dc.contributorLinero Segrera, Dorian Luis
dc.contributorEstrada Mejía, Martín
dc.contributorAnálisis, diseño y materiales - GIES
dc.creatorCastañeda Infante, César David
dc.date.accessioned2020-05-20T14:51:42Z
dc.date.available2020-05-20T14:51:42Z
dc.date.created2020-05-20T14:51:42Z
dc.date.issued2019-12-13
dc.identifierCastañeda Infante, C. D. (2019). Simulación numérica del proceso de fractura de muros de concreto reforzado sometidos a carga lateral monotónica y cíclica. Universidad Nacional de Colombia.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77539
dc.description.abstractEn el presente Trabajo Final de Maestría se estudia el comportamiento mecánico de muros de concreto reforzado sometidos a carga lateral monotónica y cíclica, en su plano. Se realizaron simulaciones numéricas con el objeto de representar la respuesta de dos muros de concreto reforzado que fueron sometidos a una carga cíclica y una carga cíclica invertida durante la ejecución de los ensayos experimentales realizados por el Proyecto Comportamiento y Evaluación de Estructuras Especiales con respecto a fisuración y retracción (CEOS.fr). En primera medida se realiza una descripción teórica del comportamiento del concreto reforzado, a través de una descripción de los modelos constitutivos que gobiernan la respuesta del concreto y el acero ante distintos estados de esfuerzo y deformación. Posteriormente se presenta el planteamiento de las seis simulaciones que se llevaron a cabo. Las simulaciones fueron concebidas considerando dos aproximaciones distintas al comportamiento e interacción del concreto simple y el acero de refuerzo. La primera aproximación consistió en la representación del concreto reforzado como un material compuesto con refuerzo distribuido. La segunda estrategia consistió en la representación del concreto y el acero, haciendo uso de elementos finitos diferentes. Se realiza una comparación de la respuesta estructural obtenida en las simulaciones con la respuesta estructural de los ensayos correspondientes realizados por CEOS.fr. También Se presenta una comparación entre los patrones de fisuración reportados por las simulaciones y las trayectorias de fisuración registradas en los ensayos experimentales.
dc.description.abstractIn the present Final Master's Project, the mechanical behavior of reinforced concrete walls subjected to monotonic and cyclic lateral load in its plane is studied. Numerical simulations were performed in order to represent the response of two reinforced concrete walls that were subjected to a cyclic load and a reversed cyclic load during the execution of the experimental tests carried out by the Behavior and Evaluation of Special Structures related to cracking and retraction Project (CEOS.fr). Firstly, a theoretical description of the behavior of reinforced concrete is made, through a description of the constitutive models that govern the response of concrete and steel to different stress and deformation states. Subsequently, the approach of the six simulations that were carried out is presented. The simulations were conceived considering two different approaches to the behavior and interaction of simple concrete and reinforcing steel. The first approach consisted of representing reinforced concrete as a composite material with distributed reinforcement. The second strategy consisted of representing concrete and steel, making use of different finite elements. Later on, a comparison is made of the structural response obtained in the simulations with the structural response of the corresponding tests carried out by CEOS.fr. Later on, another comparison is also presented between the cracking patterns reported by the simulations and the cracking paths recorded in the experimental tests.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbdulridha, A., & Palermo, D. (2017). Behavior and modelling of hybrid SMA-steel reinforced concrete slender shear wall. Engineering Structures, 147, 77–89. https://doi.org/10.1016/j.engstruct.2017.04.058
dc.relationAbdulridha, A., Palermo, D., Foo, S., & Vecchio, F. J. (2013). Behavior and modeling of superelastic shape memory alloy reinforced concrete beams. Engineering Structures, 49, 893–904. https://doi.org/10.1016/j.engstruct.2012.12.041
dc.relationAnderson, T. L. (2004). Fracture Mechanics: Fundamentals and Applications.
dc.relationBangash, M. Y. H. (1989). Concrete and concrete structures: Numerical modelling and applications. https://doi.org/10.1016/0958-9465(90)90023-Q
dc.relationBažant, Z. P., & Planas, J. (1998). Fracture and Size Effect in Concrete and Other Quasibrittle Materials (W. F. Chen (ed.); Vol. 16). Library of Congress Cataloging.
dc.relationBeckmann, P., & Dunican, P. (1967). The use of shear walls in high buildings. Tall Buildings, 101–118.
dc.relationBehide, S. B., & Collins, M. P. (1989). Influence of axial tension on the shear capacity of the reinforced concrete members. ACI Structural Journal, 86(5), 570–581.
dc.relationBentz, E. C. (1999). Sectional analysis of reinforced concrete structures. University of Toronto.
dc.relationBergan, P. ., & Holand, I. (1979). Nonlinear finite element analysis of concrete structures. Computer Methods in Applied Mechanics and Engineering, 17–18, 443–467. https://doi.org/10.1016/0045-7825(79)90027-6
dc.relationBorst, R. de, & Nauta, P. (2000). Non-orthogonal cracks in a smeared finite element model. Engineering Computations, 48, 1741–1760.
dc.relationCao, V., & Ronagh, H. (2013). A model for damage analysis of concrete. Advances in Concrete Construction, 1. https://doi.org/10.12989/acc.2013.01.2.187
dc.relationCEOS.fr. (2011). Experimental database for computer program assessment.
dc.relationCollins, D. M. and M. P. (1974). Diagonal Compression Field theory-A Rational Model For Structural Concrete in Pure Torsion. ACI Journal Proceedings, 71(8), 396–408. https://doi.org/10.14359/7103
dc.relationDeJong, M. J., Hendriks, M. A. N., & Rots, J. G. (2008). Sequentially linear analysis of fracture under non-proportional loading. Engineering Fracture Mechanics, 75(18), 5042–5056. https://doi.org/10.1016/J.ENGFRACMECH.2008.07.003
dc.relationFleming, J. R., & Suh, N. P. (1977). Mechanics of crack propagation in delamination wear. Wear, 44(1), 39–56. https://doi.org/10.1016/0043-1648(77)90083-7
dc.relationGálvez, J. C., & Cendón, D. A. (2002). Simulación de la fractura del hormigón en modo mixto. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 18, 31–58.
dc.relationHerrera Chaparro, L. A. (2011). Modelación numérica del concreto simple con elementos finitos usando un modelo constitutivo de daño (Vol. 2). Universidad Nacional de Colombia.
dc.relationHillerborg, A., Modéer, M., & Petersson, P.-E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773–781. https://doi.org/https://doi.org/10.1016/0008-8846(76)90007-7
dc.relationHognestad, E., Campus)., U. of I. (Urbana-C., Station., E. E., (U.S.), R. C. R. C., & (U.S.), E. F. (1951). A study of combined bending and axial load in reinforced concrete members. University of Illinois.
dc.relationJirásek, M., & Zimmermann, T. (1998). Rotating crack model with transition to scalar damage. Journal of Engineering Mechanics, 124(3), 277–284. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(277)
dc.relationJirásek, Milan. (2002). Plasticity, Damage ande Fracture. Technical University of Catalonia.
dc.relationK., G. A., & Habibollah, A. (1984). Cracking in Reinforced Concrete Analysis. Journal of Structural Engineering, 110(8), 1735–1746. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735)
dc.relationKent, D. C., & Park, R. (1971). Flexural Membres with Confined Concrete. Journal of the Structural Division, 97(7), 1969–1990.
dc.relationKupfer, H. B., & Gerstle, K. H. (1973). Behavior of concrete under biaxial stresses. Journal of the Engineering Mechanics Division, 99(4), 853–866.
dc.relationLinero, D. L., Garzón, D. A., & Ramírez, A. M. (2013). Introducción al análisis lineal de estructuras mediante el método de los elementos finitos.
dc.relationLinero, D. L., Huespe, A. E., & Oliver, J. (2011). Numerical modelling of the cracking in shear wall reinforced concrete, technical report for ConCrack International benchmark.
dc.relationLópez, P. A. (2012). SIMULACIÓN NUMÉRICA DE VIGAS EN CONCRETO REFORZADO CON BARRAS LONGITUDINALES, TRANSVERSALES Y FIBRAS CORTAS DE ACERO MEDIANTE EL MÉTODO DE LOS ELEMENTOS FINITOS. Universidad Nacional de Colombia.
dc.relationLópez Salinas, E. M. (2011). Modelos de fisura cohesiva difusa y fisura cohesiva discreta para materiales. Universidad Politécnica de Madrid.
dc.relationNSR-10. (2010). Reglamento Colombiano de Construcción Sismo Resistente. Asociación Colombiana de Ingeniería Sísmica.
dc.relationOller, S. (2003). Simulación numérica del comportamiento mecánico de los materiales compuestos (1st ed.). Centro Internacional de Métodos Numéricos en Ingeniería.
dc.relationPark, R., Priestley, M. J. N., & Gill, W. D. (1982). Ductility of Square-Confined Concrete Columns. Journal of the Structural Division, 108(4), 929–950.
dc.relationRebora, B., Zimmermann, T., & Wolf, J. P. (1976). Dynamic rupture analysis of reinforced concrete shells. Nuclear Engineering and Design, 37(2), 269–297. https://doi.org/10.1016/0029-5493(76)90021-2
dc.relationReinhardt, H. W., Cornelissen, H. A. W., & Hordijk, D. A. (1986). Tensile tests and failure analysis of concrete. Journal of Structural Engineering, 112, 2462–2477.
dc.relationRichart, F., Brandtzaeg, A., & Brown, R. L. (1928). A Study of the Failure of Concrete under Combined Compressive Stresses. In University of Illinois Bulletin.
dc.relationRots, J. G. (1988). Computational modeling of concrete fracture [Delft University of Technology]. https://doi.org/10.1007/978-1-61779-191-8_1
dc.relationSeckin, M. (1981). Hysteretic behavior of cast-in-place exterior beam-column-slab subassemblies. University of toronto.
dc.relationSegura, J. I. (2011). Estructuras de Concreto I (7th ed.). Universidad Nacional de Colombia.
dc.relationSuidan, M., & Schnobrich, W. C. (1973). Finite element analysis of reinforced concrete. Journal of the Structural Division, 99, 2109–2122.
dc.relationTruesdell, C., & Toupin, R. (1960). The Classical Field Theories BT - Principles of Classical Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie (S. Flügge (ed.); pp. 226–858). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45943-6_2
dc.relationVecchio, F. J. (2000a). Analysis of shear-critical reinforced concrete beams. ACI Structural Journal, 97(1), 102–110.
dc.relationVecchio, F. J. (2000b). Disturbed Stress Field Model for Reinforced Concrete: Formulation. Journal of Structural Engineering, 126(9), 1070–1077.
dc.relationVecchio, F. J., & Collins, M. P. (1986). The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Journal, 83(83–22), 220–231. https://doi.org/10.1016/S0304-3800(97)01955-8
dc.relationVecchio, F. J., & Collins, M. P. (1993). Compression Response of Cracked Reinforced Concrete. ASCE Journal of Structural Engineering, 119(12), 3590–3610.
dc.relationVector Analysis Group. (2019). VecTor Analysis Group.
dc.relationWalraven, J. C. (1981). Fundamental Analysis of Aggregate Interlock. Journal of the Structural Division, 107(11), 2245–2270.
dc.relationWilliam, K., Pramono, E., & Sture, S. (1987). FUNDAMENTAL ISSUES OF SMEARED CRACK MODELS. 192–207.
dc.relationWong, P. S., Vecchio, F. J., & Trommels, H. (2013). VecTor2 & FormWorks User’s Manual. Second Edition. 347. https://doi.org/10.1086/519640
dc.relationYiqiu, L., & Henry, R. S. (2017). Numerical modelling of reinforced concrete walls with minimum vertical reinforcement. Engineering Structures, 143, 330–345.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleSimulación numérica del proceso de fractura de muros de concreto reforzado sometidos a carga lateral monotónica y cíclica
dc.typeReporte


Este ítem pertenece a la siguiente institución