Tesis
Modelado metabólico de una cepa mutante de Saccharomyces cerevisiae que utiliza xilosa y glucosa como sustrato para la producción de etanol
Fecha
2016-09-30Autor
Escobar Zuluaga, Jennifer
Institución
Resumen
La producción eficiente y sustentable de biocombustibles a partir de material lignocelulósico sigue siendo un área de intensa actividad investigativa en la cual S. cerevisiae (Sc) continua siendo el organismo por excelencia que más se emplea. En el presente trabajo se construye el modelo metabólico i1583Je2015 de una cepa mutante de Sc que contiene el gen codificante de xilosa isomerasa, proteína de transporte de xilosa proveniente de P. stipitis y el gen adhII de Z. mobilis, con el fin de evaluar su desempeño en la producción de etanol al utilizar como sustrato xilosa y glucosa. El modelo contiene 1583 reacciones, 1228 metabolitos y 901 genes. La validación del modelo se realizó mediante la simulación de datos experimentales usando FBA, deleción de genes y FVA. A partir de las simulaciones realizadas con FBA se generaron estrategias en ingeniería genética para mejorar la producción de etanol, obteniendo que mediante la inserción de la reacción catalizada por la enzima GAPN, la producción de etanol de la cepa mutante aumenta aproximadamente en un 8%. Abstract: Nowadays, an efficient and sustainable production of biofuels from lignocellulosic material is still an area of intense research; for this, Saccharomyces cerevisiae (Sc) maintains its position as the most prominent organism for this purpose. This work evaluates the development and performance of the genome-scale metabolic model i1583Je2015 of Sc mutant strain which contains the xylose isomerase encoding gene, a transport protein from P. stipitis and the adhII gen from Z. mobilis, in the use of xylose and glucose as carbon source for ethanol production. The reconstructed metabolic model comprises 1583 reactions, 1228 metabolites, and 901 genes. The model was validated through simulation of experimental data using FBA, gene knockout and FVA. Genetic Engineering strategies aim at improving cell performance were generated by means of an FBA analysis. It was observed that, the insertion of the GAPN-catalyzed reaction would render an increment of 8% in ethanol biosynthesis, using the recombinant organism