dc.contributorAlí Torres, Jorge Isaac
dc.contributorQuímica Cuántica y Computacional
dc.creatorEspín Delgado, Luisa Fernanda
dc.date.accessioned2021-10-12T16:56:29Z
dc.date.available2021-10-12T16:56:29Z
dc.date.created2021-10-12T16:56:29Z
dc.date.issued2021-02-17
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80514
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa acumulación de agregados de péptidos y proteínas es una de las marcas patológicas de alrededor de 50 enfermedades. Estudios experimentales revelan una relación de dependencia entre la secuencia de aminoácidos de una proteína y el proceso de formación de agregados, además de la existencia de regiones específicas que son más propensas a agregarse que otras. En este trabajo, se estudió el proceso de agregación de péptidos considerando que es posible predecir su tendencia intrínseca a agregarse en función de la energía de interacción entre dos unidades peptídicas. Se propuso que esta energía de interacción puede aproximarse como la suma de interacciones individuales de los pares de aminoácidos que componen los pépti dos. La energía de interacción entre pares de aminoácidos se obtuvo mediante cálculos de estructura electrónica bajo el esquema ONIOM (DFT/AM1). La energía de interacción se separó en dos contribuciones: la energía de distorsión de la cadena principal y la energía de interacción de la cadena lateral. Los resultados muestran que estas contribuciones se relacionan con características químicas y estructurales de los aminoácidos. La aproximación propuesta permite estimar energías de interacción de hexapéptidos de manera rápida y con un error de 0.76 kcal/mol por aminoácido en comparación con cálculos a nivel DFT. Con estos resultados se diseñó una herramienta que permite estimar la energía de interacción de dos hexapéptidos con un bajo costo computacional comparado con cálculos en DFT. (Texto tomado de la fuente).
dc.description.abstractProtein aggregation is one of the pathological hallmarks of about 50 diseases. Experimental studies have shown a relationship between the amino acid sequence and the aggregation pro cess, in addition to the existence of specific regions more prone to aggregate than others. In this work, peptide aggregation process was studied by considering that the intrinsic aggrega tion propensity can be predicted as a function of the interaction energy between two peptide units. An approach was proposed in which the interaction energy is expressed as the sum of amino acid pair interactions comprising the hexapeptides. For this purpose, electronic structure calculations were carried out using ONIOM (DFT/AM1) scheme. The interaction energy was separated into two contributions: the peptide backbone distortion energy and the side chain interaction energy. Results revealed that the interaction energy is related to chemical and structural features of amino acids. The approach enables estimating hexapep tide interaction energies with an error of 0.76 kcal/mol per amino acid compared with DFT calculations. These results were consequently used to design a computational tool that cal culates hexapeptide interaction energies with a low computational cost compared to DFT calculations.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationMoreno-Gonzalez I, Soto C. Misfolded protein aggregates: Mechanisms, structures and potential for disease transmission. Seminars in Cell Developmental Biology. 2011;22(5):482 – 487. Prions and Amyloids Synapse and Brain. Available from: http://www.sciencedirect.com/science/article/pii/S1084952111000644.
dc.relationDobson CM. Protein misfolding, evolution and disease. Trends in Biochemical Sciences. 1999 Sep;24(9):329–332. Available from: https://doi.org/10.1016/S0968- 0004(99)01445-0.
dc.relationChiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proceedings of the National Academy of Sciences. 2002;99(suppl 4):16419– 16426. Available from: https://www.pnas.org/content/99/suppl4=16419:
dc.relationChaturvedi SK, Siddiqi MK, Alam P, Khan RH. Protein misfolding and aggregation: Mechanism, factors and detection. Process Biochemistry. 2016;51(9):1183 – 1192. Available from: http://www.sciencedirect.com/science/article/pii/S1359511316301386.
dc.relationZibaee S, Jakes R, Fraser G, Serpell LC, Crowther RA, Goedert M. Sequence Determinants for Amyloid Fibrillogenesis of Human alpha-Synuclein. Journal of molecular biology. 2007 November;374(2):454–464. Available from: https://doi.org/10.1016/j.jmb.2007.09.039.
dc.relationEisenberg DS, Sawaya MR. Structural Studies of Amyloid Proteins at the Molecular Level. Annual Review of Biochemistry. 2017;86(1):69–95. PMID: 28125289. Available from: https://doi.org/10.1146/annurev-biochem-061516-045104.
dc.relationMakin OS, Serpell LC. Structures for amyloid fibrils. The FEBS Journal. 2005;272(23):5950–5961. Available from: https://febs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1742-4658.2005.05025.x.
dc.relationEisenberg D, Jucker M. The Amyloid State of Proteins in Human Diseases. Cell. 2012;148(6):1188 – 1203. Available from: http://www.sciencedirect.com/science/article/pii/S009286741200222X.
dc.relationDerreumaux P. Alzheimer’s Disease: Insights into Low MolecularWeight and Cytotoxic Aggregates from In Vitro and Computer Experiments. IMPERIAL COLLEGE PRESS; 2013. Available from: https://www.worldscientific.com/doi/abs/10.1142/p793.
dc.relationCobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK. Molecular architecture of human prion protein amyloid: a parallel, in-register betastructure. Proceedings of the National Academy of Sciences of the United States of America. 2007 November;104(48):18946—18951. Available from: https://europepmc.org/articles/PMC2141888.
dc.relationChen M, Margittai M, Chen J, Langen R. Investigation of -Synuclein Fibril Structure by Site-directed Spin Labeling. Journal of Biological Chemistry. 2007;282(34):24970– 24979. Available from: http://www.jbc.org/content/282/34/24970.abstract.
dc.relationJayasinghe SA, Langen R. Identifying Structural Features of Fibrillar Islet Amyloid Polypeptide Using Site-directed Spin Labeling. Journal of Biological Chemistry. 2004;279(46):48420–48425. Available from: http://www.jbc.org/content/279/46/48420.abstract.
dc.relationMargittai M, Langen R. Template-assisted filament growth by parallel stacking of tau. Proceedings of the National Academy of Sciences. 2004;101(28):10278–10283. Available from: https://www.pnas.org/content/101/28/10278.
dc.relationParavastu AK, Leapman RD, Yau WM, Tycko R. Molecular structural basis for polymorphism in Alzheimer’s -amyloid fibrils. Proceedings of the National Academy of Sciences. 2008;105(47):18349–18354. Available from: https://www.pnas.org/content/105/47/18349.
dc.relationDovidchenko N, Leonova E, Galzitskaya O. Mechanisms of amyloid fibril formation. Biochemistry Biokhimiia. 2014 December;79(13):1515—1527. Available from: https://doi.org/10.1134/S0006297914130057.
dc.relationArosio P, Knowles TPJ, Linse S. On the lag phase in amyloid fibril formation. Phys Chem Chem Phys. 2015;17:7606–7618. Available from: http://dx.doi.org/10.1039/C4CP05563B.
dc.relationTenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M, Weber M, et al. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties1 1Edited by R. Huber. Journal of Molecular Biology. 2000;295(4):1055 – 1071. Available from: http://www.sciencedirect.com/science/article/pii/S0022283699934228.
dc.relationvon Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming structure. Proceedings of the National Academy of Sciences. 2000;97(10):5129–5134. Available from: https://www.pnas.org/content/97/10/5129.
dc.relationReches M, Gazit E. Amyloidogenic hexapeptide fragment of medin: homology to functional islet amyloid polypeptide fragments. Amyloid. 2004;11(2):81–89. Available from: https://doi.org/10.1080/13506120412331272287.
dc.relationDobson CM. Protein folding and misfolding. Nature. 2003;426(6968):884–890. Available from: https://doi.org/10.1038/nature02261.
dc.relationInternational AD. World Alzheimer Report 2018. 2018 september;p. 1–46.
dc.relationEanes ED, Glenner GG. X-Ray Diffraction Studies on Amyloid Filaments. Journal of Histochemistry & Cytochemistry. 1968;16(11):673–677. PMID: 5723775. Available from: https://doi.org/10.1177/16.11.673.
dc.relationCohen AS, Calkins E. Electron Microscopic Observations on a Fibrous Component in Amyloid of Diverse Origins. Nature. 1959;183(4669):1202–1203. Available from: https://doi.org/10.1038/1831202a0.
dc.relationBoeré H, Ruinen L, Scholten JH. Electron microscopic studies on the fibrillar component of human splenic amyloid. Translational Research. 1965 Dec;66(6):943–951. Available from: https://www.translationalres.com/article/0022-2143(65)90062-4/abstract.
dc.relationGregoire S, Irwin J, Kwon I. Techniques for monitoring protein misfolding and aggregation in vitro and in living cells. Korean Journal of Chemical Engineering. 2012;29(6):693–702. Available from: https://doi.org/10.1007/s11814-012-0060-x.
dc.relationToyama BH, Weissman JS. Amyloid Structure: Conformational Diversity and Consequences. Annual Review of Biochemistry. 2011;80(1):557–585. PMID: 21456964. Available from: https://doi.org/10.1146/annurev-biochem-090908-120656.
dc.relationNilsson MR. Techniques to study amyloid fibril formation in vitro. Methods (San Diego, Calif). 2004 September;34(1):151—160. Available from: https://doi.org/10.1016/j.ymeth.2004.03.012.
dc.relationRojas Quijano FA, Morrow D, Wise BM, Brancia FL, Goux WJ. Prediction of nucleating sequences from amyloidogenic propensities of tau-related peptides. Biochemistry. 2006 April;45(14):4638–4652. Available from: https://doi.org/10.1021/bi052226q.
dc.relationWood SJ, Wetzel R, Martin JD, Hurle MR. Prolines and Amyloidogenicity in Fragments of the Alzheimer’s Peptide β /A4. Biochemistry. 1995 Jan;34(3):724–730. Available from: https://doi.org/10.1021/bi00003a003.
dc.relationConchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S. AGGRESCAN: a server for the prediction and evaluation of "hot spots.of aggregation in polypeptides. BMC Bioinformatics. 2007 Feb;8(1):65. Available from: https://doi.org/10.1186/1471-2105-8-65.
dc.relationFrousios KK, Iconomidou VA, Karletidi CM, Hamodrakas SJ. Amyloidogenic determinants are usually not buried. BMC Structural Biology. 2009 Jul;9(1):44. Available from: https://doi.org/10.1186/1472-6807-9-44.
dc.relationBryan AWJr, Menke M, Cowen LJ, Lindquist SL, Berger B. BETASCAN: Probable -β amyloids Identified by Pairwise Probabilistic Analysis. PLOS Computational Biology. 2009 03;5(3):1–11. Available from: https://doi.org/10.1371/journal.pcbi.1000333.
dc.relationFernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnology. 2004 Oct;22(10):1302–1306. Available from: https://doi.org/10.1038/nbt1012.
dc.relationTian J, Wu N, Guo J, Fan Y. Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics. 2009 Jan;10(1):S45. Available from: https://doi.org/10.1186/1471-2105-10-S1-S45.
dc.relationThompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D. The 3D profile method for identifying fibril-forming segments of proteins. Proceedings of the National Academy of Sciences. 2006;103(11):4074–4078. Available from: https://www.pnas.org/content/103/11/4074.
dc.relationWagoner VA, Cheon M, Chang I, Hall CK. Fibrillization Propensity for Short Designed Hexapeptides Predicted by Computer Simulation. Journal of Molecular Biology. 2012;416(4):598 – 609. Available from: http://www.sciencedirect.com/science/article/pii/S0022283611013672.
dc.relationWhitford D. Proteins: Structure and Function. Wiley; 2013. Available from: https://books.google.com.co/books?id=AnodNhuMAdkC.
dc.relationCampbell M, Farrell S. Biochemistry. Cengage Learning; 2005. Available from: https://books.google.com.co/books?id=xIj3YPKSpJkC.
dc.relationCasem ML. Chapter 3 - Proteins. In: Casem ML, editor. Case Studies in Cell Biology. Problem Sets in Biological and Biomedical Sciences. Boston: Academic Press; 2016. p. 23 – 71. Available from: http://www.sciencedirect.com/science/article/pii/B9780128013946000038.
dc.relationAnfinsen CB. Principles that Govern the Folding of Protein Chains. Science. 1973;181(4096):223–230. Available from: https://science.sciencemag.org/content/181/4096/223.
dc.relationGregersen N, Bross P, Vang S, Christensen JH. Protein Misfolding and Human Disease. Annual Review of Genomics and Human Genetics. 2006;7(1):103–124. PMID: 16722804. Available from: https://doi.org/10.1146/annurev.genom.7.080505.115737.
dc.relationCiechanover A, Orian A, Schwartz A. Ubiquitin-mediated proteolysis: Biological regulation via destruction. BioEssays. 2000 Jun;22(5):442–451.
dc.relationSoto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature reviews Neuroscience. 2003 January;4(1):49—60. Available from: https://doi.org/10.1038/nrn1007.
dc.relationCaughey B, Lansbury PT. PROTOFIBRILS, PORES, FIBRILS, AND NEURODEGENERATION: Separating the Responsible Protein Aggregates from The Innocent Bystanders. Annual Review of Neuroscience. 2003;26(1):267–298. PMID: 12704221. Available from: https://doi.org/10.1146/annurev.neuro.26.010302.081142.
dc.relationGlabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiology of Aging. 2006;27(4):570 – 575. This issue includes a special issue section:Protein misfolding in Alzheimer’s and other age-related neurodegenerative diseases. Available from: http://www.sciencedirect.com/science/article/pii/S0197458005002344.
dc.relationSiddiqi MK, Majid N, Malik S, Alam P, Khan RH. In: Harris JR, Marles-Wright J, editors. Amyloid Oligomers, Protofibrils and Fibrils. Cham: Springer International Publishing; 2019. p. 471–503. Available from: https://doi.org/10.1007/978-3-030-28151- 916:
dc.relationGiorgetti S, Greco C, Tortora P, Aprile FA. Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. International Journal of Molecular Sciences. 2018;19(9). Available from: https://www.mdpi.com/1422-0067/19/9/2677.
dc.relationChiti F, Dobson CM. Protein Misfolding, Functional Amyloid, and Human Disease. Annual Review of Biochemistry. 2006;75(1):333–366. PMID: 16756495. Available from: https://doi.org/10.1146/annurev.biochem.75.101304.123901.
dc.relationBlancas-Mejía LM, Ramirez-Alvarado M. Systemic Amyloidoses. Annual Review of Biochemistry. 2013;82(1):745–774. PMID: 23451869. Available from: https://doi.org/10.1146/annurev-biochem-072611-130030.
dc.relationMuñoz Gómez J. Amiloidosis secundaria en la artritis reumatoide. Revista Española de Reumatología. 2002;29(2):33–35. Available from: https://www.elsevier.es/es-revistarevista- espanola-reumatologia-29-articulo-amiloidosis-secundaria-artritis-reumatoide- 13028238 ER.
dc.relationHull RL,Westermark GT,Westermark P, Kahn SE. Islet Amyloid: A Critical Entity in the Pathogenesis of Type 2 Diabetes. The Journal of Clinical Endocrinology Metabolism. 2004 08;89(8):3629–3643. Available from: https://doi.org/10.1210/jc.2004-0405.
dc.relationMandelkow EM, Mandelkow E. Tau in Alzheimer’s disease. Trends in Cell Biology. 1998;8(11):425 – 427. Available from: http://www.sciencedirect.com/science/article/pii/S0962892498013683.
dc.relationMurphy MP, LeVine r Harry. Alzheimer’s disease and the amyloid-beta peptide. Journal of Alzheimer’s disease : JAD. 2010;19(1):311–323. 20061647[pmid]. Available from: https://pubmed.ncbi.nlm.nih.gov/20061647.
dc.relationGuo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathologica. 2017 May;133(5):665–704. Available from: https://doi.org/10.1007/s00401-017-1707-9.
dc.relationSchmidt M, Rohou A, Lasker K, Yadav JK, Schiene-Fischer C, Fändrich M, et al. Peptide dimer structure in an Aβ (1–42) fibril visualized with cryo-EM. Proceedings of the National Academy of Sciences. 2015;112(38):11858–11863. Available from: https://www.pnas.org/content/112/38/11858.
dc.relationSunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Journal of molecular biology. 1997;273 3:729–39.
dc.relationAstbury WT, Dickinson S, Bailey K. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochemical Journal. 1935 10;29(10):2351–2360.1. Available from: https://doi.org/10.1042/bj0292351.
dc.relationLeVine H. Quantification of -sheet amyloid fibril structures with thioflavin T. In: Amyloid, Prions, and Other Protein Aggregates. vol. 309 of Methods in Enzymology. Academic Press; 1999. p. 274 – 284. Available from: http://www.sciencedirect.com/science/article/pii/S0076687999090205.
dc.relationAlí-Torres J, Rimola A, Rodríguez-Rodríguez C, Rodríguez-Santiago L, Sodupe M. Insights on the Binding of Thioflavin Derivative Markers to Amyloid- Like Fibril Models from Quantum Chemical Calculations. The Journal of Physical Chemistry B. 2013;117(22):6674–6680. PMID: 23662608. Available from: https://doi.org/10.1021/jp402807g.
dc.relationPauling L, Corey RB. Configurations of Polypeptide Chains With Favored Orientations Around Single Bonds. Proceedings of the National Academy of Sciences. 1951;37(11):729–740. Available from: https://www.pnas.org/content/37/11/729.
dc.relationPetsko GA, Ringe GAPD, Ringe D, Ringe. Protein Structure and Function. Primers in biology. New Science Press; 2004. Available from: https://books.google.com.co/books?id=2yRDWkHhN9QC.
dc.relationChou KC, Pottle M, Némethy G, yuzo Ueda, Scheraga HA. Structure of -sheets: Origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. Journal of Molecular Biology. 1982;162(1):89 – 112. Available from: http://www.sciencedirect.com/science/article/pii/0022283682901632.
dc.relationNelson R, Sawaya MR, Balbirnie M, Madsen A, Riekel C, Grothe R, et al. Structure of the cross-β spine of amyloid-like fibrils. Nature. 2005;435(7043):773–778. Available from: https://doi.org/10.1038/nature03680.
dc.relationMerkel JS, Sturtevant JM, Regan L. Sidechain interactions in parallel β sheets: the energetics of cross-strand pairings. Structure. 1999 Nov;7(11):1333–1343. Available from: https://doi.org/10.1016/S0969-2126(00)80023-4.
dc.relationSantos J, Pujols J, Pallarès I, Iglesias V, Ventura S. Computational prediction of protein aggregation: Advances in proteomics, conformationspecific algorithms and biotechnological applications. Computational and Structural Biotechnology Journal. 2020;18:1403 – 1413. Available from: http://www.sciencedirect.com/science/article/pii/S2001037020302919.
dc.relationMaurer-Stroh S, Debulpaep M, Kuemmerer N, de la Paz ML, Martins IC, Reumers J, et al. Exploring the sequence determinants of amyloid structure using positionspecific scoring matrices. Nature Methods. 2010 Mar;7(3):237–242. Available from: https://doi.org/10.1038/nmeth.1432.
dc.relationCaflisch A. Computational models for the prediction of polypeptide aggregation propensity. Current opinion in chemical biology. 2006 October;10(5):437–444. Available from: https://doi.org/10.1016/j.cbpa.2006.07.009.
dc.relationLópez de la Paz M, Goldie K, Zurdo J, Lacroix E, Dobson CM, Hoenger A, et al. De novo designed peptide-based amyloid fibrils. Proceedings of the National Academy of Sciences. 2002;99(25):16052–16057. Available from: https://www.pnas.org/content/99/25/16052.
dc.relationKhare SD, Wilcox KC, Gong P, Dokholyan NV. Sequence and structural determinants of Cu, Zn superoxide dismutase aggregation. Proteins: Structure, Function, and Bioinformatics. 2005;61(3):617–632. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.20629.
dc.relationLevine IN. Química cuántica. Pearson educación; 2001.
dc.relationSzabo A, Ostlund NS. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Books on Chemistry. Dover Publications; 1996. Available from: https://books.google.com.co/books?id=6mV9gYzEkgIC.
dc.relationFriesner RA. Ab initio quantum chemistry: Methodology and applications. Proceedings of the National Academy of Sciences. 2005;102(19):6648–6653. Available from: https://www.pnas.org/content/102/19/6648.
dc.relationVanommeslaeghe K. Molecular Mechanics. Current Pharmaceutical Design. 2014;20(20):3281–3292. Available from: http://www.eurekaselect.com/node/114275/article.
dc.relationHehre WJ. A guide to molecular mechanics and quantum chemical calculations. vol. 2. Wavefunction Irvine, CA; 2003.
dc.relationIn: Semiempirical Methods. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 139–154. Available from: https://doi.org/10.1007/978-3-540-77304-77.
dc.relationVreven T, Morokuma K. Chapter 3 Hybrid Methods: ONIOM(QM:MM) and QM/MM. vol. 2 of Annual Reports in Computational Chemistry. Elsevier; 2006. p. 35 – 51. Available from: http://www.sciencedirect.com/science/article/pii/S1574140006020032.
dc.relationDapprich S, Komáromi I, Byun K, Morokuma K, Frisch M. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. Computational and Theoretical Chemistry. 1999 Apr;461-462:1–21.
dc.relationSenn HM, Thiel W. QM/MM Methods for Biomolecular Systems. Angewandte Chemie International Edition. 2009;48(7):1198–1229. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200802019.
dc.relationChung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, et al. The ONIOM Method and Its Applications. Chemical Reviews. 2015 Jun;115(12):5678– 5796. Available from: https://doi.org/10.1021/cr5004419.
dc.relationReuter N, Dejaegere A, Maigret B, Karplus M. Frontier Bonds in QM/MM Methods: A Comparison of Different Approaches. The Journal of Physical Chemistry A. 2000;104(8):1720–1735. Available from: https://doi.org/10.1021/jp9924124.
dc.relationShukla MK, Leszczynski J. Fullerene (C60) forms stable complex with nucleic acid base guanine. Chemical Physics Letters. 2009;469(1):207 – 209. Available from: http://www.sciencedirect.com/science/article/pii/S0009261408017508.
dc.relationLi Q, Gusarov S, Evoy S, Kovalenko A. Electronic Structure, Binding Energy, and Solvation Structure of the StreptavidinBiotin Supramolecular Complex: ONIOM and 3D-RISM Study. The Journal of Physical Chemistry B. 2009 Jul;113(29):9958–9967. Available from: https://doi.org/10.1021/jp902668c.
dc.relationAlzate-Morales JH, Caballero J, Vergara Jague A, González Nilo FD. Insights into the Structural Basis of N2 and O6 Substituted Guanine Derivatives as Cyclin-Dependent Kinase 2 (CDK2) Inhibitors: Prediction of the Binding Modes and Potency of the inhibitors by Docking and ONIOM Calculations. Journal of Chemical Information and Modeling. 2009;49(4):886–899. Available from: https://doi.org/10.1021/ci8004034.
dc.relationPandey KK, Snyder JP, Liotta DC, Musaev DG. Computational Studies of Transition Metal Selectivity of Octapeptide Repeat Region of Prion Protein (PrP). The Journal of Physical Chemistry B. 2010;114(2):1127–1135. PMID: 20020721. Available from: https://doi.org/10.1021/jp909945e.
dc.relationAzimi S, Rauk A. The Binding of Fe(II)–Heme to the Amyloid Beta Peptide of Alzheimer’s Disease: QM/MM Investigations. Journal of Chemical Theory and Computation. 2012;8(12):5150–5158. PMID: 26593204. Available from: https://doi.org/10.1021/ct300716p.
dc.relationPlumley JA, Ali-Torres J, Pohl G, Dannenberg JJ. Capping Amyloid -Sheets of the Tau-Amyloid Structure VQIVYK with Hexapeptides Designed To Arrest Growth. An ONIOM and Density Functional Theory Study. The Journal of Physical Chemistry B. 2014;118(12):3326–3334. PMID: 24601594. Available from: https://doi.org/10.1021/jp501890p.
dc.relationRoy D, Pohl G, Ali-Torres J, Marianski M, Dannenberg JJ. Density Functional Theory Study of -Hairpins in Antiparallel -Sheets, a New Classification Based upon H-Bond Topology. Biochemistry. 2012;51(27):5387–5393. PMID: 22731966. Available from: https://doi.org/10.1021/bi3006785.
dc.relationAli-Torres J, Dannenberg JJ. The Folding of Acetyl(Ala)28NH2 and Acetyl(Ala)40NH2 Extended Strand Peptides into Antiparallel β-Sheets. A Density Functional Theory Study of β -Sheets with β -Turns. The Journal of Physical Chemistry B. 2012;116(48):14017–14022. PMID: 23157432. Available from: https://doi.org/10.1021/jp3094947.
dc.relationKohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev. 1965 Nov;140:A1133–A1138. Available from: https://link.aps.org/doi/10.1103/PhysRev.140.A1133.
dc.relationHohenberg P, Kohn W. Inhomogeneous electron gas. Physical review. 1964;136(3B):B864.
dc.relationParr RG, Weitao Y. Density-Functional Theory of Atoms and Molecules. International Series of Monographs on Chemistry. Oxford University Press; 1989. Available from: https://books.google.com.co/books?id=TYRMCAAAQBAJ.
dc.relationKoch W, Holthausen MC. A chemist’s guide to density functional theory. John Wiley & Sons; 2015.
dc.relationPerdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996 Oct;77:3865–3868. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.77.3865.
dc.relationPerdew JP, Kurth S, Zupan Acv, Blaha P. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation. Phys Rev Lett. 1999 Mar;82:2544–2547. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.82.2544.
dc.relationZahariev F, Leang SS, Gordon MS. Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals. The Journal of Chemical Physics. 2013;138(24):244108. Available from: https://doi.org/10.1063/1.4811270.
dc.relationHarris J. Adiabatic-connection approach to Kohn-Sham theory. Phys Rev A. 1984 Apr;29:1648–1659. Available from: https://link.aps.org/doi/10.1103/PhysRevA.29.1648.
dc.relationJambrina PG, Aldegunde J. Chapter 20 - Computational Tools for the Study of Biomolecules. In: Martín M, Eden MR, Chemmangattuvalappil NG, editors. Tools For Chemical Product Design. vol. 39 of Computer Aided Chemical Engineering. Elsevier; 2016. p. 583 – 648. Available from: http://www.sciencedirect.com/science/article/pii/B9780444636836000204.
dc.relationBecke AD. A new mixing of Hartree–Fock and local density-functional theories. The Journal of Chemical Physics. 1993;98(2):1372–1377. Available from: https://doi.org/10.1063/1.464304.
dc.relationZhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts. 2008 May;120(1):215–241. Available from: https://doi.org/10.1007/s00214-007-0310-x.
dc.relationHohenstein EG, Chill ST, Sherrill CD. Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules. Journal of Chemical Theory and Computation. 2008;4(12):1996–2000. PMID: 26620472. Available from: https://doi.org/10.1021/ct800308k.
dc.relationValdes H, Pluhácková K, Pitonák M, ¨Rezác J, Hobza P. Benchmark database on isolated small peptides containing an aromatic side chain: comparison between wave function and density functional theory methods and empirical force field. Phys Chem Chem Phys. 2008;10:2747–2757. Available from: http://dx.doi.org/10.1039/B719294K.
dc.relationThiel W. Semiempirical quantum–chemical methods. WIREs Computational Molecular Science. 2014;4(2):145–157. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1161.
dc.relationPople JA, Santry DP, Segal GA. Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures. The Journal of Chemical Physics. 1965;43(10):S129– S135. Available from: https://doi.org/10.1063/1.1701475.
dc.relationPople JA, Beveridge DL, Dobosh PA. Approximate Self-Consistent Molecular-Orbital Theory. V. Intermediate Neglect of Differential Overlap. The Journal of Chemical Physics. 1967;47(6):2026–2033. Available from: https://doi.org/10.1063/1.1712233.
dc.relationDewar MJS, Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society. 1977;99(15):4899– 4907. Available from: https://doi.org/10.1021/ja00457a004.
dc.relationThiel W, Voityuk AA. Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica chimica acta. 1992 Nov;81(6):391–404. Available from: https://doi.org/10.1007/BF01134863.
dc.relationStewart JJP. Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry. 1989;10(2):209–220. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540100208.
dc.relationDewar MJS, Zoebisch EG, Healy EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society. 1985 Jun;107(13):3902– 3909. Available from: https://doi.org/10.1021/ja00299a024.
dc.relationChalasinski G, Gutowski M. Weak interactions between small systems. Models for studying the nature of intermolecular forces and challenging problems for ab initio calculations. Chemical Reviews. 1988;88(6):943–962. Available from: https://doi.org/10.1021/cr00088a007.
dc.relationvan Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH. State of the Art in Counterpoise Theory. Chemical Reviews. 1994;94(7):1873–1885. Available from: https://doi.org/10.1021/cr00031a007.
dc.relationMayer I, Vibók A. SCF equations in the chemical Hamiltonian approach. Chemical Physics Letters. 1988;148(1):68 – 72. Available from: http://www.sciencedirect.com/science/article/pii/0009261488872622.
dc.relationBoys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics. 1970;19(4):553–566. Available from: https://doi.org/10.1080/00268977000101561.
dc.relationSimon S, Duran M, Dannenberg JJ. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? The Journal of Chemical Physics. 1996;105(24):11024–11031. Available from: https://doi.org/10.1063/1.472902.
dc.relationMentel , Baerends EJ. Can the Counterpoise Correction for Basis Set Superposition Effect Be Justified? Journal of Chemical Theory and Computation. 2014;10(1):252– 267. PMID: 26579908. Available from: https://doi.org/10.1021/ct400990u.
dc.relationSordo JA, Chin S, Sordo TL. On the counterpoise correction for the basis set superposition error in large systems. Theoretica chimica acta. 1988 Aug;74(2):101–110. Available from: https://doi.org/10.1007/BF00528320.
dc.relationWu C, Lei H, Duan Y. Elongation of Ordered Peptide Aggregate of an Amyloidogenic Hexapeptide NFGAIL Observed in Molecular Dynamics Simulations with Explicit Solvent. Journal of the American Chemical Society. 2005 Oct;127(39):13530–13537. Available from: https://doi.org/10.1021/ja050767x.
dc.relationDennington R, Keith TA, Millam JM. GaussView Version 6; 2016. Semichem Inc. Shawnee Mission KS.
dc.relationFrisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al.. Gaussian 16 Revision C.01; 2016. Gaussian Inc. Wallingford CT.
dc.relationLouros N, Konstantoulea K, De Vleeschouwer M, Ramakers M, Schymkowitz J, Rousseau F. WALTZ-DB 2.0: an updated database containing structural information of experimentally determined amyloid-forming peptides. Nucleic Acids Research. 2019 09;48(D1):D389–D393. Available from: https://doi.org/10.1093/nar/gkz758.
dc.relationCrasto CJ, Feng Ja. Sequence codes for extended conformation: A neighbor-dependent sequence analysis of loops in proteins. Proteins: Structure, Function, and Bioinformatics. 2001;42(3):399–413. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0134
dc.relationBerg JM SL Tymoczko JL. In: Chemical bonds in biochemistry. New York: W H Freeman; 2002.
dc.relationLawrence MC, Colman PM. Shape Complementarity at Protein/Protein Interfaces. Journal of Molecular Biology. 1993;234(4):946 – 950. Available from: http://www.sciencedirect.com/science/article/pii/S0022283683716487.
dc.relationBasu S, Bhattacharyya D, Banerjee R. Self-Complementarity within Proteins: Bridging the Gap between Binding and Folding. Biophysical Journal. 2012 Jun;102(11):2605– 2614. Available from: https://doi.org/10.1016/j.bpj.2012.04.029.
dc.relationHarpaz Y, Gerstein M, Chothia C. Volume changes on protein folding. Structure. 1994 Jul;2(7):641–649. Available from: https://doi.org/10.1016/S0969-2126(00)00065-4.
dc.relationShirts MR, Pitera JW, Swope WC, Pande VS. Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. The Journal of Chemical Physics. 2003;119(11):5740–5761. Available from: https://doi.org/10.1063/1.1587119.
dc.relationMould RF. Introductory Medical Statistics, 3rd edition. Medical science series. CRC Press; 1998. Available from: https://books.google.com.co/books?id=MWuFXsdXUIwC.
dc.relationImai K, Mitaku S. Mechanisms of secondary structure breakers in soluble proteins. BIOPHYSICS. 2005;1:55–65.
dc.relationLodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Hierarchical structure of proteins. In: Molecular Cell Biology. 4th edition. WH Freeman; 2000.
dc.rightsAtribución-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titlePredicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónica
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución