphology, but not body size, changes in forager bees of Scaptotrigona jujuyensis (Apidae: Meliponini) during foraging season. Zoologischer Anzeiger,. 283: 142-149. Doi: https://doi.org/10.1016/j.jcz.2019.09.006
dc.relation60. Geladi, P., Linderholm, J. 2020. Principal Component Analysis.
dc.relation61. Gerth, M., GEIßLER, A. N. N. E. M. A. R. I. E., y Bleidorn, C. 2011. Wolbachia infections in bees (Anthophila) and possible implications for DNA barcoding. Systematics and Biodiversity. 9(4): 319-327. Doi: https://doi.org/10.1080/14772000.2011.627953
dc.relation62. Ghosh, D., Vogt, A. 2012. Outliers: An evaluation of methodologies. Joint statistical meetings.
dc.relation63. Grimaldi D., Engel M. 2005. Evolution of the insects. Cambridge University Press. Pp 754-755.
dc.relation64. Grüter, C., Menezes, C., Imperatriz-Fonseca, V. L., y Ratnieks, F. L. 2012. A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proceedings of the National Academy of Sciences, 109(4): 1182-1186.
dc.relation65. Grüter, C. (2020). Stingless Bees. Cham, Switzerland: Springer International Publishing. 109 (4): 1182-1186. Doi: https://doi.org/10.1073/pnas.1113398109
dc.relation66. Hammel B, Vollet-Neto A., Menezes C., Nascimento F.S., Engels W., y Grüter C. 2016. Soldiers in a stingless bee: work rate and task repertoire suggest they are an elite force. The American Naturalist 187(1):120-9.
dc.relation67. Hammer O., Harper D.A.T., y Ryan P.D. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Versión 4.02. Consultado en: https://www.nhm.uio.no/english/research/infrastructure/past/
dc.relation68. Herbert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., y Hallwachs, W. 2004 Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences.101 (41): 14812–14817. Doi: https://doi.org/10.1073/pnas.0406166101
dc.relation69. Hrncir, M., Maia-Silva, C., da Silva Teixeira-Souza, V. H., y Imperatriz-Fonseca, V. L. 2019. Stingless bees and their adaptations to extreme environments. Journal of Comparative Physiology A, 205(3): 415-426. DOI:10.1007/s00359-019-01327-3
dc.relation70. Hrncir, M., Maia-Silva, C., y Farina, W. M. 2019. Honey bee workers generate low-frequency vibrations that are reliable indicators of their activity level. Journal of Comparative Physiology. 205(1): 79-86. Doi: 10.1007/s00359-018-1305-x
dc.relation71. Husson, F., Josse, J., y Le, S. 2008. FactoMineR: An R package for multivariate analysis: Journal of Statistical Software. 25: 1–18.
dc.relation72. Jezeera, M., Tichit, P., Balamurali, G. S., Baird, E., Kelber, A., y Somanathan, H. 2021. Spatial resolution and sensitivity of the eyes of the stingless bee, Tetragonula iridipennis. Journal of Comparative Physiology. 1-14. Doi:10.1007/s00359-021-01521-2
dc.relation73. Jolliffe, I. 2005. Principal Component Analysis. Encyclopedia of Statistics in Behavioral Science (3): 1580–1584. doi:10.1002/0470013192.bsa501
dc.relation74. Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. Mammalian protein metabolism (3): 21-132.
dc.relation75. Karthick, K. S., Chinniah, C., Parthiban, P., y Ravikumar, A. 2018. Prospects and challenges in Meliponiculture in India. International Journal of Research Studies in Zoology. 41: 29-38. Doi:dx.doi.org/10.20431/2454-941X.0401005
dc.relation76. Kaufmann, C., Reim, C., y Blanckenhorn, W. U. 2013. Size-dependent insect flight energetics at different sugar supplies. Biological Journal of the Linnean Society. 108(3): 565-578. Doi: https://doi.org/10.1111/j.1095-8312.2012.02042.x
dc.relation77. Kataguiri V.S. 2003. Aspectos adaptativos e morfométricos da abelha jataí Tetragonisca angustula Latreille, 1811 (Hymenoptera: Melliponinae). Trabajo de grado. Instituto de Biología. Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil. 40pp.
dc.relation78. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... y Drummond, A. 2012. Geneious Basic: an integrated and extendable desktop 106 software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647-1649. Doi: https://doi.org/10.1093/bioinformatics/bts199
dc.relation79. Kelly, N., Farisya, M. S. N., Kumara, T. K., y Marcela, P. 2014. Species Diversity and External Nest Characteristics of Stingless Bees in Meliponiculture. Pertanika Journal of Tropical Agricultural Science. 37(3):
dc.relation80. Kelemen, E. P., & Rehan, S. M. (2021). Opposing pressures of climate and land‐use change on a native bee. Global Change Biology, 27(5), 1017-1026. Doi: https://doi.org/10.1111/gcb.15468
dc.relation81. Kimura, M.1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution, 16(2), 111-120.
dc.relation82. Klingenberg C.P., y Monteiro L.R. 2005. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology 54(4):678-88. doi:10.1080/10635150590947258
dc.relation83. Koling, D. F., y Moretto, G. 2010. Mitochondrial discrimination of stingless bees Tetragonisca angustula (Apidae: Meliponini) from Santa Catarina state, Brazil. Apidologie, 41(4), 454-462.Doi:10.1051/apido/2009082
dc.relation84. Körner, C. 2007. The use of ‘altitude’in ecological research. Trends in ecology and evolution. 22(11): 569-574. Doi: https://doi.org/10.1016/j.tree.2007.09.006
dc.relation85. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47(260): 583-621.
dc.relation86. Kumar, S., Stecher, G., Li, M., Knyaz, C., y Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution. 35(6): 1547-1549. Doi: 10.1093/molbev/msy096
dc.relation87. Levene, H.1960. Robust Tests for Equality of Variances en Contributions to Probability and Statistics. Stanford: Stanford University Press. Chapter 25. pp. 278-292.
dc.relation88. Leigh, J. W., y Bryant, D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9): 1110-1116. Doi:10.1111/2041-210X.12410
dc.relation89. Librado, P., y Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25(11): 1451-1452. Doi: https://doi.org/10.1093/bioinformatics/btp187
dc.relation90. Lima, C. D. S., Nunes, L. A., de Carvalho, C. A. L., Alves, R. D. O., y Ribeiro, M. D. F. 2014. Morfometria geométrica de uma população de Melipona subnitida (Hymenoptera: Meliponini) proveniente de uma comunidade rural em Alagoas. Congresso Nordestino de Produção Animal.
dc.relation91. Macías-Macías, J. O., Quezada-Euán, J. J. G., y González, J. M. T. 2011. Effect of lodging type on the internal temperature and humidity of colonies of Melipona colimana (Hymenoptera: Meliponini) from a Mexican temperate zone. Journal of Apicultural Research. 50(3): 235-241. Doi: https://doi.org/10.3896/IBRA.1.50.3.08
dc.relation92. Maia-Silva, C., Imperatriz-Fonseca, V. L., Silva, C. I., y Hrncir, M. 2014. Environmental windows for foraging activity in stingless bees, Melipona subnitida Ducke and Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae: Meliponini). Sociobiology. 61(4): 378-385. Doi:https://doi.org/10.13102/sociobiology.v61i4.378-385
dc.relation93. Makarova, A., Polilov, A., y Fischer, S. 2015. Comparative morphological analysis of compound eye miniaturization in minute Hymenoptera. Arthropod Structure & Development. 44(1): 21-32. Doi: https://doi.org/10.1016/j.asd.2014.11.001
dc.relation94. Matan S. 2012. Where are we now? Bergmann’s Rule sensu lato in insects. The American Society of Naturalists180(4):511-19. doi:10.1086/667595
dc.relation95. May-Itzá, W., Lóriga, W., De la Rúa, P., y Quezada-Eúan, J. 2019. A genetic and morphological survey to trace the origin of Melipona beecheii (Apidae: Meliponini) from Cuba. Journal of Apidologie. 50: 859-870. DOI: 10.1007/s13592-019-00696-7
dc.relation96. Melo, G. A. R. 2020. Stingless Bees (Meliponini). Encyclopedia of Social Insects. doi:10.1007/978-3-319-90306-4_117-1
dc.relation97. Michener, D. 2000. The bees of the world. Estados Unidos, The Johns Hopkins University Press.
dc.relation98. Miller, M.A., Pfeiffer, W., y Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans. pp 1 – 8
dc.relation99. Miller, N., Thomas, M. A., Eichel, J. A., y Mishra, A. 2015. A Hidden Markov Model for Vehicle Detection and Counting. 2015 12th Conference on Computer and Robot Vision. doi:10.1109/crv.2015.42.
dc.relation100. Miranda, E. A., Batalha-Filho, H., Congrains, C., Carvalho, A. F., Ferreira, K. M., y Del Lama, M. A. 2016. Phylogeography of Partamona rustica (Hymenoptera, Apidae), an endemic stingless bee from the Neotropical dry forest diagonal. PLoS One. 11(10). Doi: https://doi.org/10.1371/journal.pone.0164441
dc.relation101. Nates-Parra G. 2001. Guía para la cría y manejo de la abeja angelita o virginita Tetragonisca angustula Illiger. Convenio Andrés Bello, Serie Ciencia y Tecnología No. 84; Bogotá. Pp 43.
dc.relation102. Nates-Parra, G. 2005. Cría y manejo de la abeja angelita (Tetragonisca angustula ). Serie Ciencia y Tecnología. 84 (43).
dc.relation103. Nates-Parra G., Rosso-Londono J. 2013. Diversidad de abejas sin aguijón (Hymenoptera: Meliponini) utilizadas en meliponicultura en Colombia. Acta Biológica Colombiana 18(3):415-25.
dc.relation104. Nates-Parra., 2021. La abeja angelita, Tetragonisca angustula (Latreille, 1811) (Hymenoptera: Apidae: Meliponini). En La abeja angelita Tetragonisca angustula: biología, ecología, genética y potencial mercado de su miel en Colombia.Centro Editorial Facultad de Ciencias Agrarias, Universidad Nacional de Colombia.pp 18-26.
dc.relation105. Nunes, L. A., Pinto, M. D. F. F. D. C., Carneiro, P., Pereira, D. G., y Waldschmidt, A. M. 2007. Divergência genética em Melipona scutellaris Latreille (Hymenoptera: Apidae) com base em caracteres morfológicos. Bioscience journal.23(1): 1-9.
dc.relation106. Nunes L.A., Passos G.B., Carvalho C.A.L., Araújo E.D. 2013. Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hym.; Meliponini). Brazilian Journal of Biology 73:887-93. doi:10.1590/S1519-69842013000400027
dc.relation107. Nylander, J. A. A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
dc.relation108. Obregon, D. 2011. Origen botánico de la miel y el polen provenientes de nidos de Melipona eburnea Friese, 1900 y Tetragonisca angustula (Latreille, 1811), (Apidae: Meliponini) para estimar su potencial polinizador. Tesis de Maestría. Universidad Nacional de Colombia. Bogotá, Colombia.
dc.relation109. O'neill, M., McPartlin, J., Arthure, K., Riedel, S., & McMillan, N. D. (2011, August). Comparison of the TLDA with the Nanodrop and the reference Qubit system. In Journal of Physics: Conference Series. 307: 1.
dc.relation110. Oliveira, R. D. C., Nunes, F. D. M. F., Campos, A. P. S., Vasconcelos, S. M. D., Roubik, D., Goulart, L. R., y Kerr, W. E. 2004. Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae, Trigonini) based on RAPD markers. Genetics and Molecular Biology, 27(2): 181-186.
dc.relation111. Oliveira, M. O., Brito, T. F., Campbell, A. J., y Contrera, F. A. 2019. Body size and corbiculae area variation of the stingless bee Melipona fasciculata Smith, 1854 (Apidae, Meliponini) under different levels of habitat quality in the eastern Amazon. Entomología Generalis. 39(1): 45-52. Doi: 10.1093/jisesa/iez032
dc.relation112. Pacheco M., Gonzalez R., y Brochero H. 2017. Anopheles darlingi Root 1926 (Diptera: Culicidae): variaciones morfométricas en alas y patas de poblaciones de Colombia. Biomedica 37(Supl 2): 124-34. doi:10.7705/biomedica.v34i2.3492
dc.relation113. Pacheco M., Gonzalez R., y Brochero H. 2018. Morphometric variations of two populations of Anopheles albitarsis F (Diptera: Culicidae) in the Orinoquia region, Colombia. Revista de la Facultad de Medicina 66(2):201-8. doi:10.15446/revfacmed.v66n2.61071
dc.relation114. Packer, L., Zayed, A., Grixti, J. C., Ruz, L., Owen, R. E., Vivallo, F., y Toro, H. 2005. Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees. Conservation Biology, 19(1): 195-202. Doi: https://doi.org/10.1111/j.1523-1739.2005.00601.x
dc.relation115. Padial, J. M., y De La Riva, I. 2010. A response to recent proposals for integrative taxonomy. Biological Journal of the Linnean Society, 101(3): 747-756. Doi: https://doi.org/10.1111/j.1095-8312.2010.01528.x
dc.relation116. Pagès, J., 2004. Analyse factorielle de données mixtes, Revue de Statistique Appliquée. 93-111.
dc.relation117. Pauly, A., y Hora, Z. A. 2013. Apini and Meliponini from Ethiopia (Hymenoptera: Apoidea: Apidae: Apinae). Belgian Journal of Entomology, 16: 1-35.
dc.relation118. Paz, A., Colla, M., y Arnaut, V. 2008. análise da genética de populações em abelhas jataí (Tetragonisca angustula Latreille) por meio de isoenzimas. Magistra, Cruz das Almas-BA, v. 20, n. 1, p. 68-77.
dc.relation119. Perl, C. D., Johansen, Z. B., Jie, V. W., Moradinour, Z., Guiraud, M., Restrepo, C. E., ... y Baird, E. 2022. Substantial variability in morphological scaling among bumblebee colonies. Royal Society Open Science. 9(1). Doi: https://doi.org/10.1098/rsos.211436
dc.relation120. Porto, D. S., Almeida, E. A., y Vilhelmsen, L. 2017. Comparative morphology of internal structures of the mesosoma of bees with an emphasis on the corbiculate clade (Apidae: Apini). Zoological Journal of the Linnean Society, 179(2): 303-337. Doi: https://doi.org/10.1111/zoj.12466
dc.relation121. Porto, D. S., y Almeida, E. A. 2021. Corbiculate bees (Hymenoptera:Apidae): Exploring the limits of morphological data to solve a hard phylogenetic problem. Insect Systematics and Diversity, 5(3): 1-40. Doi: https://doi.org/10.1093/isd/ixab008
dc.relation122. Posada, D., y Buckley, T. R.2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic biology. 53(5): 793-808. https://doi.org/10.1080/10635150490522304
dc.relation123. Purwanto, H., y Trianto, M. 2021. Species description, morphometric measurement and molecular identification of stingless bees (Hymenoptera: Apidae: Meliponini) in meliponiculture industry in west Java Province, Indonesia. Serangga 2021, 26 (1): 13-33
dc.relation124. Grüter, C., Segers, F. H., Menezes, C., Vollet-Neto, A., Falcón, T., von Zuben, L., ... y Almeida, E. A. 2017. Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees. Nature communications. 8(1): 1-8. Doi: 10.1038/s41467-016-0012-y
dc.relation125. Quezada-Euán, J., Paxtonb, R., Palmerc, K., May Itzáa,W., Tek Tayd, W., Oldroydc,B. 2007. Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini). Apidologie: 38, 247-258. DOI: 10.1051/apido:2007006
dc.relation126. Quezada-Euán, J. J. G., May-Itzá, W. de J., Rincón, M., De La Rúa, P., y Paxton, R. J. 2011. Genetic and phenotypic differentiation in endemic Scaptotrigona hellwegeri (Apidae: Meliponini): implications for the conservation of stingless bee populations in contrasting environments. Insect Conservation and Diversity 5(6): 433–443. doi:10.1111/j.1752-4598.2011.00179.x
dc.relation127. Quezada-Euán, J. J. G., López-Velasco, A., Pérez-Balam, J., Moo-Valle, H., Velazquez-Madrazo, A., y Paxton, R. J. 2011. Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insectes Sociaux, 58(1), 31-38. Doi: 10.1007/s13592-011-0074-0
dc.relation128. Ramadhan, R., Kusuma, I. W., Egra, S., Shimizu, K., Kanzaki, M., y Tangkearung, E. 2020. Diversity and honey properties of stingless bees from meliponiculture in East and North Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity.21(10): 4623-4630. Doi: 10.13057/biodiv/d211021
dc.relation129. Ramalho, M., Imperatriz-Fonseca, V. L., y Giannini, T. C. 1998. Within-colony size variation of foragers and pollen load capacity in the stingless bee Melipona quadrifasciata anthidioides Lepeletier (Apidae, Hymenoptera). Apidologie. 29(3): 221-228. Doi: https://doi.org/10.1051/apido:19980302
dc.relation130. Rambaut, A. 2010. FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/
dc.relation131. Rambaut, A., Drummond, A. J., Xie, D., Baele, G., y Suchard, M. A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic biology. 67(5): 901-904. https://doi.org/10.1093/sysbio/syy032
dc.relation132. Rasmussen, C., y Cameron, S. A. 2010. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biological Journal of the Linnean Society, 99(1): 206–232. doi:10.1111/j.1095-8312.2009.01341.x
dc.relation133. Rattanawannee, A., Chanchao, C., y Wongsiri, S. 2012. Geometric morphometric analysis of giant honeybee (Apis dorsata Fabricius, 1793) populations in Thailand. Journal of Asia-Pacific Entomology, 15(4), 611-618. Doi: https://doi.org/10.1016/j.aspen.2012.07.001
dc.relation134. Rattanawannee, A., Jeratthitikul, E., Duangpakdee, O y Oldroyd, B. 2017. Mitochondrial sequencing and geometric morphometrics suggest two clades in the Tetragonilla collina (Apidae: Meliponini) population of Thailand. Apidologie: 48, 719-731. DOI: 10.1007/s13592-017-0517-3
dc.relation135. R Core Team. 2018. R: A language and environment for statistical computing: R Foundation for Statistical Computing. Vienna, Austria. Disponible en: https://www.R-project.org/.
dc.relation136. Reyes-González, A., Camou-Guerrero, A., y Gómez-Arreola, S. 2016. From extraction to meliponiculture: A case study of the management of stingless bees in the West-central region of Mexico. Beekeeping and Bee Conservation: Advances in Research. pp 201-223.
dc.relation137. Reinhard, J., y Srinivasan, M. V. 2009. The role of scents in honey bee foraging and recruitment. Food exploitation by social insects: ecological, behavioral, and theoretical approaches. 1, 165-182.
dc.relation138. Ribeiro, M., y Alves, D. 2001. Size Variation in Schwarziana quadripunctata Queens (Hymenoptera, Apidae, Meliponini). Revista de Etologia 2001. 3(1): 59-65.
dc.relation139. Ribeiro, M., Aguiar, W. M., Nunes, L. A., y da Silva Carneiro, L. 2019. Morphometric changes in three species of Euglossini (Hymenoptera: Apidae) in response to landscape structure. Sociobiology, 66(2): 339-347. DOI: https://doi.org/10.13102/sociobiology.v66i2.3779
dc.relation140. Rohlf J.F. 2015. TPSDig2, version 2.18. [Software] New York: State University of New York at Stony Brook.
dc.relation141. Rohlf, F. J., Loy, A., y Corti, M. 1996. Morphometric Analysis of Old World Talpidae (Mammalia, Insectivora) Using Partial-Warp Scores. Systematic Biology 45(3): 344–362. doi:10.1093/sysbio/45.3.344.
dc.relation142. Ronqui, L., Santos, S. A., Araujo, K. F., Mangolin, C. A., Toledo, V. A. A., y Ruvolo-Takasusuki, M. C. C. 2020. Mitochondrial polymorphism in Tetragonisca angustula and Tetragonisca weyrauchi (Apidae) in northern Brazil. Doi: http://dx.doi.org/10.4238/gmr18495
dc.relation143. Roubik, D. W. (2006). Stingless bee nesting biology. Apidologie. 37(2): 124-143.Doi: https://doi.org/10.1051/apido:2006026
dc.relation144. Roubik, D. W. 2013. Why do they keep changing the names of our stingless bees (Hymenoptera: Apidae; Meliponini)? A little history and guide to taxonomy. Stingless bees process honey and pollen in cerumen pots.
dc.relation145. Rubin, D. B. 1981. The bayesian bootstrap. The annals of statistics, 9(1): 130-134.
dc.relation146. Rueden C.T., Schindelin J., Hiner M.C., DeZonia B., Walter A., Arena E., y Eliceiri K. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18(1):529. doi:10.1186/s12859-017-1934-z
dc.relation147. Saitou, N., y Imanishi, T. 1989. Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree.
dc.relation148. Saitou, N., y Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution. 4(4): 406-425.Doi: https://doi.org/10.1093/oxfordjournals.molbev.a040454
dc.relation149. Salazar, E., Crespo, V., Manrique, A. J., Castro, L., Vallejo, E., y Torrealba, M. 2014. Preliminary molecular characterization of Angelita bees (Tetragonisca angustula) from Guarico State through RAPD markers. Zootecnia Tropical, 32(3): 247-255.
dc.relation150. Santiago, L. 2013. Variabilidade genética de Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) de meliponários. Universidad de Sao Paulo, Brasil. Tesis de maestría
dc.relation151. Santiago, L.R., Francisco, F.O., Jaffe, R., y Arias, M. C. 2016. Genetic variability in captive populations of the stingless bee Tetragonisca angustula . Genética 144:397–405. doi:10.1007/s10709-016-9908-z
dc.relation152. Saufi, N. F. M., y Thevan, K. 2015. Characterization of nest structure and foraging activity of stingless bee, Geniotrigona thoracica (Hymenopetra: Apidae; Meliponini). Jurnal Teknologi. 77(33). Doi: https://doi.org/10.11113/jt.v77.7007
dc.relation153. Schmitt, U., y Bertsch, A. 1990. Do foraging bumblebees scent-mark food sources and does it matter?. Oecologia. 82(1): 137-144. Doi:
dc.relation154. Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., y Crozier, R. H. 2010. Integrative taxonomy: a multisource approach to exploring biodiversity. Annual review of entomology, 55: 421-438. Doi: https://doi.org/10.1146/annurev-ento-112408-085432
dc.relation155. Shapiro, S.S., y Wilks, M.B. 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611
dc.relation156. Shanas, S., y Faseeh, P. 2019. A new subgenus and three new species of stingless bees (Hymenoptera: Apidae: Apinae: Meliponini) from India. Entomon 44(1): 33-48. DOI:10.33307/entomon.v44i1.424
dc.relation157. Shelomi, M. 2012. Where are we now? Bergmann’s rule sensu lato in insects. The American Naturalist. 180(4): 511-519.Doi: 10.1007/BF00318545
dc.relation158. Simon, C., Frati, F., Becknbach, A., Crespi, B., Liu, H., y Flook, P. 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87(6): 651–701. Doi: https://doi.org/10.1093/aesa/87.6.651
dc.relation159. Silva, T.H., Prasanga, G.C., Inoka, W.A., Karunaratne, P., y Edirisingue, J. 2018. Rediscovery of Tetragonula praeterita after 1860: an unremarked common stingless bee endemic to Sri Lanka. Journal of the National Science Foundation of Sri. 46(1): 109-113. DOI:10.4038/jnsfsr.v46i1.8271
dc.relation160. Sikes, D. S., y Lewis, P. O. 2001. Software manual for PAUPRat: A tool to implement Parsimony Ratchet searches using PAUP.
dc.relation161. Somanathan, H., Kelber, A., Borges, R. M., Wallén, R., y Warrant, E. J. 2009. Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles A Neuroethology, sensory, neural, and behavioral physiology.Journal of comparative physiology.195(6): 571-583. Doi: 10.1007/s00359-009-0432-9
dc.relation162. Spaethe, J., Brockmann, A., Halbig, C., y Tautz, J. 2007. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften. 94(9): 733-739. Doi:10.1007/s00114-007-0251-1
dc.relation163. Spaethe, J., y Chittka, L. 2003. Interindividual variation of eye optics and single object resolution in bumblebees. Journal of Experimental Biology. 206(19): 3447-3453.Doi: https://doi.org/10.1242/jeb.00570
dc.relation164. Spaethe, J., Streinzer, M., y Sommerlandt, F. 2019. Current state and future directions of research on stingless bees in La Gamba. Acta ZooBot Austria. 156: 145-157.
dc.relation165. Steel, M., y Bocker, S. 2000. Simple but fundamental limitations on supertree and consensus tree methods. Systematic Biology. 49(2), 363-368.
dc.relation166. Streinzer, M., Kelber, C., Pfabigan, S., Kleineidam, C. J., y Spaethe, J. 2013. Sexual dimorphism in the olfactory system of a solitary and a eusocial bee species. Journal of Comparative Neurology. 521(12): 2742-2755. Doi: https://doi.org/10.1002/cne.23312
dc.relation167. Streinzer, M., Huber, W., y Spaethe, J. 2016. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini). Journal of Comparative Physiology A. 202(9): 643-655. Doi:10.1007/s00359-016-1118-8
dc.relation168. Stuchi, A. L. P. B., de Toledo, V. D. A. A., Lopes, D. A., Cantagalli, L. B., y Ruvolo-Takasusuki, M. C. C. 2012. Molecular marker to identify two stingless bee species: Tetragonisca angustula and Tetragonisca fiebrigi (Hymenoptera, Meliponinae). Sociobiology, 59(1): 123-134.Doi: https://doi.org/10.13102/sociobiology.v59i1.671
dc.relation169. Szyszka, P., Gerkin, R. C., Galizia, C. G., y Smith, B. H. 2014. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proceedings of the National Academy of Sciences, 111(47), 16925-16930. Doi: https://doi.org/10.1073/pnas.1412051111
dc.relation170. Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics, 105(2): 437–60. https://doi.org/10.1093/genetics/105.2.437
dc.relation171. Tavaré S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences. Lectures on mathematics in the life sciences. 17(2): 57-86.
dc.relation172. Theobald, J. C., Greiner, B., Wcislo, W. T., y Warrant, E. J. 2006. Visual summation in night-flying sweat bees: a theoretical study. Vision research.46(14):2298-2309. Doi: https://doi.org/10.1016/j.visres.2006.01.002
dc.relation173. Toro M., Manrique G., Galdames I. 2010. Morfometria geometrica y el estudio de las formas biologicas: De la morfología descriptiva a la morfologia cuantitativa. International Journal of Morphology 28(4):977-90. doi:10.4067/ S0717-95022010000400001
dc.relation174. Torres, A., Hoffmann, W., Lamprecht, I. 2007. Thermal investigations of a nest of the stingless bee Tetragonisca angustula Illiger in Colombia. Thermochimica Acta, 458(1-2), 118–123. doi:10.1016/j.tca.2007.01.024
dc.relation175. Trianto, M., Purwanto, H. 2020. Morphological characteristics and morphometrics of Stingless Bees (Hymenoptera: Meliponini) in Yogyakarta, Indonesia. Biodiversitas 21(6): 2619-2628. https://doi.org/10.13057/biodiv/d210633.
dc.relation176. Tukey, J. 1953. Multiple comparisons. Journal of the American Statistical Association, 48(263): 624-625.
dc.relation177. Veiga, J. C., Menezes, C., Venturieri, G. C., y Contrera, F. A. 2013. The bigger, the smaller: relationship between body size and food stores in the stingless bee Melipona flavolineata. Apidologie, 44(3), 324-333. DOI:10.1007/s13592-012-0183-4
dc.relation178. Virkar, P., Shrotriya, S., y Uniyal, V. P. 2014. Splitting nests: what decides eduction in stingless bees.
dc.relation179. Vollet-Neto, A., Fernando dos Santos, C., Rodrigues Santiago, L., de Araujo Alves, D., Pinheiro de Figueiredo, J., Nanzer, M., ... y Imperatriz-Fonseca, V. L. 2015. Diploid males of Scaptotrigona depilis are able to join reproductive aggregations (Apidae, Meliponini). Journal of Hymenoptera Research, (45): 125–130. Doi: DOI:10.3897/jhr.42.4769
dc.relation180. Vollet-Neto, A., Imperatriz-Fonseca, V. L., y Ratnieks, F. L. 2019. Queen execution, diploid males, and selection for and against polyandry in the Brazilian stingless bee Scaptotrigona depilis. The American Naturalist, 194(5): 725-735. DOI:10.1086/705393
dc.relation181. Wilgenbusch, J. C., y Swofford, D. 2003. Inferring evolutionary trees with PAUP. Current protocols in bioinformatics. (1): 6-4. Doi: https://doi.org/10.1002/0471250953.bi0604s00
dc.relation182. Whitman, D. W., y Agrawal, A. A. 2009. What is phenotypic plasticity and why is it important. Phenotypic plasticity of insects: Mechanisms and consequences. pp 1-63.
dc.relation183. Wray, J. C., Neame, L. A., y Elle, E. 2014. Floral resources, body size, and surrounding landscape influence bee community assemblages in oak‐savannah fragments. Ecological Entomology. 39(1). 83-93. Doi:https://doi.org/10.1111/een.12070
dc.relation184. Yu, S., Wang, Y., Li, X., Yu, F., & Li, W. (2017). The factors affecting the reproducibility of micro-volume DNA mass quantification in Nanodrop 2000 spectrophotometer. Optik. 145: 555-560.Doi: https://doi.org/10.1016/j.ijleo.2017.08.031
dc.relation185. Zanella, F. C. 2000. The bees of the Caatinga (Hymenoptera, Apoidea, Apiformes): a species list and comparative notes regarding their distribution. Apidologie, 31(5): 579-592. Doi: https://doi.org/10.1051/apido:2000148
dc.relation186. Zayed, A. 2009. Bee genetics and conservation. Apidologie, 40(3): 237-262. Doi: https://doi.org/10.1051/apido/2009026
dc.relation187. Zelditch, M.L., Swiderski, D.L., Sheets, H.D. & Fink, W.L. 2004. Geometric morphometrics for biologists. Elsevier Academic Press, London
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDiversidad morfológica y genética de Tetragonisca angustula (Hymenoptera: Apidae) en Cundinamarca, Colombia
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución