dc.contributor | Moreno Cañadas, Agustín | |
dc.contributor | Mendoza Hernández, Octavio | |
dc.contributor | TERENUFIA-UNAL | |
dc.creator | Marín Gaviria, Isaías David | |
dc.date.accessioned | 2020-08-21T16:09:07Z | |
dc.date.available | 2020-08-21T16:09:07Z | |
dc.date.created | 2020-08-21T16:09:07Z | |
dc.date.issued | 2020-05-18 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78154 | |
dc.description.abstract | The theory of representation of partially ordered sets or posets was introduced in the early 1970's as an effort to give an answer to the second Brauer-Thrall conjecture. Recall that one of the main goals of this theory is to give a complete description of the indecomposable objects of the category of representations of a given poset. Perhaps the most useful tool to obtain such classification are the algorithms of differentiation. For instance, Nazarova and Roiter introduced an algorithm known as the algorithm of differentiation with respect to a maximal point which allowed to Kleiner in 1972 to obtain a classification of posets of finite representation type. Soon afterwards between 1974 and 1977, this algorithm was used in 1981 by Nazarova and Zavadskij in order to give a criterion for the classification of posets of finite growth representation type. Actually, several years later, Zavadskij himself described the structure of the Auslander-Reiten quiver of this kind of posets, to do that, it was established that such an algorithm is in fact a categorical equivalence.
Since the theory of representation of posets was developed in the 1980's and 1990's for posets with additional structures, for example, for posets with involution or for equipped posets by Bondarenko, Nazarova, Roiter, Zabarilo and Zavadskij among others. It was necessary to define a new class of algorithms to classify posets with these additional structures. In fact, Zavadskij introduced 17 algorithms. Algorithms, I-V (and some additional differentiations) were used by him and Bondarenko to classify posets with involution, whereas algorithms I, VII-XVII were used to classify equipped posets. In particular, algorithms I, VII, VIII and IX were used to classify equipped posets of finite growth representation type without paying attention to the behavior of the morphisms of the corresponding categories. In other words, it was obtained a classification of the objects without proving that the algorithms used to tackle the problems are in fact categorical equivalences, therefore, the main problem of the theory of the algorithms of differentiation consists of giving a detailed description of the behavior of the morphisms under these additive functors, such description allows to give a deep understanding of the Auslander-Reiten quiver of the corresponding categories.
On the other hand, in the last few years has been noted a great interest in the application of the theory of representation of algebras in different fields of computer science, for example, in combinatorics, information security and topological data analysis. Ringel and Fahr, for instance, gave a categorification of Fibonacci numbers by using the 3-Kronecker quiver whereas representation of posets and the theory of posets have been used to analyze tactics of war and cyberwar. Besides, the theory of Auslander has been used to analyze big data via the homological persistent theory.
In this research, it is proved that the algorithms of differentiation VIII-X induce categorical equivalences between some quotient categories, giving a description of the Auslander-Reiten quiver of some equipped posets by using the evolvent associated to these kind of posets. In this work, ideas arising from the theory of representation of equipped posets are used to give a categorification of Delannoy numbers. Actually, such numbers are interpreted as dimensions of some suitable equipped posets. We also interpret the algorithm of differentiation VII as a steganographic algorithm which allows to generate digital watermarks, such an algorithm can be also used to describe the behavior of some kind of informatics viruses, in fact, it is explained how this algorithm describe the infection-detection process when a computer network is affected for this type of malware.
At last but not least, we recall that the theory of representation of equipped posets is a way to deal with the homogeneous biquadratic problem which is an open matrix problem, in this case, with respect to a pair of fields (F;G) with G a quadratic extension of the field F with respect to a polynomial of the form t^2 + q, q∈F. Actually, explicit solutions to this problem were given by Zavadskij who rediscovered in 2007 the Krawtchouk matrices introducing an interesting θ-transformation as well. In this research, such Krawtchouk matrices are used in order to give explicit solutions to non-linear systems of differential equations of the form X'(t)+AX^2 (t)=B, where X(t); X'(t); A and B are n×n square matrices. Tools arising from this solution are called in this work the Zavadskij calculus.
This research was partially supported by COLCIENCIAS convocatoria doctorados nacionales 727 de 2015. | |
dc.description.abstract | La teoría de representación de conjuntos parcialmente ordenados o posets fue introducida a principios de la década de 1970 como un esfuerzo por dar una respuesta a la segunda conjetura de Brauer-Thrall. Recuerde que uno de los objetivos principales de esta teoría es dar una descripción completa de los objetos indescomponibles de la categoría de representaciones de un poset dado. Quizás la herramienta más útil para obtener dicha clasificación son los algoritmos de diferenciación. Por ejemplo, Nazarova y Roiter introdujeron un algoritmo conocido como el algoritmo de diferenciación con respecto a un punto maximal que le permitió a Kleiner en 1972 obtener una clasificación de posets de tipo de representación finita. Poco después, entre 1974 y 1977, Zavadskij definió un algoritmo más general, el cual es el algoritmo I con respecto a un par de puntos convenientes, este algoritmo fue utilizado en 1981 por Nazarova y Zavadskij para dar un criterio para la clasificación de los posets de tipo de representación crecimiento finito. En realidad, varios años después, el propio Zavadskij describió la estructura del carcaj de Auslander-Reiten de este tipo de posets, para hacer eso, se estableció que tal algoritmo de hecho es una equivalencia categórica.
Dado que la teoría de representación de posets fue desarrollada en los años ochenta y noventa para posets con estructuras adicionales, por ejemplo, para posets con involución o para posets equipados, desarrollada por Bondarenko, Nazarova, Roiter, Zabarilo y Zavadskij, entre otros. Era necesario definir una nueva clase de algoritmos para clasificar posets con estas estructuras adicionales. De hecho, Zavadskij introdujo 17 algoritmos. Él y Bondarenko utilizaron los algoritmos I-V (y algunas diferenciaciones adicionales) para clasificar los posets con involución, mientras que los algoritmos I, VII-XVII se usaron para clasificar los posets equipados. En particular, los algoritmos I, VII, VIII y IX se usaron para clasificar posets equipados de tipo representación de crecimiento finito sin prestar atención al comportamiento de los morfismos de las categorías correspondientes. En otras palabras, se obtuvo una clasificación de los objetos sin probar que los algoritmos utilizados para abordar los problemas son de hecho equivalencias categóricas, por lo tanto, el principal problema de la teoría de los algoritmos de diferenciación consiste en dar una descripción detallada del comportamiento de los morfismos bajo estos funtores aditivos, tal descripción permite dar una comprensión profunda del carcaj de Auslander-Reiten de las categorías correspondientes.
Por otro lado, en los últimos años se ha observado un gran interés en la aplicación de la teoría de representación de álgebras en diferentes campos de la informática, por ejemplo, en combinatoria, seguridad de la información y análisis de datos topológicos. Ringel y Fahr, por ejemplo, dieron una clasificación de los números de Fibonacci utilizando el carcaj de 3 Kronecker, mientras que la representación de posets y la teoría de posets se han utilizado para analizar las tácticas de guerra y ciberguerra. Además, la teoría de Auslander se ha utilizado para analizar grandes datos a través de la teoría homológica persistente.
En esta investigación, se demuestra que los algoritmos de diferenciación VIII-X inducen equivalencias categóricas entre algunas categorías de cocientes, dando una descripción del carcaj de Auslander-Reiten de algunos posets equipados usando la evolvente asociado a este tipo de posets. En este trabajo, las ideas que surgen de la teoría de la representación de los postes equipados se utilizan para dar una clasificación de los números de Delannoy. De hecho, tales números se interpretan como dimensiones de algunos posets equipados adecuados. También interpretamos el algoritmo de diferenciación VII como un algoritmo esteganográfico que permite generar marcas de agua digitales, dicho algoritmo también se puede utilizar para describir el comportamiento de algún tipo de virus informáticos, de hecho, se explica cómo este algoritmo describe el proceso de infección-detección cuando una red informática se ve afectada por este tipo de malware.
Finalmente, pero no menos importante, recordamos que la teoría de representación de postes equipados es una forma de abordar el problema bicuadrático homogéneo, que es un problema abierto de matrices, en este caso, con respecto a un par de campos (F; G) con G una extensión cuadrática del campo F con respecto a un polinomio de la forma t^2+q, q∈F. En realidad, Zavadskij dio soluciones explícitas a este problema y redescubrió en 2007 las matrices de Krawtchouk introduciendo una interesante transformación θ. En esta investigación, tales matrices de Krawtchouk se usan para dar soluciones explícitas a sistemas no lineales de ecuaciones diferenciales de la forma X'(t)+AX^2 (t)=B, donde X(t); X'(t); A y B son matrices cuadradas de n×n. Las herramientas que surgen de esta solución se denominan en este trabajo el cálculo de Zavadskij.
Esta investigación fue parcialmente apoyada por COLCIENCIAS convocatoria doctorados nacionales 727 de 2015. | |
dc.language | eng | |
dc.publisher | Bogotá - Ciencias - Doctorado en Ciencias - Matemáticas | |
dc.publisher | Departamento de Matemáticas | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | [1] G.E. Andrews, Unsolved problems; further problems on partitions, A.M.M 94 (1987), no. 5, 437–439. | |
dc.relation | [2] ______, The Theory of Partitions, Vol. 2, Cambridge University Press, 1998. 272p. | |
dc.relation | [3] D.M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets, CMS Books in Mathematics, vol. 2, Springer, 2000. 244p. | |
dc.relation | [4] I. Assem, D. Simson, and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Cambridge University Press, Cambridge UK, 2006. 457p. | |
dc.relation | [5] R. Bautista, On algebras of strongly unbounded type, Comm. Math. Helv. 60 (1985), 392–399. | |
dc.relation | [6] R. Bautista and I. Dorado, Algebraically equipped posets, Bol. Soc. Mat. Mex. 23 (2017), 557–609. | |
dc.relation | [7] R. Bautista, P. Gabriel, A.V. Roiter, and L. Salmeron, Representation-finite algebras and multiplicative bases, Invent. Math. 81 (1985), 277–285. | |
dc.relation | [8] G. Birkhoff L.D. Lipson, Heterogeneous Algebras, Journal of Combinatorial Theory 8 (1970), 115–133. | |
dc.relation | [9] A. Bovik, The Essential Guide to Image Processing, Academic Press, London, 2009. 672p. | |
dc.relation | [10] D. Bünermann, Auslander-Reiten Köcher von einparametrigen teilweise geordneter Mengen, Dissertation, Düsseldorf, 1981. | |
dc.relation | [11] A.M. Cañadas, Descripción categórica de algunos algoritmos de diferenciación, (Tesis de Doctorado) Universidad Nacional de Colombia (2007), 157p. | |
dc.relation | [12] ______, Morphisms in categories of representations of equipped posets, JP Journal of Algebra, Number Theory and Applications 25 (2012), no. 2, 145–176. | |
dc.relation | [13] ______, Some categorical properties of the algorithm of differentiation VII for equipped posets, JP Journal of Algebra, Number Theory and Applications 25 (2012), no. 2, 177–213. | |
dc.relation | [14] ______, The school of Kiev in Colombia; the legacy of Alexander Zavadskij, São Paulo Journal of Mathematical Sciences 7 (2013), no. 1, 105–126. | |
dc.relation | [15] A.M. Cañadas, I.D.M. Gaviria, and P.F.F. Espinosa, Categorical properties of the algorithm of differentiation D-VIII for equipped posets, JP Journal of Algebra, Number Theory and Applications 29 (2013), no. 2, 133–156. | |
dc.relation | [16] ______, On the algorithm of differentiation D-IX for equipped posets, JP Journal of Algebra, Number Theory and Applications 29 (2013), no. 2, 157–173. | |
dc.relation | [17] A.M. Cañadas, I.D.M. Gaviria, and H. Giraldo, Representation of equipped posets to generate Delannoy numbers, Far East Journal of Mathematical Sciences 102 (2017), no. 8, 1677–1695. | |
dc.relation | [18] A.M. Cañadas and I.D.M. Gaviria, The Zavadskij's Calculus, JP Journal of Algebra, Number Theory and Applications 44 (2019), no. 2, 211–227. | |
dc.relation | [19] A.M. Cañadas and H. Giraldo, Completion for equipped posets, JP Journal of Algebra, Number Theory and Applications 26 (2012), no. 2, 173–196. | |
dc.relation | [20] A.M. Cañadas, J.-S. Mora, and I.D.M. Gaviria, On the Gabriel's quiver of some equipped posets, JP Journal of Algebra, Number Theory and Applications 36 (2015), no. 1, 63–90. | |
dc.relation | [21] A.M. Cañadas and A.G. Zavadskij, Categorical description of some differentiation algorithms, Journal of Algebra and Its Applications 5 (2006), no. 5, 629–652. | |
dc.relation | [22] I.J. Cox, M. Miller, J.A. Bloom, J. Fridrich, and T. Kalker, Digital Watermarking and Steganography, Elsevier, Burlington MA, 2008. 593p. | |
dc.relation | [23] P. Dräxler and K. Kögerler, An Algorithm for Finding All Preprojective Components of the Auslander-Reiten Quiver, Mathematics of Computation 71 (2001), no. 238, 743–759. | |
dc.relation | [24] D.Z. Djokovič, Classification of pairs consisting of a linear and a semilinear map, Linear Algebra and its Applications 20 (1978), 147–165. | |
dc.relation | [25] Y. A. Drozd, Tame and wild matrix problems, Representations and quadratic forms. Institute of Mathematics, Kiev (1977), 39–74 (in Russian); English transl., Amer. Math. Soc. 128 (1986), 31–55. | |
dc.relation | [26] P. Fahr and C. M. Ringel, A partition formula for Fibonacci numbers, Journal of Integer Sequences 11 (2008), no. 08.14, 1–9. | |
dc.relation | [27] ______, Categorification of the Fibonacci numbers using representations of quivers, Journal of Integer Sequences 15 (2012), no. 12.2.1, 1–12. | |
dc.relation | [28] P. Feinsilver and J. Kocik, Krawtchouk Polynomials and Krawtchouk Matrices, Recent Advances in Applied Probability (2005), 115–141. | |
dc.relation | [29] U. Fischbacher, Une nouvelle preuve de un théoréme de Nazarova et Roiter, C.R. Acad. Sci. Paris I (1985), 259–262. | |
dc.relation | [30] V. Futorny, Y. Samoilenko, and K. Yusenko, Representations of posets: linear versus unitary, Journal of Physics: Conference Series (2012), 17p. | |
dc.relation | [31] P. Gabriel, Représentations indécomposables des ensemblés ordonnés, Semin. P. Dubreil, 26 annee 1972/73, Algebre, Expose 13 (1973), 301–304. | |
dc.relation | [32] P. Gabriel and A.V. Roiter, Representations of Finite-Dimensional Algebras, Algebra VIII, Encyclopedia of Math.Sc., vol. 73, Springer-Verlag, Berlin, New York, 1992. 177p. | |
dc.relation | [33] M. Gasiorek and D. Simson, One-peak posets with positive quadratic Tits form, their mesh translation quivers of roots, and programing in Mapple and Python, Linear Algebra and its Applications 436 (2012), no. 7, 2240–2272. | |
dc.relation | [34] S. Kasjan and D. Simson, Tame prinjective type and Tits form of two-peak posets I, Journal of Pure and Applied Algebra 106 (1996), 307–330. | |
dc.relation | [35] C.O. Kiselman, Asymptotic properties of the Delannoy numbers and similar arrays, Preprint 5-6 (2012), 03–29. | |
dc.relation | [36] M.M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Semin. LOMI 28 (1972), 32–41 (in Russian); English transl., J. Sov. Math 3 (1975), no. 5, 607–615. | |
dc.relation | [37] E. Konstantinou, Metamorphic Virus: Analysis and Detection, Royal Holloway University London (2008). | |
dc.relation | [38] S. Liu, Auslander-Reiten theory in a Krull-Schmidt category, São Paulo Journal of Mathematical Sciences 4 (2010), 425–472. | |
dc.relation | [39] G. Medina and A.G. Zavadskij, The four subspace problem: An elementary solution, Linear Algebra and its Applications 392 (2004), 11–23. | |
dc.relation | [40] L. A. Nazarova, Partially ordered sets of infinite type, Izv. Akad. Nauk SSSR 39 (1975), 963–991 (in Russian). | |
dc.relation | [41] L.A. Nazarova and A.V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Semin. LOMI 28 (1972), 5–31 (in Russian); English transl., J. Sov. Math. 3 (1975), 585–606. | |
dc.relation | [42] ______, Categorical matrix problems and the Brauer-Thrall conjecture, Preprint Inst. Math.AN UkSSR, Ser. Mat. 73.9 (1973), 1–100 (in Russian); English transl. in Mitt.Math. Semin. Giessen 115 (1975). | |
dc.relation | [43] ______, Partially ordered sets of infinite type, Izv. AN SSSR, Ser. Mat. 39 (1975), no. 5, 963–991 (in Russian); English transl., Math. USSR Izvestia 9 (1975), 911–938. | |
dc.relation | [44] ______, Representations and forms of weakly completed partially ordered sets, Linear algebra and representation theory, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev (1977), 19–55 (Russian). | |
dc.relation | [45] ______, Representations of bipartite completed posets, Comment. Math. Helv. 63 (1988), 498–526. | |
dc.relation | [46] L.A. Nazarova and A.G. Zavadskij, Partially ordered sets of tame type, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev (1977), 122-143 (Russian). | |
dc.relation | [47] ______, Partially ordered sets of finite growth, Function. Anal. i Prilozhen., 19 (1982), no. 2, 72–73 (in Russian); English transl., Functional. Anal. Appl., 16 (1982), 135–137. | |
dc.relation | [48] C.M. Ringel, Tame Algebras and Integral Quadratic Forms, LNM, vol. 1099, Springer-Verlag, 1984. 371p. | |
dc.relation | [49] G.X. Ritter and J.N. Wilson, HandBook of Computer Vision Algorithms in Image Algebra, CRC Press, 2000. 448p. | |
dc.relation | [50] C. Rodriguez and A.G. Zavadskij, On corepresentations of equipped posets and their differentiation, Revista Colombiana de Matemáticas 39 (2006). | |
dc.relation | [51] A.V. Roiter, Unboundedness of dimensions of indecomposable representations of algebras having infinitely many indecomposable representations, Izv. Akad. Nauk SSSR Ser. Mat 32 (1968), 1275-1282 (in Russian); English transl., Math. USSR Izvestia 2 (1968), 1223–1230. 1–47. | |
dc.relation | [52] W. Rump, Two-point differentiation for general orders, J. Pure Appl. Algebra 153 (2000), 171–190. | |
dc.relation | [53] ______, Differentiation for orders and artinian rings, Algebras and Representation Theory 7 (2004), 395–417. | |
dc.relation | [54] V.V. Sergeichuk, Pseudolinear matrix pencils and systems of linear differential equations with meromorphic coefficients, Differ Uravneniya 25 (1989), 1721–1727 (in Russian); English transl., Differ. Equations 25 (1989), 1201–1206. | |
dc.relation | [55] N.C. Severo, Matrices with convolutions of binomial functions and Krawtchouck matrices, Linear Algebra and its Applications 429 (2008), 50–56. | |
dc.relation | [56] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, London, 1992. 499p. | |
dc.relation | [57] ______, Mesh geometries of roots orbits of integral quadratic forms, Journal of Pure and Applied Algebra 215 (12011), no. 1, 13–34. | |
dc.relation | [58] K. Spindler, Abstract Algebra with Applications, Vol. I, Marcel Dekker, Inc, New York, Basel, Hong Kong, 1994. 791p. | |
dc.relation | [59] R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999. | |
dc.relation | [60] R.A. Sulanke, Objects counted by the central Delannoy numbers, Journal of integer sequences 6 (2003), no. 03.1.5, 19p. | |
dc.relation | [61] E. Wilding and F. Skulason, Virus Dissection, Virus Bulletin (1990), 12–12. | |
dc.relation | [62] A.G. Zavadskij, Differentiation with respect to a pair of points, Matrix problems, Collect. sci. Works. Kiev (1977), 115–121 (in Russian). | |
dc.relation | [63] A.G. Zavadskij and V.V. Kiričenko, Semimaximal rings of finite type, Mat Sbornik 103 (1977), 323– 345 (in Russian). | |
dc.relation | [64] ______, Torsion-free modules over primary rings, Journal of Soviet Mathematics 11 (1979), no. 4, 598–612. | |
dc.relation | [65] A.G. Zavadskij, The Auslander-Reiten quiver for posets of finite growth, Topics in Algebra, Banach Center Publ. 26 (1990), Part 1, 569–587. | |
dc.relation | [66] ______, An algorithm for posets with an equivalence relation, Canad. Math. Soc. Conf. Proc. 11 (1991), 299–322. | |
dc.relation | [67] ______, Tame equipped posets, Linear Algebra Appl. 365 (2003), 389–465. | |
dc.relation | [68] ______, Equipped posets of finite growth, Representations of Algebras and Related Topics, AMS, Fields Inst. Comm. Ser. 45 (2005), 363–396. | |
dc.relation | [69] ______, On Two Point Differentiation and its Generalization, Algebraic Structures and their Representations, AMS, Contemporary Math. Ser. 376 (2005), 413–436. | |
dc.relation | [70] ______, On the Kronecker Problem and related problems of Linear Algebra, Linear Algebra and Its Applications 425 (2007), 26-62. | |
dc.relation | [71] ______, Representations of generalized equipped posets and posets with automorphisms over Galois field extensions, Journal of Algebra 332 (2011), 386-413. | |
dc.relation | [72] A.V. Zabarilo and A.G. Zavadskij, One-Parameter Equipped Posets and Their Representations, Functional Analysis and Its Applications 34 (2000), no. 2, 138–140. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | Acceso abierto | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | The Auslander-Reiten Quiver of Equipped Posets of Finite Growth Representation Type, some Functorial Descriptions and Its Applications | |
dc.type | Otro | |