dc.contributorArias-Gaviria, Jessica
dc.contributorArango Aramburo, Santiago
dc.contributorCiencias de la decisión
dc.creatorMarrero Trujillo, Verónica
dc.date.accessioned2021-08-25T16:17:22Z
dc.date.available2021-08-25T16:17:22Z
dc.date.created2021-08-25T16:17:22Z
dc.date.issued2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80010
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractThe speed of changes in the policies and agents of the energy system in Colombia is a conflict when it comes to understanding such a complex system, considering the energy transition towards renewable matrix. This study aims to develop a microworld to learn and understand the dynamics of diffusion of renewable energy technologies in Colombia, and the effect of different incentive policies in such diffusion. We used a system dynamics model to understand the behavior of the available potential and the installed capacity of different electricity generation technologies in Colombia, considering the effect of the regulator’s performance over the diffusion. Thereafter, the model was used to develop an online microworld in which the users can play and test different incentives to renewable energy and learn about the systems underlying structure and operation while learning about the process. The main results of the pilot testing suggest that the microworld contributes to improving the knowledge of the users and allowing them to better understand the energy system.
dc.description.abstractLa velocidad de los cambios en las políticas y los agentes del sistema energético en Colombia es una barrera para entender un sistema tan complejo, considerando la transición energética hacia una matriz renovable. Esta tesis, tiene como objetivo desarrollar un micromundo para entender y aprender sobre la dinámica de la difusión de las tecnologías de generación renovable en Colombia, y sobre el efecto de diferentes políticas e incentivos sobre dicha difusión. Utilizamos un modelo de dinámica de sistemas para comprender el comportamiento del potencial disponible y la capacidad instalada de diferentes tecnologías de generación en Colombia, considerando el efecto del desempeño del regulador sobre la difusión. A partir de este modelo desarrollamos un micromundo en línea en el que los usuarios pueden jugar, probar diferentes incentivos para las energías renovables y aprender sobre la estructura y la operación subyacente de los sistemas mientras aprenden sobre el proceso. Los resultados principales de las pruebas piloto sugieren que el micromundo aporta al conocimiento de los usuarios y les permite entender mejor el sistema. (Tomado de la fuente)
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticos
dc.publisherDepartamento de la Computación y la Decisión
dc.publisherFacultad de Minas
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAckermann, E. (2001). Piaget’s Constructivism, Papert’s Constructionism: What’s the difference? Future of Learning Group, 5(3), 438.
dc.relationArias-Gaviria, J., Carvajal-Quintero, S. X., & Arango-Aramburo, S. (2019). Understanding dynamics and policy for renewable energy diffusion in Colombia. Renewable Energy, 139, 1111–1119. https://doi.org/10.1016/j.renene.2019.02.138
dc.relationArias Gaviria, J. (2014). Modelamiento y simulación de curvas de aprendizaje para tecnologías de energía renovable en Colombia. (Doctoral Dissertation, Universidad Nacional de Colombia-Sede Medellín), 123. http://www.bdigital.unal.edu.co/43657/
dc.relationBabiker, M., Bertoldi, P., Buckeridge, M., Cartwright, A., Araos, M., Bakker, S., Bazaz, A., Belfer, E., Benton, T., Coninck, D., Revi, A., Babiker, M., Bertoldi, P., Buckeridge, M., Cartwright, A., Dong, W., Ford, J., Fuss, S., Hourcade, J., … Waterfield, T. (2018). Chapter 4: Strengthening and Implementing the Global Response. In Intergovernmental Panel on Climate Change, Global Warming of 1.5°C an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change (pp. 313–443). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter4_Low_Res.pdf
dc.relationBarrera, X., Gómez, R., Suárez, R., & García, C. (2015). El ABC de los compromisos de Colombia para la COP21 (WWF-Colombia); 2nd ed., p. 31).
dc.relationBass, F. (1969). A New Product Growth for Model Consumer Durables. Management Science, 15(5), 215–227. https://doi.org/10.1287/mnsc.15.5.215
dc.relationBernardo Calderón. (2008). Capítulo 1: Simulación. Conceptos Básicos y Aplicabilidad. In U. de Antioquia, Introducción a la Simulación.
dc.relationBoring, R., Kelly, D., Smidys, C., Mosleh, A., & Dyre, B. (2012). Microworlds, Simulators and Simulation : Framework for a Benchmark of Human Reliability Data Sources (Idaho National Laboratory (INL). Issue No.INL/CON-12-25625).
dc.relationCampbell Allison , Jenden James, D. J. (2019). Energy Education - Energy vs power. https://energyeducation.ca/encyclopedia/Energy_vs_power
dc.relationCárdenas Ardila, L. M. (2015). Plataforma para la evaluación de políticas de mitigación de gases efecto invernadero en el sector eléctrico. (Doctoral Dissertation, Universidad Nacional de Colombia-Sede Medellín), 245. http://www.bdigital.unal.edu.co/50866/
dc.relationCastaneda, M., Franco, C. J., & Dyner, I. (2017). Evaluating the effect of technology transformation on the electricity utility industry. Renewable and Sustainable Energy Reviews, 80(65), 341–351. https://doi.org/10.1016/j.rser.2017.05.179
dc.relationCastillo Ramírez, A., Mejía Giraldo, D., & Molina Castro, J. D. (2017). Fiscal incentives impact for RETs investments in Colombia. Energy Sources, Part B: Economics, Planning and Policy, 12(9), 759–764. https://doi.org/10.1080/15567249.2016.1276648
dc.relationCastillo Ramírez, Alejandro, Mejía Giraldo, D., & Giraldo Ocampo, J. D. (2016). Geospatial levelized cost of energy in Colombia: GeoLCOE. 2015 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT LATAM 2015, 298–303. https://doi.org/10.1109/ISGT-LA.2015.7381171
dc.relationClimate Interactive, Ventana Systems, Todd Fincannon, UML Climate Change Initiative, & Sterman, J. (2019). En-ROADS. Climate Interactive Tools for a Thriving Future. https://www.climateinteractive.org/tools/en-roads/
dc.relationCongreso de la República de Colombia. (2014). Ley 1715 de 2014. http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html
dc.relationDepartamento Administrativo Nacional de Estadística - DANE. (2020). Índice de precios del productor. https://www.dane.gov.co/index.php/estadisticas-por-tema/precios-y-costos/indice-de-precios-del-productor-ipp
dc.relationDirección de Impuestos y Aduanas Nacionales - DIAN. (2020). Resolución número 000009 de 2020. https://www.dian.gov.co/normatividad/Normatividad/Resolución 000009 de 31-01-2020.pdf
dc.relationDyner, I., Larsen, E., & Franco, C. J. (2009). Games for electricity traders: Understanding risk in a deregulated industry. Energy Policy, 37(2), 465–471. https://doi.org/10.1016/j.enpol.2008.09.075
dc.relationElectronic Arts Inc. (2019). EA. SIMCITY. https://www.ea.com/games/simcity/simcity
dc.relationForrester, J. W. (2019). MA System. Play the Beer Game. https://beergame.masystem.se/
dc.relationFranco, C. J., Velásquez, J. D., & Cardona, D. (2012). Microworld For Simulating A Spot Electricity Market | Micromundo para simular un mercado eléctrico de corto plazo. Cuadernos de Economia, 31(58), 229–256. http://www.scopus.com/inward/record.url?eid=2-s2.0-84879827442&partnerID=MN8TOARS
dc.relationGalvis, Á. (1997). Micromundos Lúdicos Interactivos: aspectos críticos en su diseño y desarrollo. (Ediciones Uniandes–Lidie). http://hdl.handle.net/1992/6327
dc.relationHaas, R., Panzer, C., Resch, G., Ragwitz, M., Reece, G., & Held, A. (2011). A historical review of promotion strategies for electricity from renewable energy sources in EU countries. Renewable and Sustainable Energy Reviews, 15(2), 1003–1034. https://doi.org/10.1016/j.rser.2010.11.015
dc.relationHamodi, C., Pastor, V. M. L., & Pastor, A. T. L. (2015). Medios, técnicas e instrumentos de evaluación formativa y compartida del aprendizaje en educación superior. Perfiles Educativos, 37(147), 146–161. https://doi.org/10.1016/j.pe.2015.10.004
dc.relationHardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–1248. https://doi.org/10.1126/science.162.3859.1243
dc.relationHenao, F., & Dyner, I. (2020). Renewables in the optimal expansion of colombian power considering the Hidroituango crisis. Renewable Energy, 158(2020), 612–627. https://doi.org/10.1016/j.renene.2020.05.055
dc.relationIDEAM, PNUD, MADS, DNP, & Cancillería. (2016). Inventario Nacional y Departamental de Gases de Efecto Invernadero - Colombia (IDEAM, PNUD, MADS, DNP, CANCILLERÍA, & FMAM (eds.)).
dc.relationInda Caro, M., Álvarez González, S., & Álvarez Rubio, M. (2008). Métodos de evaluación en la Enseñanza Superior. Revista de Investigación Educativa, RIE, 26(2), 539–552.
dc.relationIRENA. (2000). Experience Curves for Energy Technology Policy. Experience Curves for Energy Technology Policy, January 2000, 133. https://doi.org/10.1787/9789264182165-en
dc.relationIRENA. (2018a). Hydropower. https://www.irena.org/hydropower
dc.relationIRENA. (2018b). Renewable Power Generation Costs in 2018. International Renewable Energy Agency, 160. https://doi.org/10.1007/SpringerReference_7300
dc.relationIRENA. (2019). Renewable capacity highlights (Issue March). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Mar/RE_capacity_highlights_2019.pdf?la=en&hash=BA9D38354390B001DC0CC9BE03EEE559C280013F
dc.relationIRENA. (2020). Renewable Capacity Statistics 2020. International Renewable Energy Agency, 66. https://irena.org/-/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Statistics_2020.pdf
dc.relationIRENA, NEA, & Organization for Economic Co-Operation and Development. (2015). Projected Costs of Generating Electricity. https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf
dc.relationIsee Systems. (2020). Stella Architect (2.0). https://www.iseesystems.com/
dc.relationJacobs, D., Marzolf, N., Paredes, J. R., Rickerson, W., Flunn, H., Becekr-Birck, C., & Solano-Peralta, M. (2013). Analysis of renewable energy incentives in the Latin America and Caribbean region: The feed-in tariff case. Energy Policy, 60, 601–610.
dc.relationJamasb, T., & Köhler, J. (2007). Learning Curves for Energy Technology and Policy Analysis: A Critical Assessment. Delivering a Low Carbon Electricity System: Technologies, Economics and Policy, 314–332. https://www.repository.cam.ac.uk/bitstream/handle/1810/194736/0752&EPRG0723.pd?sequence=1
dc.relationKatsaliaki, K., & Mustafee, N. (2015). Edutainment for Sustainable Development: A Survey of Games in the Field. Simulation and Gaming, 46(6), 647–672. https://doi.org/10.1177/1046878114552166
dc.relationKeith, D. R., Naumov, S., & Sterman, J. (2017). Driving the Future: A Management Flight Simulator of the US Automobile Market. Simulation and Gaming, 48(6), 735–769. https://doi.org/10.1177/1046878117737807
dc.relationKing, A. (1993). From Sage on the Stage to Guide on the Side. College Teaching, 41(1), 30–35. https://doi.org/10.5771/2196-7261-2016-4-288
dc.relationKrejcie, R. V, & Morgan, D. (1970). Determining sample size for research activities. The NEA Research Bulletin, 30, 607–610.
dc.relationMinMinas. (2018a). Resolución 40791 de 2018. http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_0023bd4e97114cc79a428f9b705ed19c
dc.relationMinMinas. (2018b). Resolución 40795 de 2018. http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_2b577796e5b84942904ccda6f5676722
dc.relationMinMinas. (2018c). Sector minero energético, activo frente al cambio climático: reducirá 11 millones de toneladas de CO2 en el año 2030. https://www.minenergia.gov.co/en/historico-de-noticias?idNoticia=24056534#:~:text=MinMinas.&text=avances y desafíos.-,La meta del sector es reducir en 11%2C2 millones,del Amazonas en 15 años.&text=Significa que el sector minero,meta nacional%2C al año 203
dc.relationMinMinas, & UPME. (2019). Anexo 2 - Pliego de términos y condiciones específicas de la subasta de contratación de enerpía eléctrica a largo plazo (Issue 69). https://www1.upme.gov.co/PromocionSector/Subastas-largo-plazo/Documents/Subasta-CLPE-02-2019/Pliegos_Subasta_CLPE_No02_2019.pdf
dc.relationMinMinas, & UPME. (2020). Informe de registro de proyectos de generación de eléctricidad. https://app.powerbi.com/view?r=eyJrIjoiNzBhN2Q4YmMtN2IxMy00Mjg2LWJhZTctMjRkNWE2NDdlMzI0IiwidCI6IjgxNTAwZjZkLWJjZTktNDgzNC1iNDQ2LTc0YjVmYjljZjEwZSIsImMiOjh9
dc.relationMIT. (2020a). Forio Simulate TM. https://forio.com/simulate/showcase/#orderbyperiodruncount=desc&staffPick=true
dc.relationMIT. (2020b). MIT Management Sloan School LearningEdge. Fishbanks: Teaching Instructions and Videos. https://mitsloan.mit.edu/LearningEdge/simulations/fishbanks/Pages/Faculty-Only.aspx
dc.relationMIT, Meadows, D., Sterman, J., & King, A. (2020). Fishbanks: una simulación de gestión de recursos renovables. LearningEdge A Free Learning Resourse for Management Educators and Students. https://mitsloan.mit.edu/LearningEdge/simulations/fishbanks-spanish/Pages/default.aspx
dc.relationMIT, Ventana systems, UML Climate, Change Initiative, & Todd Fincannon. (2019). C-ROADS. Climate Interactive. https://www.climateinteractive.org/tools/c-roads/
dc.relationMohd Razali, N., & Bee Wah, Y. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33. http://instatmy.org.my/downloads/e-jurnal 2/3.pdf%0Ahttps://www.nrc.gov/docs/ML1714/ML17143A100.pdf
dc.relationMorecroft, J. (2007). Strategic Modelling and Business Dynamics: A Feedback Systems Approach (John Wiley & Sons Ltd; p. 429).
dc.relationPapert, S. (1980). Mindstorms Children, computers, and Powerful Ideas (P. Basic Books, Inc.; 1st ed.). Library of Congress Cataloging .
dc.relationPapert, S. (1986). Constructionism: A new opportunity for elementary science education (Massachusetts Institute of Technology Media Laboratory Epistemology and Learning Group).
dc.relationPapert, S., & Harel, I. (1991). Situating Constructionism. Constructionism, 36(2), 1–11.
dc.relationPowersim Software AS. (2020). Powersim Studio 10 Academic.
dc.relationRao, K. U., & Kishore, V. V. N. (2010). A review of technology diffusion models with special reference to renewable energy technologies. Renewable and Sustainable Energy Reviews, 14(3), 1070–1078. https://doi.org/10.1016/j.rser.2009.11.007
dc.relationRieber, L. (2012). Multimedia Learning in Games, Simulations, and Microworlds. In R. Mayer, The Cambridge Handbook of Multimedia Learning (pp. 549–568). https://doi.org/10.1017/cbo9780511816819.034
dc.relationRieber, L. P. (2002). Microworlds. 583–604.
dc.relationRstudio Inc. (2018). RStudio (1.1.456).
dc.relationSáiz, M. C., & Román, J. M. (2011). Cuatro formas de evaluación en educación superior gestionadas desde la tutoría. Revista de Psicodidactica, 16(1), 145–161.
dc.relationSchoots, K., Ferioli, F., Kramer, G. J., & van der Zwaan, B. C. C. (2008). Learning curves for hydrogen production technology: An assessment of observed cost reductions. International Journal of Hydrogen Energy, 33(11), 2630–2645. https://doi.org/10.1016/j.ijhydene.2008.03.011
dc.relationSterman, J. (1992). Teaching Takes Off Flight Simulators for Management Education “The Beer Game.” OR/MS Today, 40–44. papers3://publication/uuid/CBBF86A3-8229-422C-8AAD-B47F45F4CE88
dc.relationSterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World (The McGraw-Hill Companies-Inc.).
dc.relationSterman, J. (2014). Interactive web‐based simulations for strategy and sustainability: The MIT Sloan LearningEdge management flight simulators, Part I. System Dynamics Review, 30(1–2), 89–121. https://doi.org/10.1002/sdr
dc.relationSterman, J. (2019). Eclipsing the Competition: The Solar PV Industry Simulation. MIT Management Sloan School Learning Edge A Free Learning Resource for Management Educartors and Students. https://mitsloan.mit.edu/LearningEdge/simulations/solar/Pages/default.aspx
dc.relationSterman, J. and A. K. (2011). Simulation Instructors’ Guide: Setup and Player Briefing. 11–131, 44.
dc.relationSterman, J. D. (2002). All models are wrong: Reflections on becoming a systems scientist. System Dynamics Review, 18(4), 501–531. https://doi.org/10.1002/sdr.261
dc.relationSterman, J., Fiddaman, T., Franck, T., Johnston, E., Jones, A., McCauley, S., Rice, P., Rooney-Varga, J. N., Sawin, E., & Siegel, L. (2019). World Energy: A Climate and Energy Policy Negotiation Game. MIT Management Sloan School Learning Edge A Free Learning Resource for Management Educartors and Students. https://mitsloan.mit.edu/LearningEdge/simulations/world energy-spanish/Pages/default.aspx
dc.relationSterman, J., Miller, D., & Hsueh, J. (2019). CleanStart: Simulating a Clean Energy Startup. MIT Management Sloan School Learning Edge A Free Learning Resource for Management Educartors and Students. https://mitsloan.mit.edu/LearningEdge/simulations/cleanstart/Pages/default.aspx
dc.relationStrategy dynamics LTD. (2019a). Beefeater restaurants. https://strategydynamics.com/microworlds/beefeater/
dc.relationStrategy dynamics LTD. (2019b). Brand management. https://strategydynamics.com/microworlds/brands/
dc.relationStrategy dynamics LTD. (2019c). Mobile phone subscribers. https://strategydynamics.com/microworlds/mobile/
dc.relationStrategy dynamics LTD. (2019d). People express. https://strategydynamics.com/microworlds/people-express/
dc.relationUNAL. (2019). UNAL en un vistazo. Estadisticas UNAL. http://estadisticas.unal.edu.co/home/
dc.relationUnited Nations Framework Convention on Climate Change. (2008). Kyoto Protocol Reference Manual. United Nations Framework Convention on Climate Change, 130. https://doi.org/10.5213/jkcs.1998.2.2.62
dc.relationUPME. (2019). Informe sobre la realización de la subasta CLPE No. 02-2019. 69, 1–45. https://www1.upme.gov.co/PromocionSector/Subastas-largo-plazo/Documents/Subasta-CLPE-02-2019/Informe_al_minenergia_subasta_CLPE-02-2019.pdf%0Awww.upme.gov.co
dc.relationUPME, & Ministerio de Minas y Energía. (2015). Integración de las energías renovables no convencionales en Colombia (La Imprenta Editores S.A.). https://doi.org/10.1021/ja304618v
dc.relationValencia O, R. F., Víctor Riascos M, E. A., & Niño Z, M. A. (2011). Método para la creación de micromundos inmersivos. Revista Avances En Sistemas e Informática, 8(2), 41–50. http://www.bdigital.unal.edu.co/28837/1/26724-93650-1-PB.pdf
dc.relationVarun, Bhat, I. K., & Prakash, R. (2009). LCA of renewable energy for electricity generation systems-A review. Renewable and Sustainable Energy Reviews, 13(5), 1067–1073. https://doi.org/10.1016/j.rser.2008.08.004
dc.relationVentana Systems Inc. (2019). Vensim.
dc.relationVlahos, K. (1998). The Electricity Markets Microworld. 0008-A, Available from Professor Kiriakos Vlahos, The System Dynamics Group. London Bussiness School, 25.
dc.relationWashburn, C., & Pablo-Romero, M. (2019). Measures to promote renewable energies for electricity generation in Latin American countries. Energy Policy, 128, 212–222. https://doi.org/10.1016/j.enpol.2018.12.059
dc.relationXM. (2020a). Capacidad efectiva por tipo de generación. PARATEC - Parámetros Técnicos Del SIN. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidad
dc.relationXM. (2020b). Indicadores. Precio y Volúmen de Transacciones. https://www.xm.com.co/Paginas/Indicadores/Transacciones/Indicador-precio-volumen-transacciones.aspx
dc.relationXM. (2020c). Pronóstico de demanda. https://www.xm.com.co/Paginas/Consumo/pronostico-de-demanda.aspx
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleA microworld for learning about the diffusion of non-conventional renewable electricity generation technologies in Colombia.
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución