dc.creatorArbeláez, Hugo
dc.creatorMejía, Diego
dc.date.accessioned2019-06-28T03:53:55Z
dc.date.available2019-06-28T03:53:55Z
dc.date.created2019-06-28T03:53:55Z
dc.date.issued2011
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/39451
dc.identifierhttp://bdigital.unal.edu.co/29548/
dc.description.abstractIn 1964 Pommerenke introduced the notion of linear invariant family for locally injective analytic functions defined in the unit disk of the complex plane. Following Ma and Minda (who extended this notion to spherical geometry), we consider in this paper locally injective meromorphic functions in the unit disk. More precisely, we study families of such functions for which a certain invariant, called spherical order, is finite. Several consequences on the finiteness of the spherical order are explored, in particular the connection with the Schwarzian and normal orders, and with uniform perfectness.
dc.languagespa
dc.publisherUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
dc.relationUniversidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
dc.relationRevista Colombiana de Matemáticas
dc.relationRevista Colombiana de Matemáticas; Vol. 45, núm. 1 (2011); 97-112 0034-7426
dc.relationArbeláez, Hugo and Mejía, Diego (2011) On spherical invariance. Revista Colombiana de Matemáticas; Vol. 45, núm. 1 (2011); 97-112 0034-7426 .
dc.relationhttp://revistas.unal.edu.co/index.php/recolma/article/view/28065
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleOn spherical invariance
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución