dc.contributorArango Isaza, Rafael Eduardo
dc.contributorMoreno Herrera, Claudia Ximena
dc.contributorSaldamando Benjumea, Clara Inés
dc.contributorBIOTECNOLOGÍA VEGETAL UNALMED - CIB y MiCROBIODIVERSIDAD Y BIOPROSPECCIÓN
dc.creatorCano-Calle, Daniela
dc.date.accessioned2020-11-06T14:57:11Z
dc.date.available2020-11-06T14:57:11Z
dc.date.created2020-11-06T14:57:11Z
dc.date.issued2020-10-06
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78594
dc.description.abstractThrips are considered insect pests that cause great economic losses in avocado, causing deformity in fruits, making them unfeasible for export. Some species of thrips are considered quarantine pests in the United States. On the other hand, the bacterial communities present in insects are known to play an important role in many crucial aspects of the life of their hosts, such as fitness, nutrition, development, protection against pathogens and survival in hostile environments. . In general, little is known about avocado thrips and the microbiota present in them. Therefore, the objective of this thesis was to study the molecular phylogeny and associated microbiota of thrips species (Thysanoptera: Thripidae), in commercial avocado (Persea americana Mill.) crops from eastern Antioquia. The thrips species present in the avocado were identified by morphological and molecular analysis based on partial sequences of data obtained from molecular DNA markers. The Cytochrome Oxidase I (COI) gene and the internal transcribed region (ITS). 2-parameter Kimura distances, haplotype networks and an approximation of the phylogeny of the thrips found in the avocado were performed with other sequences of thrips obtained from the sequence bank. 7 species of thrips are reported in avocado, Frankliniella gardeniae, F. gossypiana, F. panamensis, Microcephalothrips abdominalis, Thrips palmi, Scirtothrips hansoni and Liothrips perseae (Tubulifera). Two species of thrips T. simplex and T. trehernei were also found in the dandelion weed plant that is frequently found in avocado crops. The COI gene and the ITS region were useful tools to identify mostly thrips species except for F. gardeniae and F. gossypiana, which at the molecular level turned out to be the same genetic unit. Additionally, the microbiota present in avocado thrips in Antioquia was evaluated using dependent and independent culture methods. Bacterial isolates of individual and poles thrips were identified from macro and microscopic and molecular characterization by analysis of the inter-ribosomal region (ITS) and sequencing of the 16S RNAr and gyrase genes. For culture-independent methods Three thrips morphotypes were selected, DNA was extracted and microbial diversity present was analyzed by different molecular techniques, including amplification of the 16S rRNA gene region followed by time temperature gradient gel electrophoresis analysis (PCR-TTGE) and Next Generation Sequencing (NGS) using Miseq-Illumina technology. The culture-dependent results showed the presence of the Proteobacteria and Firmicutes phyla. The genera Bacillus, Serratia, Pantoea, Sphingomonas and Moraxella predominate. These results were corroborated by the results obtained by culture-independent methods. The TTGE revealed the presence of the phyla Proteobacteria, Firmicutes and Actinobacteria. Furthermore, a principal coordinate analysis showed differences in the microbiota between the three morphotypes of thrips: Scirtothrips hansoni (brown morphotype), Frankliniella (pale morphotype) y F. panamensis (dark morphotype). Likewise, a total of 641 unique OTUs were assigned, the richness showed to be greater in the brown morphotype, the data obtained suggest that there is small diversity of bacterial species in thrips species. The results indicated that the microbiota is composed of 6 phyla with a predominance of Proteobacteria (99%) followed by Cyanobacteria (37.81%), Firmicutes (7.48%), Deinococcus-Thermus (4.42%), Actinobacteria (3.23%) and Bacteroidetes (2.11 %). Significant bacterial genera were detected in the brown morphotype, such as the presence of the Wolbachia endosymbiont, and differences in the microbiota were observed between the morphotypes. In the brown morphotype associated with S. hansoni, Wolbachia prevailed (65-98%), for the pale morphotype of Frankliniella two genera Enterobacter (96.35%) and Rickettsia (46.04%) stood out, and in the dark morphotype of F. panamensis, Ehrlichia (96.13%) predominated. Principal Coordinate Analysis (PCoA) and Constrained Analysis of Principal coordinates (CAP) showed that the morphotype explains differences between the thrips microbiota 49.7% but did not show significant differences between the bacterial communities between the three morphotypes. (P> 0.05). On the other hand, in this investigation the natural infection and molecular identification of Wolbachia were detected in two morphotypes of natural thrips populations. The results showed 34.55% infection, and the presence of two Wolbachia supergroups A and B in thrips. Supergroup A present in the pale morphotype of Frankliniella and B in the brown morphotype of S. hansoni. The results suggest the presence of two new Wolbachia sequences in the two populations of thrips evaluated. In conclusion, these results allow us to elucidate the cultivable and non-cultivable microbiota of thrips, as well as the species of thrips present in avocado from eastern Antioquia. This will provide a baseline with information for future studies to clarify and complement the associated microorganisms, their interactions and the transmission dynamics of pathogens in the agronomic field and those bacteria with biotechnological activity.
dc.description.abstractLos trips se consideran insectos plagas que causan grandes pérdidas económicas en el aguacate, causando deformidad en las frutas, lo que las hace inviables para la exportación. Algunas especies de trips se consideran plagas cuarentenarias en los Estados Unidos. Por otro lado, se sabe que las comunidades bacterianas presentes en los insectos juegan un papel importante en muchos aspectos cruciales de la vida de sus hospederos, como el fitness, la nutrición, el desarrollo, la protección contra los patógenos y la supervivencia en entornos hostiles. En general, se sabe poco de los trips del aguacate y de la microbiota presente en ellos. Por lo tanto, como objetivo de esta tesis se planteo estudiar la filogenia molecular y microbiota asociada de las especies de trips (Thysanoptera: Thripidae), en cultivos comerciales de aguacate (Persea americana Mill.) del Oriente antioqueño. Se identificaron las especies de trips presentes en el aguacate mediante un análisis morfológico y molecular basado en secuencias parciales de datos obtenidos de marcadores moleculares de ADN. El gen Citocromo Oxidasa I (COI) y la región interna transcrita (ITS). Se realizaron distancias de Kimura 2-parametros, redes haplotipicas y una aproximación de la filogenia de los trips encontrados en el aguacate con otras secuencias de trips obtenidos del banco de secuencias. Se reportan 7 especies de trips en el aguacate, Frankliniella gardeniae, F. gossypiana, F. panamensis, Microcephalothrips abdominalis, Thrips palmi, Scirtothrips hansoni y Liothrips perseae (Tubulifera). También se encontró dos especies de trips T. simplex y T. trehernei en el arvense Diente de León planta que se encuentra con frecuencia en los cultivos de aguacate. El gen COI y la región ITS fueron herramientas útiles para identificar en su mayoría a las especies de trips excepto por F. gardeniae y F. gossypiana las cuales a nivel molecular resultaron ser las mismas unidad genética. Adicionalmente, se evaluó la microbiota presente en los trips de aguacate en Antioquia usando métodos dependientes e independientes de cultivo. Se identificaron aislados bacterianos de trips individuales y en pooles, a partir de la caracterización macro y microsopica y molecularmente por el análisis de la región inter-ribosomal (ITS) y la secuenciación de los genes RNAr 16S y girasa.Para los métodos cultivo-independiente se seleccionaron tres morfotipos de trips, se extrajo el DNA y se analizó la diversidad microbiana presente mediante diferentes técnicas moleculares, incluida la amplificación de la región del gen del RNAr 16S seguido por análisis de electroforesis en gel de gradiente de temperatura temporal (PCR-TTGE) y secuenciación de próxima generación (NGS) utilizando la tecnología Miseq-Illumina. Los resultados cultivo-dependiente mostraron la presencia de los filos Proteobacterias y Firmicutes. Con predominio de los géneros Bacillus, Serratia, Pantoea, Sphingomonas y Moraxella. Estos resultados se corroboraron por los resultados obtenidos por métodos cultivo-independeinte. El TTGE reveló la presencia de los filos Proteobacteria, Firmicutes y Actinobacteria. Además, un análisis de coordenadas principales mostró diferencias en la microbiota entre Scirtothrips hansoni (morfotipo café), Frankliniella (morfotipo pálido) y Frankliniella (morfotipo oscuro). Asimismo, se asignaron un total de 641 OTU únicas, la riqueza mostró ser mayor en S. hansoni (morfotipo café), los datos obtenidos sugieren que existe poca diversidad de especies de bacterias en las especies de trips. Los resultados indicaron que la microbiota está compuesta por 6 filos con predominio de Proteobacteria (99%) seguido de Cianobacteria (37.81%), Firmicutes (7.48%), Deinococcus-Thermus (4.42%), Actinobacteria (3.23%) y Bacteroidetes (2.11%). Se detectaron géneros bacterianos de importancia en el morfotipo café como la presencia del endosimbionte Wolbachia y se observó diferencias de la microbiota entre los morfotipos. En el morfotipo café asociado a S. hansoni prevaleció Wolbachia (65-98%), para el morfotipo pálido de Frankliniella sobresalió dos generos Enterobacter (96.35%) y Rickettsia (46.04%) y en el morfotipo oscuro de Frankliniella predominó Ehrlichia (96.13%). El análisis de coordenadas principales (PCoA) y de un análisis restringido de coordenadas principales (CAP, siglas en inglés) mostró que el morfotipo explica diferencias entre la microbiota de trips el 49.7% pero no presentó diferencias significativas entre las comunidades bacterianas entre los tres morfotipos (P > 0.05). Por otro lado, en esta investigación se detectó la infección natural e identificación molecular de Wolbachia en dos morfotipos poblaciones naturales de trips. Los resultados mostraron 34.55% de infección, y la presencia de dos supergrupos A y B de Wolbachia en trips. El supergrupo A presente en el morfotipo pálido de Frankliniella y el B en el morfotipo café de S. hansoni. Los resultados sugieren la presencia de dos nuevas secuencias de Wolbachia en las dos poblaciones evaluadas de trips. En conclusión, estos resultados permiten dilucidar la microbiota cultivable y no cultivable de trips así como también las especies de trips presentes en el aguacate del Oriente antioqueño. Lo cual suministrará una línea base con información para que en estudios futuros se logre esclarecer y complementar, los microrganismos asociados, sus interacciones y la dinámica de transmisión de agentes patógenos en el ambito agronómico y aquellas bacterias con actividad biotecnológica. Información que es clave en la implementación y desarrollo de nuevos productos biológicos que permitan generar planes de control biológico de trips.
dc.languagespa
dc.publisherMedellín - Ciencias - Doctorado en Biotecnología
dc.publisherEscuela de biociencias
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAltschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST : a new generation of protein database search programs. Oxford University Press, 25(17), 3389–3402.
dc.relationAmbika, S., & Rajagopal, R. (2018). Lumen anatomy and localization of Wolbachia sp. in the thrips, Plicothrips apicalis (Bagnall). Current Science, 115(7), 1297–1304. https://doi.org/doi: 10.18520/cs/v115/i7/1297-1304
dc.relationAmórtegui Ferro, I. (2001). El cultivo del aguacate: Módulo Educativo para el Desarrollo Tecnológico de la comunidad Rural.
dc.relationAn, R., Sreevatsan, S., & Grewal, P. S. (2008). Moraxella osloensis Gene Expression in the Slug Host Deroceras reticulatum. BMC Microbiology, 8(19), 1–11. https://doi.org/10.1186/1471-2180-8-19
dc.relationAnacafe. (2004). Cultivo de aguacate. Asociacion Nacional Del Cafe ANACAFE, 1–25.
dc.relationApprill, A., Mcnally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75(2), 129–137. https://doi.org/10.3354/ame01753
dc.relationArakaki, N., Miyoshi, T., & Noda, H. (2001). Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proceedings of the Royal Society B: Biological Sciences, 268(1471), 1011–1016. https://doi.org/10.1098/rspb.2001.1628
dc.relationAshworth, V. E., & Clegg, M. T. (2003). Microsatellite Markers in Avocado ( Persea americana Mill .): Genealogical Relationships Among Cultivated Avocado Genotypes. Journal of Heredity, 94(5), 407–415. https://doi.org/10.1093/jhered/esg076
dc.relationAsokan, R., Krishna Kumar, N. K., Kumar, V., & Ranganath, H. R. (2007). Molecular differences in the mitochondrial cytochrome oxidase I (mtCOI) gene and development of a species-specific marker for onion thrips, Thrips tabaci Lindeman, and melon thrips, T. palmi Karny (Thysanoptera: Thripidae), vectors of tospoviruses (Bunyav. Bulletin of Entomological Research, 97, 461–470. https://doi.org/10.1017/S0007485307005147
dc.relationAugustinos, A. A., Kyritsis, G. A., Papadopoulos, N. T., Abd-Alla, A. M. M., Cáceres, C., & Bourtzis, K. (2015). Exploitation of the medfly gut microbiota for the enhancement of sterile insect technique: Use of Enterobacter sp. in larval diet-based probiotic applications. PLoS ONE, 10(9), 1–17. https://doi.org/10.1371/journal.pone.0136459
dc.relationBaldo, L., Dunning H., J. C., Jolley, K. A., Bordenstein, S. R., Biber, S. A., Choudhury, R. R., Werren, J. H. (2006). Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology, 72(11), 7098–7110. https://doi.org/10.1128/AEM.00731-06
dc.relationBaldo, L., & Werren, J. H. (2007). Revisiting Wolbachia supergroup typing based on WSP: Spurious lineages and discordance with MLST. Current Microbiology, 55(1), 81–87. https://doi.org/10.1007/s00284-007-0055-8
dc.relationBandi, C., Anderson, T. J. C., Genchi, C., & Blaxter, M. L. (1998). Phylogeny of Wolbachia in filarial nematodes. Proceedings of the Royal Society B: Biological Sciences, 265(1413), 2407–2413. https://doi.org/10.1098/rspb.1998.0591
dc.relationBarak, H., Kumar, P., Zaritsky, A., Mendel, Z., Ment, D., Kushmaro, A., & Ben-dov, E. (2019). Diversity of Bacterial Biota in Capnodis tenebrionis (Coleoptera : Buprestidae) Larvae. Pathogens, 8, 1–9. https://doi.org/10.3390/pathogens8010004
dc.relationBarry, T., Colleran, G., Glennon, F., Dunican, L. K., & Gannon, F. (1991). The 16s / 23s ribosomal spacer region as a target for DNA probes to identify eubacteria service. Genome Res, 1–2. https://doi.org/10.1101/gr.1.2.149-a
dc.relationBethke, J., Dreistadt, S., & Varela, L. (2014). Tree squirrels - integrated pest management for home gardeners and landscape professionals. Pest Notes. University of California. Agriculture and Natural Resources, 1–8.
dc.relationBhandari, B. K., Glazer, I., & Coll, M. (2009). Tropentag 2009 Biophysical and Socio-economic Frame Conditions for the Sustainable Management of Natural Resources , University of Interactions between the omnivorous bug Orius laevigatus and the entomopathogenic nematode Steinernema feltiae , natural ene.
dc.relationBlumberg, B. J., Short, S. M., & Dimopoulos, G. (2016). Employing the Mosquito Microflora for Disease Control. In Genetic Control of Malaria and Dengue. https://doi.org/10.1016/B978-0-12-800246-9.00015-6
dc.relationBordenstein, S., & Rosengaus, R. B. (2005). Discovery of a novel Wolbachia supergroup in isoptera. Current Microbiology, 51(6), 393–398. https://doi.org/10.1007/s00284-005-0084-0
dc.relationBraig, H. R., Zhou, W., Dobson, S. L., & Neill, S. L. O. (1998). Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont Wolbachia pipientis. Journal of Bacteriology, 180(9), 2373–2378.
dc.relationBravo-Pérez, D., Santillán-Galicia, M. T., Johansen-Naime, R. M., González-Hernández, H., Segura-León, O. L., Ochoa-Martínez, D. L., & Guzman-Valencia, S. (2018). Species diversity of thrips (Thysanoptera) in selected avocado orchards from Mexico based on morphology and molecular data. Journal of Integrative Agriculture, 17(11), 2509–2517. https://doi.org/10.1016/S2095-3119(18)62044-1
dc.relationBroderick, N. A., Robinson, C. J., McMahon, M. D., Holt, J., Handelsman, J., & Raffa, K. F. (2009). Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biology, 7(1), 11. https://doi.org/10.1186/1741-7007-7-11
dc.relationBrunner, P. C., Chatzivassiliou, E. K., Katis, N. I., & Frey, J. E. (2004). Host-associated genetic differentiation in Thrips tabaci (Insecta; Thysanoptera), as determined from mtDNA sequence data. Heredity, 93, 364–370. https://doi.org/10.1038/sj.hdy.6800512
dc.relationBrunner, P. C., Fleming, C., & Frey, J. E. (2002). A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR-RFLP-based approach. Agricultural and Forest Entomology, 4(2), 127–136. https://doi.org/10.1046/j.1461-9563.2002.00132.x
dc.relationBrunner, P. C., & Frey, J. E. (2010). Habitat-specific population structure in native western flower thrips frankliniella occidentalis (Insecta, Thysanoptera). Journal of Evolutionary Biology, 23(4), 797–804. https://doi.org/10.1111/j.1420-9101.2010.01946.x
dc.relationBuckman, R. S., Mound, L. A., & Whiting, M. F. (2013). Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. Systematic Entomology, 38, 123–133. https://doi.org/10.1111/j.1365-3113.2012.00650.x
dc.relationBukin, Y. S., Galachyants, Y. P., Morozov, I. V, Bukin, S. V, Zakharenko, A. S., & Zemskaya, T. I. (2019). Data Descriptor: The effect of 16 S rRNA region choice on bacterial community metabarcoding results. Scientific Data, 6, 190007. https://doi.org/10.1038/sdata.2019.7
dc.relationBustillo, A. E. (2009). Evaluación de insecticidas quuímicos y biológicos para controlar Frankliniella occidentalis (Thysanoptera: Thripidae) en cultivos de espárragos. Revista Colombiana de Entomologia, 35(1), 12–17.
dc.relationCABI. (2015). Frankliniella occidentalis (western flower thrips). Retrieved from http://www.cabi.org/isc/datasheet/24426
dc.relationCalixto, C. L. (2005). Sección Morfologica, Comportamiento, Ecología, Evolución y Sistemática Trips del Suborden Terebrantia (Insecta: Thysanoptera) en la Sabana de Bogotá) (pp. 207–213). pp. 207–213.
dc.relationCamarinha-Silva, A., Jáuregui, R., Chaves-Moreno, D., Oxley, A. P. A., Schaumburg, F., Becker, K., … Pieper, D. H. (2014). Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Environmental Microbiology, 16(9), 2939–2952. https://doi.org/10.1111/1462-2920.12362
dc.relationCambero-campos, J., Johansen-Naime, R., García-Martínez, O., Cantu-Sifuentes, M., Cerna-Chavez, E., & Renata-Salazar, A. (2011). Especies Depredadoras de Trips (Thysanoptera) Asociadas a Huertas de Aguacate en Nayarit, México. Acta Zoológica Mexicana, 27(1), 115–121. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0065-17372011000100009&lng=es&nrm=iso
dc.relationCambero, O., Johansen, R., Retana, A., García, O., Cantú, M., & Carvajal, C. (2010). Thrips (Thysanoptera) del aguacate (Persea americana) en Nayarit, México. Revista Colombiana de Entomologia, 36(1), 47–51. Retrieved from http://www.scielo.org.co/pdf/rcen/v36n1/v36n1a09.pdf
dc.relationCameron, S. L. (2014). Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol, 59(October 2013), 95–117. https://doi.org/10.1146/annurev-ento-011613-162007
dc.relationCampos Rojas, E., Terrazas, T., & López-Mata, L. (2007). Persea ( avocados ) phylogenetic analysis based on morphological characters : hypothesis of species relationships. Genetic Resources and Crop Evolution, 54, 249–258. https://doi.org/10.1007/s10722-005-3808-x
dc.relationCañas-Gutiérrez, G. P., Alcaraz, L., Hormaza, J. I., Arango-Isaza, R. E., & Saldamando-Benjumea, C. I. (2019). Diversity of avocado (Persea americana mill.) cultivars from antioquia (Northeast Colombia) and comparison with a worldwide germplasm collection. Turkish Journal of Agriculture and Forestry, 43(4), 437–449. https://doi.org/10.3906/tar-1807-25
dc.relationCañas-Gutiérrez, G. P., Galindo-López, L. F., Arango-Isaza, R., & Saldamando Benjumea, C. I. (2015). Diversidad genética de cultivares de aguacate (Persea americana Mill) en Antioquia, Colombia. Agronomía Mesoamericana, 26(1), 129–143. https://doi.org/10.15517/am.v26i1.16936
dc.relationCao, Y., Fanning, S., Proos, S., Jordan, K., & Srikumar, S. (2017). A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Frontiers in Microbiology, 8(SEP), 1–16. https://doi.org/10.3389/fmicb.2017.01829
dc.relationCaporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F., Costello, E., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303
dc.relationCaragata, E. P., Rocha, M. N., Pereira, T. N., Mansur, S. B., Heverton, L., Id, C. D., & Id, L. A. M. (2019). Pathogen blocking in Wolbachia -infected Aedes aegypti is not affected by Zika and dengue virus co-infection. PLoS Neglected Tropical Diseases, 13(5), e0007443. https://doi.org/https://doi.org/10.1371/journal.pntd.0007443
dc.relationCardenas, E., & Corredor, D. (1993). Especies De Trips ( Thysanoptera : Thripidae ) Mas Comunes En Invernaderos De Flores De La Sabana De Bogota. Agronomía Colombiana, 10(2), 132–143.
dc.relationCarvajal, T. M., Hashimoto, K., Harnandika, R. K., Amalin, D. M., & Watanabe, K. (2019). Detection of Wolbachia in field‑collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasites & Vectors, 12, 361. https://doi.org/10.1186/s13071-019-3629-y
dc.relationCasiraghi, M., Bordenstein, S. R., Baldo, L., Lo, N., Beninati, T., Wernegreen, J. J., … Bandi, C. (2005). Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: Clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology, 151(12), 4015–4022. https://doi.org/10.1099/mic.0.28313-0
dc.relationCasiraghi, Maurizio, Bain, O., Guerrero, R., Martin, C., Pocacqua, V., Gardner, S. L., … Bandi, C. (2004). Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: Evidence for symbiont loss during evolution. International Journal for Parasitology, 34(2), 191–203. https://doi.org/10.1016/j.ijpara.2003.10.004
dc.relationCastañeda-Monsalve, V. A., Junca, H., García-Bonilla, E., Montoya-Campuzano, O. I., & Moreno-Herrera, C. X. (2019). Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus). Aquaculture, 512, 734325. https://doi.org/10.1016/j.aquaculture.2019.734325
dc.relationCawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-Based Biological Control of Plant Diseases. In M. Stoytcheva (Ed.), PESTICIDES IN THE MODERN WORLD – PESTS CONTROL AND PESTICIDES EXPOSURE (pp. 273–302). https://doi.org/10.5772/948
dc.relationChakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods, 69(2), 330–339. https://doi.org/10.1016/j.mimet.2007.02.005.A
dc.relationChampoux, J. J. (2001). DNA TOPOISOMERASES: Structure, Function, and Mechanism. Annu. Rev. Biochem, 70, 369–413. https://doi.org/10.1146/annurev.biochem.70.1.369
dc.relationChanbusarakum, L., & Ullman, D. (2008). Characterization of bacterial symbionts in Frankliniella occidentalis (Pergande), Western flower thrips. Journal of Invertebrate Pathology, 99(3), 318–325. https://doi.org/10.1016/j.jip.2008.09.001
dc.relationChao, A. (1984). Nonparametric Estimation of the Number of Classes in a Population. Scandinavian Journal of Statistics, 11(4), 265–270. Retrieved from http://www.jstor.org/stable/4615964
dc.relationChaudhary, N., Sharma, A. K., Agarwal, P., Gupta, A., & Sharma, V. (2015). 16S Classifier: A Tool for Fast and Accurate Taxonomic Classification of 16S rRNA Hypervariable Regions in Metagenomic Datasets. PLoS ONE, 10(1), e0116106. https://doi.org/10.1371/journal.pone.0116106
dc.relationChoudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants - With special reference to induced systemic resistance (ISR). Microbiological Research, 164(5), 493–513. https://doi.org/10.1016/j.micres.2008.08.007
dc.relationChua, K., Song, S., Yong, H., See-too, W.-S., Yin, W., & Chan, K.-G. (2018). Microbial Community Composition Reveals Spatial Variation and Distinctive Core Microbiome of the Weaver Ant Oecophylla smaragdina in Malaysia. Scientific Reports, 8, 1–11. https://doi.org/10.1038/s41598-018-29159-2
dc.relationCloyd, R. A. (2010). Western Flower Thrips Management on Greenhouse-Grown Crops.
dc.relationCloyd, R. A., & Sadof, C. S. (2011). Western Flower Thrips. Landscape and Ornamentals.
dc.relationCocolin, L., Mataragas, M., Bourdichon, F., Doulgeraki, A., Pilet, M. F., Jagadeesan, B., … Phister, T. (2018). Next generation microbiological risk assessment meta-omics: The next need for integration. International Journal of Food Microbiology, 287(March 2017), 10–17. https://doi.org/10.1016/j.ijfoodmicro.2017.11.008
dc.relationCole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., … Tiedje, J. M. (2009). The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, 141–145. https://doi.org/10.1093/nar/gkn879
dc.relationCoulibaly, Y. I., Dembele, B., Diallo, A. A., Lipner, E. M., Doumbia, S. S., Coulibaly, S. Y., … Klion, A. D. (2009). A randomized trial of doxycycline for mansonella perstans infection. New England Journal of Medicine, 361(15), 1448–1458. https://doi.org/10.1056/NEJMoa0900863
dc.relationCoutinho-Abreu, I. V., Zhu, K. Y., & Ramalho-Ortigao, M. (2011). Transgenesis and paratransgenesis to control insect-borne disease: Current status and future challenges. Parasitology International, 59(1), 1–8. https://doi.org/10.1016/j.parint.2009.10.002.Transgenesis
dc.relationCox, J., Ballweg, R., Taft, D. H., Velayutham, P., Haslam, D., & Porollo, A. (2017). A fast and robust protocol for metataxonomic analysis using RNAseq data. Microbiome, 5(7), 1–13. https://doi.org/10.1186/s40168-016-0219-5
dc.relationCrane, J. H., Balerdi, C. F., & Manguire, I. (2013). Avocado Growing in the Florida Home Landscape. Institute of Food and Agricultural Sciences, 1–6.
dc.relationCzarnetzki, A. B., & Tebbe, C. C. (2004). Detection and phylogenetic analysis of Wolbachia in Collembola. Environmental Microbiology, 6(1), 35–44. https://doi.org/10.1046/j.1462-2920.2003.00537.x
dc.relationD’Argenio, V., & Salvatore, F. (2015). The role of the gut microbiome in the healthy adult status. Clinica Chimica Acta, 451, 97–102. https://doi.org/10.1016/j.cca.2015.01.003
dc.relationDe Grazia, A., Marullo, R., & Moritz, G. (2016). Molecular diagnosis of native and quarantine pest thrips of southern European citrus orchards. Bulletin of Insectology, 69(1), 1–6.
dc.relationDe Vries, E., Breeuwer, J., Jacobs, G., & Mollema, C. (2001). The association of Western flower thrips, Frankliniella occidentalis, with a near Erwinia species gut bacteria: transient or permanent? Journal of Invertebrate Pathology, 77(2), 120–128. https://doi.org/10.1006/jipa.2001.5009
dc.relationDe Vries, E., Jacobs, G., & Breeuwer, J. (2001). Growth and transmission of gut bacteria in the western flower thrips, Frankliniella occidentalis. In Symbiosis of thrips and gut bacteria. Retrieved from http://dare.uva.nl/record/1/317961
dc.relationDe Vries, E.J., Van Der Wurff, A. G., Jacobs, G., & Breeuwer, J. . (2008). Onion thrips , Thrips tabaci , have gut bacteria that are closely related to the symbionts of the western flower thrips , Frankliniella occidentalis. Insect Science, 8, 11. Retrieved from insectscience.org/8.23
dc.relationDe Vries, Egbert Jacob. (2010). Symbiosis Symbiosis of of thrips and gut bacteria (Universiteit van Amsterdam). Retrieved from http://dare.uva.nl/document/2/72571
dc.relationDe Vries, Egbert, Van de Wetering, F., Van der Hoek, M., Jacobs, G., & Breeuwer, J. (2012). Symbiotic bacteria (Erwinia sp.) in the gut of Frankliniella occidentalis (Thysanoptera: Thripidae) do not affect its ability to transmit tospovirus. European Journal of Entomology, 109(2), 261–266.
dc.relationDe Vries, Jacobs, G., Sabelis, M., Menken, S., & Breeuwer, J. (2004). Diet-dependent effects of gut bacteria on their insect host : the symbiosis of Erwinia sp . and western flower thrips. Proc. R. Soc. Lond. B, 271, 2171–2178. https://doi.org/10.1098/rspb.2004.2817
dc.relationDepartment of Agriculture forestry and Fisharies. (2012). Avocado (pp. 1–73). pp. 1–73.
dc.relationDiaz-Grisales, V., Caicedo-Vallejo, M., & Carabalí-Muñoz, A. (2017). CICLO DE VIDA Y DESCRIPCIÓN MORFOLÓGICA DE HEILIPUS LAURI BOHEMAN ( COLEOPTERA : CURCULIONIDAE ) EN COLOMBIA LIFE CYCLE AND MORPHOLOGICAL DESCRIPTION OF HEILIPUS LAURI BOHEMAN ( COLEOPTERA : CURCULIONIDAE ) IN COLOMBIA. Acta Zoológica Mexicana, 33(2), 231–242.
dc.relationDickey, A. M., Trease, A. J., Jara-Cavieres, A., Kumar, V., Christenson, M. K., Potluri, L. P., … Osborne, L. S. (2014). Estimating bacterial diversity in Scirtothrips dorsalis (Thysanoptera: Thripidae) via next generation sequencing. Florida Entomologist, 97(2), 362–366. https://doi.org/10.1896/054.097.0204
dc.relationDillon, R. J., & Dillon, V. M. (2004). THE GUT BACTERIA OF INSECTS: Nonpathogenic Interactions. Annual Review of Entomology, 49(1), 71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416
dc.relationDing, T., Chi, H., Gökçe, A., Gao, Y., & Zhang, B. (2018). Demographic analysis of arrhenotokous parthenogenesis and bisexual reproduction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Scientific Reports, 8, 3346. https://doi.org/10.1038/s41598-018-21689-z
dc.relationDISPLAYR. (n.d.). Retrieved April 15, 2020, from https://www.displayr.com/
dc.relationDouglas, A. E. (2009). The microbial dimension in insect nutritional ecology. Functional Ecology, 23(1), 38–47. https://doi.org/10.1111/j.1365-2435.2008.01442.x
dc.relationDouglas, Angela E. (2015). Multiorganismal Insects: Diversity and Function of Resident Microorganisms. Annual Review of Entomology, 60(1), 17–34. https://doi.org/10.1146/annurev-ento-010814-020822
dc.relationDreistadt, S. H., Phillips, P. A., & O’Donnell, C. A. (2007). Thrips. Integrated Pest Management for Home Gardeners and Landscape Professionals. Pest Notes. University of California. Agriculture and Natural Resources, (March), 1–7. Retrieved from http://www.ipm.ucdavis.edu/PDF/PESTNOTES/pncoyote.pdf
dc.relationDriutti, A. (1999). Control biológico natural de trips, Thrips tabaci Lindeman 1888 (Thysanoptera: Thripidae) por sírfidos predadores en cultivo de cebolla (Allium cepa L.) por el cultivo de borduras y/o entrelineas.1.
dc.relationDuron, O., & Hurst, G. D. (2013). Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Biology, 11, 45. https://doi.org/10.1186/1741-7007-11-45
dc.relationDutta, B., Barman, A. K., Srinivasan, R., Avci, U., Ullman, D., Langston Jr., D. B., & Gitaitis, R. (2014). Transmission of Pantoea ananatis and Pantoea agglomerans causal agents of center rot of onion (Allium cepa L.) by onion thrips (Thrips tabaci Lindeman). Phytopathology, (17), 140218150216004. https://doi.org/10.1094/PHYTO-07-13-0199-R
dc.relationEcheverri Florez, Fernando Loaiza Marín, C. E., & Cano Ortiz, M. del P. (2004). Reconocimiento e identificación de trips fitófagos (Thysanoptera: Thripidae) y depredadores (Thysanoptera: Phlaeothripidae) asociados a cultivos comerciales de aguacate Persea spp. en los departamentos de Caldas y Risaralda (Colombia). Revista Facultad Nacional de Agronomía Medellín, 57(1), 2178–2189. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-28472004000100003&lng=en&nrm=iso
dc.relationEdgar, R. C. (2004). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113. https://doi.org/10.1186/1471-2105-5-113
dc.relationEleftherianos, I., Yadav, S., Kenney, E., Cooper, D., Ozakman, Y., & Patrnogic, J. (2017). Role of Endosymbionts in Insect-Parasitic Nematode Interactions. Trends in Parasitology, xx, 1–15. https://doi.org/10.1016/j.pt.2017.10.004
dc.relationEngel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, Vol. 37. https://doi.org/10.1111/1574-6976.12025
dc.relationEspejo, R. T., Feijóo, C. G., Romero, J., & Vásquez, M. (1998). PACE analysis of the heteroduplexes formed between PCR-amplified 16S rRNA genes: Estimation of sequence similarity and rDNA complexity. Microbiology, 144(6), 1611–1617. https://doi.org/10.1099/00221287-144-6-1611
dc.relationExcoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 47–50. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.relationFacey, P. D., Méric, G., Hitchings, M. D., Pachebat, J. A., Hegarty, M. J., Chen, X., … Del Sol, R. (2015). Draft genomes, phylogenetic reconstruction, and comparative genomics of two novel cohabiting bacterial symbionts isolated from Frankliniella occidentalis. Genome Biology and Evolution, 7(8), 2188–2202. https://doi.org/10.1093/gbe/evv136
dc.relationFAO. (2018). Database FAOSTAT. Retrieved February 3, 2019, from http://www.fao.org/faostat/es/#data/QC
dc.relationFolmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299. https://doi.org/10.1371/journal.pone.0013102
dc.relationFrey, J. E., & Frey, B. (2004). Origin of intra-individual variation in PCR-amplified mitochondrial cytochrome oxidade I of Thrips tabaci (Thysanoptera: Thripidae): Mitochondrial heteroplasmy or nuclear integration? Hereditas, 140(2), 92–98. https://doi.org/10.1111/j.1601-5223.2004.01748.x
dc.relationGallego, C. M., Mora, C. M., Guarín, J. H., & Madrigal, A. (2002). Evaluación en campo del potencial de hongos entomopatógenos controladores de Thrips palme KARNY (Thysanoptera: Thripidae).
dc.relationGawande, S. J., Anandhan, S., Ingle, A., Roylawar, P., Khandagale, K., Gawai, T., … Singh, M. (2019). Microbiome profiling of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae ). PLoS ONE, 14(9), e0223281. https://doi.org/https://doi.org/10.1371/ journal.pone.0223281
dc.relationGenkai-Kato, M., & Yamamura, N. (1999). Evolution of mutualistic symbiosis without vertical transmission. Theoretical Population Biology, 55(3), 309–323. https://doi.org/10.1006/tpbi.1998.1407
dc.relationGill, H. K., Garg, H., Gill, A. K., Gillett-kaufman, J. L., & Nault, B. A. (2015). Onion Thrips (Thysanoptera: Thripidae) Biology, Ecology, and Management in Onion Production Systems. Journal of Integrated Pest Management, 6(1), 6. https://doi.org/10.1093/jipm/pmv006
dc.relationGoldenberger, D., Perschil, I., Ritzler, M., & Altwegg, M. (1995). A Simple “Universal” DNA Extraction Procedure Using SDS and Proteinase K is Compatible with direct PCR amplification. PCR Methods and Applications, 4(6), 368–370. https://doi.org/10.1101/gr.4.6.368
dc.relationGomez, A. M., Yannarell, A. C., Sims, G. K., Cadavid-Restrepo, G., & Moreno Herrera, C. X. (2011). Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biology and Biochemistry, 43, 1275–1284. https://doi.org/10.1016/j.soilbio.2011.02.018
dc.relationGonzález-Herrera, A. (2003). Artropodos Asociados Al Cultivo Del Aguacate ( Per- Sea Americana Mill .) En Costa Rica. In Proceedings V World Avocado Congress.
dc.relationGorham, C. H., Fang, Q. Q., & Durden, L. A. (2003). Wolbachia Endosymbionts in Fleas (Siphonaptera). Journal of Parasitology, 89(2), 283–289. https://doi.org/10.1645/0022-3395(2003)089[0283:weifs]2.0.co;2
dc.relationGranadillo, J. (2014). Integrated Pest Management of Western Flower Thrips. 32.
dc.relationGranados, W., & Valencia, J. (2018). Cadena de aguacate. Indicadores e Instrumentos. Retrieved from https://sioc.minagricultura.gov.co/Aguacate/Documentos/2018-08-30 Cifras Sectoriales.pdf
dc.relationGürsoy, O., & Can, M. (2019). Hypervariable Regions in 16S rRNA Genes for the Taxonomic Classification. Southeast Europe Journal of Soft Computing Vol.8, 8(1), 23–26. https://doi.org/http://dx.doi.org/10.21533/scjournal.v8i1.171
dc.relationGürtler, V., & Stanisich, V. (1996). New approaches to typing and identification of bacteria using the 16s-23s rDNA spacer region. Microbiology, 142, 3–16.
dc.relationHajibabaei, M., Singer, G. A. C., Hebert, P. D. N., & Hickey, D. A. (2007). DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23(4), 167–172. https://doi.org/10.1016/j.tig.2007.02.001
dc.relationHammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST : Paleontological Statistics Software Package for Education and Data Analysis PAST : PALEONTOLOGICAL STATISTICS SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS Even a cursory glance at the recent paleontological literature should convince anyone tha. Palaeontologia Electronica, 4(1), 1–9.
dc.relationHandelsman, J. (2004). Metagenomics : Application of Genomics to Uncultured Microorganisms. Microbiology and Molecular Biology Reviews, 68(4), 669–685. https://doi.org/10.1128/MBR.68.4.669
dc.relationHansen, E. A., Funderburk, J. O. E. E., Reitz, S. R., Ramachandran, S., Eger, J. O. E. E., & Mcauslane, H. (2003). Within-Plant Distribution of Frankliniella species ( Thysanoptera : Thripidae ) and Orius insidiosus ( Heteroptera : Anthocoridae ) in Field Pepper.
dc.relationHara, A., Mau, R., Heu, R., Jacobsen, C., & Niino-DuPonte, R. (2002). Damage to Banana and Ornamentals in Hawaii. Tropical Agriculture, (June), 8–11.
dc.relationHebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences / The Royal Society, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218
dc.relationHebert, P. D. N., Ratnasingham, S., & Jeremy, R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B, 270, S96–S99. https://doi.org/10.1098/rsbl.2003.0025
dc.relationHebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of Birds through DNA Barcodes. PLoS Biology, 2(10), e312. https://doi.org/10.1371/journal.pbio.0020312
dc.relationHedges, L. M., Brownlie, J. C., O’Neill, S. L., & Johnson, K. N. (2008). Wolbachia and virus protection in insects. Science, 322(5902), 702. https://doi.org/10.1126/science.1162418
dc.relationHilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A., & Werren, J. H. (2008). How many species are infected with Wolbachia?- a statistical analysis of current data. FEMS Microbiology Letters, 281, 215–220. https://doi.org/10.1111/j.1574-6968.2008.01110.x
dc.relationHoddle, M. (2013). Applied Biological Control Research_ Biological Control of Western Flower Thrips. Retrieved from University of California website: http://biocontrol.ucr.edu/wft.html
dc.relationHoddle, M., & Mound, L. (2003). The Genus Scirtothrips In Australia (Insecta, Thysanoptera, Thripidae). Zootaxa, (268), 1–40. https://doi.org/10.11646/zootaxa.268.1.1
dc.relationHoy, M. A. (1994). Insect Molecular Genetics (Academic P).
dc.relationHuang, S., & Zhang, H. (2013). The Impact of Environmental Heterogeneity and Life Stage on the Hindgut Microbiota of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae ). PLoS ONE, 8(2), e57169. https://doi.org/10.1371/journal.pone.0057169
dc.relationIftikhar, R., Ashfaq, M., Rasool, A., & Hebert, P. D. N. (2016). DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes. PLoS ONE, 11(1), e0146014. https://doi.org/10.1371/journal.pone.0146014
dc.relationInstituto Colombiano de Agricultura (ICA). (2012). Manejo fitosanitario del cultivo del aguacate (Persea americana Mill.). Medidas para la temporada invernal. Línea Agrícola, 1, 73.
dc.relationIsh-Am, G. (2004). Avocado pollination basics, a short review. 2° Seminario Internacional de Paltos, 1–10.
dc.relationIsh-Am, Gad, & Eisikowitch, D. (1993). The behaviour of honey bees (Apis mellifera) visiting avocado (Persea americana) flowers and their contribution to its pollination. Journal of Apicultural Research, 32(3–4), 175–186. https://doi.org/10.1080/00218839.1993.11101303
dc.relationIzzo, T., Pinent, S., & Mound, L. A. (2002). AULACOTHRIPS DICTYOTUS ( HETEROTHRIPIDAE ), THE FIRST ECTOPARASITIC THRIPS ( THYSANOPTERA ). Scientific Notes, pp. 281–283.
dc.relationJacob, T. K., D’silva, S., Senthil Kumar, C. M., Devasahayam, S., Rajalakshmi, V., Sujeesh, E. S., … Abraham, S. (2014). Single strain infection of adult and larval cardamom thrips (Sciothrips cardamomi) by Wolbachia subgroup Con belonging to supergroup B in India. Invertebrate Reproduction and Development, 59(1), 1–8. https://doi.org/10.1080/07924259.2014.970237
dc.relationJanssen, P. H. (2006). Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes. Applied and Environmental Microbiology, 72(3), 1719–1728. https://doi.org/10.1128/AEM.72.3.1719
dc.relationJardón Barbolla, L., Alavez Gómez, V., Méndez, V., Gaona, A., Damián Domínguez, M., Piñero, D., … Wegier, A. L. (2013). Análisis para la determinación de los centros de origen, domesticación y diversidad genética del género Persea y la especie Persea americana (aguacate).
dc.relationJeffries, C. L., & Walker, T. (2016). Wolbachia Biocontrol Strategies for Arboviral Diseases and the Potential Influence of Resident Wolbachia Strains in Mosquitoes. Current Tropical Medicine Reports, 3(1), 20–25. https://doi.org/10.1007/s40475-016-0066-2
dc.relationJones, A., Mason, C., Felton, G., & Hoover, K. (2019). Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-39163-9
dc.relationKaczmarczyk, A., Kucharczyk, H., Kucharczyk, M., Kapusta, P., Sell, J., & Zielińska, S. (2018). First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis. Scientific Reports, 8(1), 14376. https://doi.org/10.1038/s41598-018-32747-x
dc.relationKadirvel, P., Srinivasan, R., Hsu, Y.-C., Su, F.-C., & De La Peña, R. (2013). Application of cytochrome oxidase I sequences for phylogenetic analysis and identification of thrips species occurring on vegetable crops. Journal of Economic Entomology, 106(1), 408–418. https://doi.org/10.1603/EC12119
dc.relationKaibara, F., Liyama, K., Chieda, Y., Lee, J. M., Kusakabe, T., Yasunaga-aoki, C., & Shimizu, S. (2012). Construction of serralysin-like metalloprotease-deficient mutants of Serratia liquefaciens and their virulence in the silkworm , Bombyx mori. Journal of Insect Biotechnology and Sericologynsect Biotechnology and Sericology, 81, 55–61.
dc.relationKarami, M., Moosa-Kazemi, S. H., Oshaghi, M. A., Vatandoost, H., Sedaghat, M. M., Rajabnia, R., … Ferdosi-Shahandashti, E. (2016). Wolbachia endobacteria in natural populations of Culex pipiens of Iran and its phylogenetic congruence. Journal of Arthropod-Borne Diseases, 10(3), 347–363.
dc.relationKikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., & Fukatsu, T. (2012). Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Sciences, 109(22), 8618–8622. https://doi.org/10.1073/pnas.1200231109
dc.relationKim, B. R., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K. H., … Isaacson, R. E. (2017). Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27(12), 2089–2093. https://doi.org/10.4014/jmb.1709.09027
dc.relationKostiainen, T. S., & Hoy, M. A. (1996). The Phytoseiidae: As Biological Control Agents of Pest Mites and Insects. 10(5), 617–623.
dc.relationKrishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J., & Gunasekaran, P. (2014). Insect gut microbiome - An unexploited reserve for biotechnological application. Asian Pacific Journal of Tropical Biomedicine, 4, S16–S21. https://doi.org/10.12980/APJTB.4.2014C95
dc.relationKulski, J. (2015). Next-Generation Sequencing — An Overview of the History, Tools, and “Omic” Applications. In J. Kulski (Ed.), Next Generation Sequencing - Advances, Applications and Challenges. https://doi.org/DOI: 10.5772/61964
dc.relationKumar, D., & Kim, J. (2017). Sphingomonas olei sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 67, 2731–2738. https://doi.org/10.1099/ijsem.0.002010
dc.relationKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
dc.relationKumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
dc.relationKumm, S., & Moritz, G. (2008). First detection of Wolbachia in arrhenotokous populations of thrips species (Thysanoptera: Thripidae and Phlaeothripidae) and its role in reproduction. Environmental Entomology, 37(6), 1422–1428. https://doi.org/10.1603/0046-225X-37.6.1422
dc.relationKuriakose, J. A., Miyashiro, S., Luo, T., Zhu, B., & McBride, J. W. (2011). Ehrlichia chaffeensis transcriptome in mammalian and arthropod hosts reveals differential gene expression and post transcriptional regulation. PLoS ONE, 6(9), e24136. https://doi.org/10.1371/journal.pone.0024136
dc.relationKyritsis, G. A., Augustinos, A. A., Ntougias, S., Papadopoulos, N. T., Bourtzis, K., & Cáceres, C. (2019). Enterobacter sp. AA26 gut symbiont as a protein source for Mediterranean fruit fly mass-rearing and sterile insect technique applications. BMC Microbiology, 19(Suppl 1), 1–15. https://doi.org/10.1186/s12866-019-1651-z
dc.relationLederberg, J., & McCray, A. T. (2001). ’ Ome Sweet ’ Omics-- A Genealogical Treasury of Words. The Scientist, 15(7), 8.
dc.relationLefoulon, E., Bain, O., Makepeace, B. L., D’Haese, C., Uni, S., Martin, C., & Gavotte, L. (2016). Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ, 2016(3), 1–30. https://doi.org/10.7717/peerj.1840
dc.relationLemos, L. N., Fulthorpe, R. R., Triplett, E. W., & Roesch, L. F. W. (2011). Rethinking microbial diversity analysis in the high throughput sequencing era. Journal of Microbiological Methods, 86(1), 42–51. https://doi.org/10.1016/j.mimet.2011.03.014
dc.relationLeung, E. T., Noronha, R., Mirza, A., Shenwai, R., & Mpatziakas, A. (2018). ShinyDiversity - Understanding Alpha and Beta Diversity through Interactive Visualizations [version 1; peer review: 1 approved, 1 approved with reservations]. F1000Research, 7, 479. https://doi.org/https://doi.org/10.12688/f1000research.14217.1
dc.relationLiberti, J., & Engel, P. (2020). The gut microbiota - brain axis of insects. Current Opinion in Insect Science, 39, 6–13. https://doi.org/10.1016/j.cois.2020.01.004
dc.relationLibrado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187
dc.relationLiu, H., Li, H., Song, F., Gu, W., Feng, J., Cai, W., & Shao, R. (2017). Novel insights into mitochondrial gene rearrangement in thrips (Insecta: Thysanoptera) from the grass thrips, Anaphothrips obscurus. Scientific Reports, 7, 4284. https://doi.org/10.1038/s41598-017-04617-5
dc.relationLo, N., Casiraghi, M., Salati, E., Bazzochi, C., & Bandi, C. (2002). How Many Wolbachia Supergroups Exist? Mol Biol Evo, 19(3), 341–346. https://doi.org/10.1093/oxfordjournals.molbev.a004087
dc.relationLopes da Silva, A., Fontoura da Silva, N., Pires, L. L., Ferreira, H., Braz, V., & Dos Santos, L. (2003). EFICIÊNCIA AGRONÔMICA DE INSETICIDAS NO CONTROLE DO Thrips tabaci LIND ., 1888 ( THYSANOPTERA , THRIPIDAE ) NA CULTURA DO ALHO 1. Pesquisa Agropecária Tropical, 33(1), 39–42.
dc.relationLozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nat Methods, 489, 220–230. https://doi.org/10.1038/nature11550
dc.relationMaldonado Zamora, F. I., Ramírez Dávila, J. F., Rubí Arriaga, M., Antonio Némiga, X., & Lara Díaz, A. V. (2017). Distribución espacial de trips en aguacate en Coatepec Harinas, Estado de México. Revista Mexicana de Ciencias Agrícolas, 7(4), 845–856. https://doi.org/10.29312/remexca.v7i4.259
dc.relationMarchesi, J. R., & Ravel, J. (2015). The vocabulary of microbiome research : a proposal. Microbiome, 3, 1–3. https://doi.org/10.1186/s40168-015-0094-5
dc.relationMartin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4 : Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1(1), vev003. https://doi.org/10.1093/ve/vev003
dc.relationMartin, J. E. (comp. . (1977). The insects and arachnids of Canada. Part 1. Collecting, preparing, and preserving insects, mites and spiders. Kromar Printing Ltd. Québec.
dc.relationMarullo, R. (2009). Host-plant ranges and pest potential: habits of some thrips species in areas of southern Italy. Bulletin of Insectology, 62(2), 253–255.
dc.relationMason, K. L., Stepien, T. a, Blum, J. E., Holt, J. F., Labbe, N. H., Rush, J. S., & Raffa, K. F. (2011). From Commensal to Pathogen: Translocation of. MBio, 2(3), 1–7. https://doi.org/10.1128/mBio.00065-11.Editor
dc.relationMcMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217
dc.relationMeyer, C. P., & Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology, 3(12), e422. https://doi.org/10.1371/journal.pbio.0030422
dc.relationMinisterio de Agricultura. (2018). Área, Producción y Rendimiento Nacional de aguacate. Retrieved February 3, 2019, from Agronet website: https://www.agronet.gov.co/Paginas/inicio2.aspx
dc.relationMinistry, B. C. (2006). Thrips - Biology & Control.
dc.relationMonje, B., Delgadillo, D., Gómez, J., & Varón, E. (2012). Manejo de Neohydatothrips signifer Priesner (Thysanoptera: Thripidae) en maracuyá (Passiflora edulis f. flavicarpa Degener) en el departamento del Huila (Colombia). Ciencia Y Tecnología Agropecuaria, 13(1), 21–30. https://doi.org/10.21930/rcta.vol13_num1_art:236
dc.relationMoreno, C. X., Moy, F., Daniels, T. J., Godfrey, H. P., & Cabello, F. C. (2006). Molecular analysis of microbial communities identified in different developmental stages of Ixodes scapularis ticks from Westchester and Dutchess Counties, New York. Environmental Microbiology, 8(5), 761–772. https://doi.org/10.1111/j.1462-2920.2005.00955.x
dc.relationMoritz, C., & Cicero, C. (2004). DNA barcoding: Promise and pitfalls. PLoS Biology, 2, e354. https://doi.org/10.1371/journal.pbio.0020354
dc.relationMoritz, G., Paulsen, M., Delker, C., Picl, S., & Kumm, S. (2002). Identification of thrips using ITS-RFLP analysis. Thrips and Tospoviruses: Proceedings of the 7Th International Symposium on Thysanoptera, 365–367.
dc.relationMorse, J, & Hoddle, M. (2006). Invasion Biology of Thrips. Annual Review of Entomology, 51(1), 67–89. https://doi.org/10.1146/annurev.ento.51.110104.151044
dc.relationMorse, Joseph, & Grafton-cardwell, B. (2012). Management of citrus thrips to reduce the evolution of resistance. (April).
dc.relationMouden, S., Sarmiento, K. F., Klinkhamer, P., & Leiss, K. (2017). Integrated pest management in western flower thrips: past, present and future. Pest Management Science, 73, 813–822. https://doi.org/10.1002/ps.4531
dc.relationMound, L. (2005). THYSANOPTERA : Diversity and Interactions. Annual Review of Entomology, 50, 247–269. https://doi.org/10.1146/annurev.ento.49.061802.123318
dc.relationMound, L. A., Nielsen, M., & Hastings, A. (2017). Thysanoptera Aotearoa – Thrips of New Zealand. Retrieved March 3, 2020, from Lucidcentral.org, Identic Pty Ltd website: https://keys.lucidcentral.org/keys/v3/nz_thrips/authors.html
dc.relationMound, L., & Hoddle, M. (2016). The Scirtothrips perseae species-group (Thysanoptera), with one new species from avocado, Persea americana. Zootaxa, 4079(3), 388–392. https://doi.org/http://doi.org/10.11646/zootaxa.4079.3.7
dc.relationMound, L., & Teulon, D. (1995). Thysanoptera as Phytophagous Opportunist. Thrips Biology and Management, 276, 3–19. https://doi.org/10.1007/978-1-4899-1409-5
dc.relationMound, Laurence A., & Marullo, R. (1996). The thrips of central and south America: An introduction (Insecta: Thysanoptera). Memoirs on Entomology, International (V. Upta, Ed.). https://doi.org/10.2307/3495826
dc.relationMound, Laurence A. (2013). Homologies and Host-Plant Specificity : Recurrent Problems in the Study of Thrips. Florida Entomologist, 96(2), 318–322.
dc.relationMuyzer, G. (1999). DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2(3), 317–322. https://doi.org/10.1016/S1369-5274(99)80055-1
dc.relationNakahara, S. (1991). Systematics of Thysanoptera, Pear thrips and other economic species. In B. Parker, M. Skinner, Lewis, & Trevor (Eds.), Towards Understanding Thysanoptera (pp. 41–59). U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station.
dc.relationNavas-molina, J. A., Peralta-sánchez, J. M., González, A., McMurdie, P., Vasquez-Baeza, Y., Xu, Z., … Knight, R. (2013). Advancing Our Understanding of the Human Microbiome Using QIIME. Methods in Enzimology, 531, 371–444. https://doi.org/10.1016/B978-0-12-407863-5.00019-8
dc.relationNeelakanta, G., Sultana, H., Fish, D., Anderson, J. F., & Fikrig, E. (2010). Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. Journal of Clinical Investigation, 120(9), 3179–3190. https://doi.org/10.1172/JCI42868DS1
dc.relationNguyen, D. T., Morrow, J. L., Spooner-Hart, R. N., & Riegler, M. (2017). Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont co-infections in haplodiploid thrips populations. Evolution, 71(4), 995–1008. https://doi.org/10.1111/evo.13197
dc.relationNguyen, D. T., Spooner-hart, R. N., & Riegler, M. (2015). Polyploidy versus endosymbionts in obligately thelytokous thrips. BMC Evolutionary Biology, 15(23), 1–12. https://doi.org/10.1186/s12862-015-0304-6
dc.relationOsorio, C. R., Collins, M. D., Romalde, J. L., & Toranzo, A. E. (2005). Variation in 16S-23S rRNA Intergenic Spacer Regions in Photobacterium damselae: a Mosaic-Like Structure. Applied and Environmental Microbiology, 71(2), 636–645. https://doi.org/10.1128/AEM.71.2.636
dc.relationPaddock, C. D., & Childs, J. E. (2003). Ehrlichia chaffeensis : a Prototypical Emerging Pathogen. Clinical Microbiology Reviews, 16(1), 37–64. https://doi.org/10.1128/CMR.16.1.37-64.2003
dc.relationPaliy, O., & Shankar, V. (2016). Application of multivariate statistical techniques in microbial ecology. Molecular Ecology, 25(5), 1032–1057. https://doi.org/10.1111/mec.13536
dc.relationParada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403–1414. https://doi.org/10.1111/1462-2920.13023
dc.relationParkinson, N., Aritua, V., Heeney, J., Cowie, C., Bew, J., & Stead, D. (2007). Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. International Journal of Systematic and Evolutionary Microbiology, 57(12), 2881–2887. https://doi.org/10.1099/ijs.0.65220-0
dc.relationParkinson, N., Cowie, C., Heeney, J., & Stead, D. (2009). Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. International Journal of Systematic and Evolutionary Microbiology, 59(2), 264–274. https://doi.org/10.1099/ijs.0.65825-0
dc.relationPeeters, K., & Willems, A. (2011). The gyrB gene is a useful phylogenetic marker forexploring the diversity of Flavobacterium strains isolated from terrestrial and aquatic habitats in Antarctica. FEMS Microbiology Letters, 321, 130–140. https://doi.org/10.1111/j.1574-6968.2011.02326.x
dc.relationPérez-Jaramillo, J. E., Carrión, V. J., Bosse, M., Ferrão, L. F. V., De Hollander, M., Garcia, A. A. F., … Raaijmakers, J. M. (2017). Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME Journal, 11(10), 2244–2257. https://doi.org/10.1038/ismej.2017.85
dc.relationPham, V. H. T., & Kim, J. (2016). Improvement for Isolation of Soil Bacteria by Using Common Culture Media. Journal of Pure and Applied Microbiology, 10(1), 1–11.
dc.relationPileggi, M., Alvim, S., Pileggi, V., Olchanheski, R., Garbugio, P., Munoz, A. M., … Sadowsky, M. (2012). Isolation of mesotrione - degrading bacteria from aquatic environments in Brazil. Chemosphere, 86(11), 1127–1132. https://doi.org/10.1016/j.chemosphere.2011.12.041
dc.relationPowell, C. M., Lopez Montiel, A., Beddingfield, B., Hanson, J. D., & Bextine, B. R. (2015). Comparison of bacterial communities of flower thrips (Frankliniella tritici) and potato psyllid (Bactericera cockerelli). Southwestern Entomologist, 40(4), 765–773. https://doi.org/10.3958/059.040.0404
dc.relationPuillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
dc.relationRamirez-Ahuja, M. de L., Gómez-Govea, M. A., Lugo-Trampe, A., Borrego-Soto, G., Delgado-Enciso, I., Ponce-Garcia, G., … Rodriguez-Sanchez, I. R. (2019). Microbiota of Telenomus tridentatus ( Platygastroidea : Scelionidae ): An unwanted parasitoid. Applied Entomology, (May), 1–8. https://doi.org/10.1111/jen.12656
dc.relationRebijith, K. B., Asokan, R., Krishna, V., Ranjitha, H. H., Krishna Kumar, N. K., & Ramamurthy, V. V. (2014). DNA Barcoding and Elucidation of Cryptic Diversity in Thrips (Thysanoptera). Florida Entomologist, 97(4), 1328–1347. https://doi.org/10.1653/024.097.0407
dc.relationReece, R. J., & Maxwell, A. (1991). DNA Gyrase: Structure and Function. Critical Reviews in Biochemistry and Molecular Biology, 26(3–4), 335–375. https://doi.org/10.3109/10409239109114072
dc.relationReitz, S. R. (2009). Biology and Ecology of the Western Flower Thrips (Thysanoptera: Thripidae): The Making of a Pest. Florida Entomologist, 92(1), 7–13. https://doi.org/10.1653/024.092.0102
dc.relationRendón-Anaya, M., Ibarra-Laclette, E., Méndez-Bravo, A., Lan, T., Zheng, C., Carretero-Paulet, L., … Herrera-Estrella, L. (2019). The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proceedings of the National Academy of Sciences of the United States of America, 116(34), 17081–17089. https://doi.org/10.1073/pnas.1822129116
dc.relationRestrepo-Quiroz, T., & Arango-Isaza, R. (2014). Aislamiento, identificación y evaluación de hongos entomopatógenos como posibles agentes de control de trips (Thysanoptera: Thripidae ) asociados a cultivos de aguacate (Persea americana Miller) (Universidad Nacional de Colombia). Retrieved from http://bdigital.unal.edu.co/49548/1/1037590998.2015.pdf
dc.relationReynaud, P. (2010). Thrips ( Thysanoptera ). Chapter 13.1. Biodiversity and Ecosystem Risk Assessment, 4(2), 767–791. https://doi.org/10.3897/biorisk.4.59
dc.relationRikihisa, Y. (2006). Ehrlichia subversion of host innate responses. Current Opinion in Microbiology, 9(1), 95–101. https://doi.org/10.1016/j.mib.2005.12.003
dc.relationRios-Castaño, D. (2003). Variedades De Aguacate Para El Trópico : Actas V Congreso Mundial Del Aguacate, 143–147.
dc.relationRodicio, M. D. R., & Mendoza, M. D. C. (2004). Identificación bacteriana mediante secuenciación del ARNr 16S: fundamento, metodología y aplicaciones en microbiología clínica. Enfermedades Infecciosas y Microbiología Clínica, 22(4), 238–245. https://doi.org/10.1157/13059055
dc.relationRonquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
dc.relationRos, V. I. D., Fleming, V. M., Feil, E. J., & Breeuwer, J. A. J. (2009). How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Applied and Environmental Microbiology, 75(4), 1036–1043. https://doi.org/10.1128/AEM.01109-08
dc.relationRosenberg, E. (2017). Evolution: From Darwin to the Hologenome Concept. In It’s in Your DNA (pp. 139–153). https://doi.org/10.1016/B978-0-12-812502-1/00015-9
dc.relationRozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299–3302. Retrieved from http://dx.doi.org/10.1093/molbev/msx248
dc.relationRugman-Jones, P., Hoddle, M., Mound, L., & Stouthamer, R. (2006). Molecular Identification Key for Pest Species of Scirtothrips (Thysanoptera: Thripidae). Journal Economic Entomology, 99(5), 1813–1819. https://doi.org/10.1603/0022-0493-99.5.1813
dc.relationSanders, E. R., & Miller, J. H. (2010). I, microbiologist: a discovery-based course in microbial ecology and molecular evolution. https://doi.org/10.1080/00219266.2011.645852
dc.relationSaurav, G., Daimei, G., Singh, V. R., Popli, S., & Rajagopal, R. (2016). Detection and Localization of Wolbachia in Thrips palmi Karny (Thysanoptera: Thripidae). Indian Journal of Microbiology, 1–5. https://doi.org/10.1007/s12088-016-0567-7
dc.relationScholz, M. B., Lo, C., & Chain, P. S. G. (2012). Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Current Opinion in Biotechnology, 23, 9–15. https://doi.org/10.1016/j.copbio.2011.11.013
dc.relationSchulenburg, J. H. G. v. d., Hurst, G. D. D., Huigens, T. M. E., Van Meer, M. M. M., Jiggins, F. M., & Majerus, M. E. N. (2000). Molecular evolution and phylogenetic utility of Wolbachia ftsZ and wsp gene sequences with special reference to the origin of male-killing. Molecular Biology and Evolution, 17(4), 584–600. https://doi.org/10.1093/oxfordjournals.molbev.a026338
dc.relationSeepiban, C., Charoenvilaisiri, S., Kumpoosiri, M., Bhunchoth, A., Chatchawankanphanich, O., & Gajanandana, O. (2015). Development of a protocol for the identification of tospoviruses and thrips species in individual thrips. Journal of Virological Methods, 222, 206–213. https://doi.org/http://dx.doi.org/10.1016/j.jviromet.2015.06.017
dc.relationShafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology and Biotechnological Equipment, 31(3), 446–459. https://doi.org/10.1080/13102818.2017.1286950
dc.relationShao, R., & Barker, S. C. (2003). The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (insecta: Thysanoptera): Convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Molecular Biology and Evolution, 20(3), 362–370. https://doi.org/10.1093/molbev/msg045
dc.relationSheik, C. S., Beasley, W. H., Elshahed, M. S., Zhou, X., Luo, Y., & Krumholz, L. R. (2011). Effect of warming and drought on grassland microbial communities. The ISME Journal, 5, 1692–1700. https://doi.org/10.1038/ismej.2011.32
dc.relationShelomi, M. (2019). Journal of Asia-Paci fi c Entomology Bacterial and eukaryote microbiomes of mosquito habitats in dengue- endemic southern Taiwan. Journal of Asia-Pacific Entomology, 22(2), 471–480. https://doi.org/10.1016/j.aspen.2019.02.011
dc.relationSilva-Bedoya, L. M., Sánchez-Pinzón, M. S., Cadavid-Restrepo, G. E., & Moreno-Herrera, C. X. (2016). Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms. Microbiological Research, 192, 313–325. https://doi.org/10.1016/j.micres.2016.08.006
dc.relationSivakumar, G., Rangeshwaran, R., Yandigeri, M., Mohan, M., Venkatesan, T., Ballal, C., … Verghese, A. (2017). Characterization and role of gut bacterium Bacillus pumilus on nutrition and defense of leafhopper ( Amrasca biguttula) of cotton. Indian Journal of Agricultural Sciences, 87(4), 534–539.
dc.relationSommer, F., & Bäckhed, F. (2013). The gut microbiota-masters of host development and physiology. Nature Reviews Microbiology, 11(4), 227–238. https://doi.org/10.1038/nrmicro2974
dc.relationSouza, H. V., Marchesin, S. R. C., & Itoyama, M. M. (2016). Analysis of the mitochondrial COI gene and its informative potential for evolutionary inferences in the families Coreidae and Pentatomidae (Heteroptera). Genetics and Molecular Research, 15(1), 1–14. https://doi.org/10.4238/gmr.15017428
dc.relationSrivastava, N., Gupta, B., Gupta, S., Danquah, M. K., & Sarethy, I. P. (2019). Analyzing Functional Microbial Diversity : An Overview of Techniques. In Microbial Diversity in the Genomic Era. https://doi.org/10.1016/B978-0-12-814849-5.00006-X
dc.relationStirling, G., & Wilsey, B. (2013). Empirical Relationships between Species Richness, Evenness, and Proportional Diversity. The American Naturalist, 158(3), 286–299. https://doi.org/10.1086/321317 .
dc.relationStracy, M., Wollman, A., Kaja, E., Gapinski, J., Lee, J., Leek, V. A., … Zawadzki, P. (2019). Single-molecule imaging of DNA gyrase activity in living Escherichia coli. Nucleic Acids Research, 47(1), 210–220. https://doi.org/10.1093/nar/gky1143
dc.relationSuen, G., Scott, J. J., Aylward, F. O., Adams, S. M., Tringe, S. G., Pinto-Tomás, A. A., … Currie, C. R. (2010). An insect herbivore microbiome with high plant Biomass-degrading capacity. PLoS Genetics, 6(9), 1–14.
dc.relationSuen, G., Scott, J. J., Aylward, F. O., Adams, S. M., Tringe, S. G., Pinto-Tomás, A. A., … Currie, C. R. (2010). An insect herbivore microbiome with high plant Biomass-degrading capacity. PLoS Genetics, 6(9), 1–14. https://doi.org/10.1371/journal.pgen.1001129
dc.relationTeng, F., Sankar, S., Zhu, P., Li, S., Huang, S., Li, X., … Yang, F. (2018). Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Scientific Reports, 8, 16321. https://doi.org/10.1038/s41598-018-34294-x
dc.relationThripsWiki. (2019). ThripsWiki - providing information on the World’s thrips. Retrieved February 1, 2019, from http://thrips.info/wiki/Main_Page
dc.relationTurcios-Palomo, C. L. A. (2013). Identificación y Fluctuación Poblacional de Trips (Insecta: Thysanoptera) Asociados con Hortalizas de la Región Central de México. 67.
dc.relationTyagi, K., Kumar, V., & Mound, L. A. (2008). Sexual dimorphism among Thysanoptera Terebrantia, with a new species from Malaysia and remarkable species from India in Aeolothripidae and Thripidae. Insect Systematics & Evolution, 39, 155–170. https://doi.org/doi.org/10.1163/187631208788784093
dc.relationTyagi, K., Kumar, V., Singha, D., Chandra, K., Laskar, B. A., Kundu, S., … Chatterjee, S. (2017). DNA Barcoding studies on Thrips in India: Cryptic species and Species complexes. Scientific Reportys, 7, 4898. https://doi.org/10.1038/s41598-017-05112-7
dc.relationTzec-Interián, J. A., Desgarennes, D., Carrión, G., Monribot-Villanueva, J. L., Guerrero-Analco, J. A., Ferrera-Rodríguez, O., … Ortiz-Castro, R. (2020). Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLoS ONE, 15(4), e0231215. https://doi.org/10.1371/journal.pone.0231215
dc.relationUrsell, L. K., Metcalf, J. L., Parfrey, L. W., & Knight, R. (2012). Definig the Human Microbiome. NIH Manuscripts, 70(Suppl 1), 1–12. https://doi.org/10.1111/j.1753-4887.2012.00493.x.Defining
dc.relationVan der Kooi, C. J., & Schwander, T. (2014). Evolution of asexuality via different mechanisms in grass thrips (Thysanoptera: Aptinothrips). Evolution, 68(7), 1883–1893. https://doi.org/10.1111/evo.12402
dc.relationVaron Devia, E. H. (2014). Trips, Bichos Candela. In Actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate. Manual Técnico CORPOICA, Centro de Investigación la Selva (pp. 257–265). Retrieved from http://hdl.handle.net/20.500.12324/12616
dc.relationVavre, F., Dedeine, F., Quillon, M., Fouillet, P., Fleury, F., & Boulétreau, M. (2001). Within-species diversity of Wolbachia-induced cytoplasmic incompatibility in haplodiploid insects. Evolution, 55(8), 1710–1714. https://doi.org/http://dx.doi.org/10.1554/0014-3820(2001)055[1710:WSDOWI]2.0.CO;2
dc.relationVavre, F., Fouillet, P., & Fleury, F. (2003). Between- and Within-Host Species Selection on Cytoplasmic Incompatibility–Inducing Wolbachia in Haplodiploids. Evolution, 57(2), 421–427. https://doi.org/10.1111/j.0014-3820.2003.tb00275.x
dc.relationVillareal H., M., Álvarez, S. Córdoa, F., Escobar, G., Fagua, F. Gast, H., Mendoza, M., & Umaña. M. (2004). Métodos para el análisis de datos: una aplicación para resultados provenientes de caracterizaciones de biodiversidad. Manual de Métodos Para El Desarrollo de Inventarios de Biodiversidad. Instituto de Investigación de Recursos Biológicos Alexander Von Humbolt, 188–225. https://doi.org/10.1017/CBO9781107415324.004
dc.relationVivero, R. J., Cadavid-Restrepo, G., Moreno Herrera, C. X., & Uribe Soto, S. I. (2017). Molecular detection and identification of Wolbachia in three species of the genus Lutzomyia on the Colombian Caribbean coast. Parasites & Vectors, 10(1), 110. https://doi.org/10.1186/s13071-017-2031-x
dc.relationVivero, R. J., Gil Jaramillo, N., Cadavid-Restrepo, G., Uribe Soto, S., & Moreno Herrera, C. X. (2016). Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia’s Caribbean coast. Parasites & Vectors, 9, 496. https://doi.org/10.1186/s13071-016-1766-0
dc.relationWagner, B. D., Grunwald, G. K., Zerbe, G. O., Mikulich-gilbertson, S. K., Robertson, C. E., Zemanick, E. T., & Harris, J. K. (2018). On the Use of Diversity Measures in Longitudinal Sequencing Studies of Microbial Communities. Frontiers in Microbiology, 9, 1037. https://doi.org/10.3389/fmicb.2018.01037
dc.relationWalker, T., Johnson, P. H., Moreira, L. A., Iturbe-Ormaetxe, I., Frentiu, F. D., McMeniman, C. J., … Hoffmann, A. A. (2011). The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 476(7361), 450–455. https://doi.org/10.1038/nature10355
dc.relationWalterson, A. M., Smith, D. D. N., & Stavrinides, J. (2014). Identification of a Pantoea Biosynthetic Cluster That Directs the Synthesis of an Antimicrobial Natural Product. PLoS ONE, 9(5), 1–12. https://doi.org/10.1371/journal.pone.0096208
dc.relationWalterson, A. M., & Stavrinides, J. (2015). Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews, 39(6), 968–984. https://doi.org/10.1093/femsre/fuv027
dc.relationWang, G. H., Jia, L. Y., Xiao, J. H., & Huang, D. W. (2016). Discovery of a new Wolbachia supergroup in cave spider species and the lateral transfer of phage WO among distant hosts. Infection, Genetics and Evolution, 41, 1–7. https://doi.org/10.1016/j.meegid.2016.03.015
dc.relationWang, L., Lee, F., Tai, C., & Kasai, H. (2007). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. International Journal of Systematic and Evolutionary Microbiology, 57, 1846–1850. https://doi.org/10.1099/ijs.0.64685-0
dc.relationWang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/AEM.00062-07
dc.relationWartell, R. M., Hosseini, S. H., & Moran, C. P. (1990). Detecting base pair substitutions in DNA fragments by temperature-gradient gel electrophoresis. Nucleic Acids Research, 18(9), 2699–2705. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=330754&tool=pmcentrez&rendertype=abstract
dc.relationWerren, J. H., Hurst, G. D. D., Zhang, W., Breeuwer, J. A. J., Stouthamer, R., & Majerus, M. E. N. (1994). Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). Journal of Bacteriology, 176(2), 388–394. https://doi.org/10.1128/jb.176.2.388-394.1994
dc.relationWerren, J. H., Zhang, W., & Guo, L. (1995). Evolution and phylogeny of Wolbachia: Reproductive parasites of arthropods. Proceedings of the Royal Society B: Biological Sciences, 261(1360), 55–71. https://doi.org/10.1098/rspb.1995.0117
dc.relationWerren, John H., & O’Neill, S. L. (1997). The evolution of heritable symbionts. Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, 3–41.
dc.relationWerren, John H, Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6, 741–751. https://doi.org/10.1038/nrmicro1969
dc.relationWestmore, G., Poke, F., Allen, G., & Wilson, C. (2013). Genetic and host-associated differentiation within Thrips tabaci Lindeman (Thysanoptera: Thripidae) and its links to Tomato spotted wilt virus-vector competence. Heredity, 111, 210–215. https://doi.org/10.1038/hdy.2013.39
dc.relationWoese, C. R. (1987). Bacterial Evolution. Microbiology, 51(2), 221–271. https://doi.org/10.1139/m88-093
dc.relationYamamoto, S., & Harayama, S. (1995). PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains. Applied and Environmental Microbiology, 61(3), 1104–1109.
dc.relationYan, D., Tang, Y., Xue, X., Wang, M., Liu, F., & Fan, J. (2012). The complete mitochondrial genome sequence of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) contains triplicate putative control regions. Gene, 506(1), 117–124. https://doi.org/10.1016/j.gene.2012.06.022
dc.relationYang, B., Wang, Y., & Qian, P. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 17, 135. https://doi.org/10.1186/s12859-016-0992-y
dc.relationYang, X. H., Zhu, D. H., Liu, Z., Zhao, L., & Su, C. Y. (2013). High levels of multiple infections, recombination and horizontal transmission of Wolbachia in the Andricus mukaigawae (Hymenoptera; Cynipidae) communities. PLoS ONE, 8(11), e78970. https://doi.org/10.1371/journal.pone.0078970
dc.relationYim, O., & Ramdeen, K. (2015). Hierarchical Cluster Analysis : Comparison of Three Linkage Measures and Application to Psychological Data. The Quantitative Methods for Psychology, 11(1), 8–21. https://doi.org/10.20982/tqmp.11.1.p008
dc.relationYin, H., Cao, L., Qiu, G., Wang, D., Kellogg, L., Zhou, J., … Liu, X. (2008). Molecular diversity of 16S rRNA and gyrB genes in copper mines. Archives of Microbiology, 189(2), 101–110. https://doi.org/10.1007/s00203-007-0298-6
dc.relationYoshino, K., Nishigaki, K., & Husimi, Y. (1991). Temperature sweep gel electrophoresis: a simple method to detect point mutations. Nucleic Acids Research, 19(11), 3153.
dc.relationYun, J., Roh, W., Whon, W., Jung, M., Kim, M., Park, D., … Bae, J.-W. (2014). Insect Gut Bacterial Diversity Determined by Environmental Habitat , Diet , Developmental Stage , and Phylogeny of Host. Applied and Environmental Microbiology, 80(17), 5254–5264. https://doi.org/10.1128/AEM.01226-14
dc.relationZabal-Aguirre, M., Arroyo, F., García-Hurtado, J., De la Torre, J., Hewitt, G. M., & Bella, J. L. (2014). Wolbachia effects in natural populations of Chorthippus parallelus from the Pyrenean hybrid zone. Journal of Evolutionary Biology, 27(6), 1136–1148. https://doi.org/10.1111/jeb.12389
dc.relationZapata, J. C., & Leal, J. M. (2018). Manejo integrado de la pudrición de raíces del aguacate (Persea americana Miller), causada por Phytophthora cinnamomi Rands. Temas Agrarios, 23(2), 131–143. https://doi.org/https://doi.org/10.21897/rta.v23i2.1297
dc.relationZeh, D. W., Zeh, J. A., & Bonilla, M. M. (2005). Wolbachia, sex ratio bias and apparent male killing in the harlequin beetle riding pseudoscorpion. Heredity, 95(1), 41–49. https://doi.org/10.1038/sj.hdy.6800666
dc.relationZhang, X. C., & Zhang, F. (2018). The Potential Control Strategies Based on the Interaction Between Indoor Cockroaches and Their Symbionts in China. In Advances in Insect Physiology (1st ed., Vol. 55). https://doi.org/10.1016/bs.aiip.2018.07.001
dc.relationZhou, W., Rousset, F., & O’Neill, S. (1998). Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society Biological Sciences, 265(1395), 509–515. https://doi.org/10.1098/rspb.1998.0324
dc.relationZouache, K., Voronin, D., Tran-Van, V., Mousson, L., Failloux, A., & Mavingui, P. (2009). Persistent Wolbachia and Cultivable Bacteria Infection in the Reproductive and Somatic Tissues of the Mosquito Vector Aedes albopictus. PLoS ONE, 4(7), e6388. https://doi.org/10.1371/journal.pone.0006388
dc.relationZug, R., & Hammerstein, P. (2012). Still a Host of Hosts for Wolbachia : Analysis of Recent Data Suggests That 40 % of Terrestrial Arthropod Species Are Infected. PLoS ONE, 7(6), e38544. https://doi.org/10.1371/journal.pone.0038544
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleCaracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada
dc.typeOtro


Este ítem pertenece a la siguiente institución