dc.contributorEstrada Bonilla, Germán Andrés
dc.contributorAlvarez Flórez, Fagua
dc.contributorSistemas Agropecuarios Sostenibles
dc.creatorCortés Patiño, Sandra Lucía
dc.date.accessioned2020-08-05T15:51:04Z
dc.date.available2020-08-05T15:51:04Z
dc.date.created2020-08-05T15:51:04Z
dc.date.issued2020-01-18
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77940
dc.description.abstractPerennial ryegrass is a forage commonly used in template regions of Colombia for livestock feeding. It has high nutritional values but needs large amounts of water to achieve an optimal growth. The aim of this work was to determine if the inoculation of plant growth-promoting bacteria (PGPB), individually or in dual inoculations, can help to improve the response of this grass to water deficit. First, an assay was performed to select the PGPB that could influence biomass production under 10 days of water deficit. Three co-inoculations were selected: 1) Herbaspirillum sp. AP02 and Herbaspirillum sp. AP21; 2) Herbaspirillum sp AP02. and Pseudomonas sp. N7; and 3) Herbaspirillum sp. AP21 and Azospirillum sp. D7. In vitro assays suggested that these bacteria can colonize ryegrass internal tissues and improve seedlings growth under simulated water deficit (p<0.05). Plant growth-promoting activities evaluation showed an increase in indolic compounds for some dual inoculations, and a negative effect in exopolysaccharide production (p<0.05). Finally, a greenhouse experiment was performed to test the ability of these bacteria to modify some physiological, biochemical and morphological traits of this grass under water deficit. The bacteria had an effect in shoot biomass production, stomatal conductance, proline accumulation and chlorophyll pigments during the days of water deficit (p<0.05). They also improved leaves water status after rehydration, about 12% higher than the control. These results might be the first step to find a PGPB consortium that can help improve the response of ryegrass pastures to water deficit.
dc.description.abstractEl ryegrass perenne es un pasto comúnmente utilizado para alimentación ganadera en el altiplano cundiboyacense. Cuenta con buenas cualidades nutricionales, pero requiere altas cantidades de agua para un óptimo desarrollo. El objetivo de este trabajo fue evaluar si el uso de bacterias promotoras de crecimiento vegetal (PGPB), en forma individual o en coinoculaciones duales, mejora la respuesta de este pasto al déficit hídrico. Se realizó un ensayo inicial con 17 tratamientos y, luego de 10 días sin agua, se seleccionaron tres coinoculaciones debido a su capacidad promotora de crecimiento vegetal (p<0.05): 1) Herbaspirillum sp. AP02 y Herbaspirillum sp. AP21, 2) Herbaspirillum sp. AP02 y Pseudomonas sp. N7, y 3) Herbaspirillum sp. AP21 y Azospirillum sp. D7. Ensayos in vitro con estas bacterias sugieren su capacidad de colonización de tejidos vegetales y de mejorar el desarrollo de plántulas bajo déficit hídrico (p<0.05). En algunas coinoculaciones aumentó la producción de compuestos indólicos in vitro y disminuyó la producción de exopolisacáridos (p<0.05). Finalmente, se realizó una evaluación en invernadero de la capacidad de estas coinoculaciones de modificar algunas respuestas fisiológicas, bioquímicas y morfológicas de este pasto al déficit hídrico. Las bacterias mostraron un efecto en la biomasa, conductancia estomática, acumulación de prolina y pigmentos fotosintéticos durante los días de déficit hídrico (p<0.05). Además, mejoraron el estado hídrico foliar luego de la rehidratación, 12% más que el testigo. Estos resultados sugieren que el uso de coinoculaciones de PGPB como una potencial estrategia para mejorar la resistencia del ryegrass a condiciones de déficit hídrico.
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAhmad, Maqshoof, Zahir A. Zahir, Muhammad Khalid, Farheen Nazli, and Muhammad Arshad. 2013. “Efficacy of Rhizobium and Pseudomonas Strains to Improve Physiology, Ionic Balance and Quality of Mung Bean under Salt-Affected Conditions on Farmer’s Fields.” Plant Physiology and Biochemistry 63: 170–76. https://doi.org/10.1016/j.plaphy.2012.11.024.
dc.relationAmiard, Véronique, Annette Morvan-Bertrand, Jean-Pierre Billard, Claude Huault, Felix Keller, and Marie-Pascale Prud ’homme. 2003. “Fructans, But Not the Sucrosyl-Galactosides, Raffinose and Loliose, Are Affected by Drought Stress in Perennial Ryegrass.” PLANT PHYSIOLOGY 132: 2218–29. https://doi.org/10.1104/pp.103.022335.
dc.relationBaldani, José Ivo, Veronica Massena Reis, Sandy Sampaio Videira, Lúcia Helena Boddey, and Vera Lúcia Divan Baldani. 2014. “The Art of Isolating Nitrogen-Fixing Bacteria from Non-Leguminous Plants Using N-Free Semi-Solid Media: A Practical Guide for Microbiologists.” Plant and Soil 384 (1–2): 413–31. https://doi.org/10.1007/s11104-014-2186-6.
dc.relationBarker, D J, C Y Sullivan, and L W Moser. 1993. “Water Deficit Effects on Osmotic Potential, Cell Wall Elasticity, and Proline in Five Forage Grasses.” Agronomy Journal 85 (March): 270–75. https://doi.org/10.2134/agronj1993.00021962008500020020x.
dc.relationBarra, Patricio J., Nitza G. Inostroza, María L. Mora, David E. Crowley, and Milko A. Jorquera. 2017. “Bacterial Consortia Inoculation Mitigates the Water Shortage and Salt Stress in an Avocado (Persea Americana Mill.) Nursery.” Applied Soil Ecology 111: 39–47. https://doi.org/10.1016/j.apsoil.2016.11.012.
dc.relationBashan, Yoav, and Luz E. de-Bashan. 2010. “How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment.” Advances in Agronomy 108 (January): 77–136. https://doi.org/10.1016/S0065-2113(10)08002-8.
dc.relationBasu, Supratim, Venkategowda Ramegowda, Anuj Kumar, and Andy Pereira. 2016. “Plant Adaptation to Drought Stress [Version 1; Referees: 3 Approved].” F1000Research 5 (0): 1–10. https://doi.org/10.12688/F1000RESEARCH.7678.1.
dc.relationBates, L. S., R. P. Waldren, and I. D. Teare. 1973. “Rapid Determination of Free Proline for Water-Stress Studies.” Plant and Soil 39 (1): 205–7. https://doi.org/10.1007/BF00018060.
dc.relationBothe, A., P. Westermeier, A. Wosnitza, E. Willner, A. Schum, K. J. Dehmer, and S. Hartmann. 2018. “Drought Tolerance in Perennial Ryegrass (Lolium Perenne L.) as Assessed by Two Contrasting Phenotyping Systems.” Journal of Agronomy and Crop Science 204 (4): 375–89. https://doi.org/10.1111/jac.12269.
dc.relationBresson, Justine, Fabrice Varoquaux, Thibaut Bontpart, Bruno Touraine, and Denis Vile. 2013. “The PGPR Strain Phyllobacterium Brassicacearum STM196 Induces a Reproductive Delay and Physiological Changes That Result in Improved Drought Tolerance in Arabidopsis.” New Phytologist 200 (2): 558–69. https://doi.org/10.1111/nph.12383.
dc.relationBrilli, Federico, Susanna Pollastri, Aida Raio, Rita Baraldi, Luisa Neri, Paola Bartolini, Alessandra Podda, Francesco Loreto, Bianca Elena Maserti, and Raffaella Balestrini. 2019. “Root Colonization by Pseudomonas Chlororaphis Primes Tomato (Lycopersicum Esculentum) Plants for Enhanced Tolerance to Water Stress.” Journal of Plant Physiology 232: 82–93. https://doi.org/10.1016/j.jplph.2018.10.029.
dc.relationBrodribb, Timothy J., and Scott A.M. McAdam. 2017. “Evolution of the Stomatal Regulation of Plant Water Content.” Plant Physiology 174 (2): 639–49. https://doi.org/10.1104/pp.17.00078.
dc.relationBrusamarello-Santos, Liziane Cristina, Françoise Gilard, Lenaïg Brulé, Isabelle Quilleré, Benjamin Gourion, Pascal Ratet, Emanuel Maltempi De Souza, Peter J. Lea, and Bertrand Hirel. 2017. “Metabolic Profiling of Two Maize (Zea Mays L.) Inbred Lines Inoculated with the Nitrogen Fixing Plant-Interacting Bacteria Herbaspirillum Seropedicae and Azospirillum Brasilense.” PLoS ONE 12 (3): 1–19. https://doi.org/10.1371/journal.pone.0174576.
dc.relationBurdman, S., E. Jurkevitch, María E. Soria-Díaz, Antonio M.Gil Serrano, and Y. Okon. 2000. “Extracellular Polysaccharide Composition of Azospirillum Brasilense and Its Relation with Cell Aggregation.” FEMS Microbiology Letters 189 (2): 259–64. https://doi.org/10.1016/S0378-1097(00)00294-9.
dc.relationCaldwell, Martyn M, and James H Richards. 1998. “10.1007-S004420050363.Pdf,” 151–61. https://doi.org/10.1007/s004420050363.
dc.relationCasler, M. D. 1995. “Patterns of Variation in a Collection of Perennial Ryegrass Accessions.” Crop Science 35 (4): 1169–77. https://doi.org/10.2135/cropsci1995.0011183X003500040043x.
dc.relationCastillo, Paula, Maximiliano Escalante, Melina Gallardo, Sergio Alemano, and Guillermina Abdala. 2013. “Effects of Bacterial Single Inoculation and Co-Inoculation on Growth and Phytohormone Production of Sunflower Seedlings under Water Stress.” Acta Physiologiae Plantarum 35 (7): 2299–2309. https://doi.org/10.1007/s11738-013-1267-0.
dc.relationCohen, Ana C., Rubén Bottini, Mariela Pontin, Federico J. Berli, Daniela Moreno, Hernán Boccanlandro, Claudia N. Travaglia, and Patricia N. Piccoli. 2015. “Azospirillum Brasilense Ameliorates the Response of Arabidopsis Thaliana to Drought Mainly via Enhancement of ABA Levels.” Physiologia Plantarum 153 (1): 79–90. https://doi.org/10.1111/ppl.12221.
dc.relationComas, L. H., S. R. Becker, V.M. V. Cruz, P. F. Byrne, and D. A. Dierig. 2013. “Root Traits Contributing to Plant Productivity under Drought.” Frontiers in Plant Science 4 (November): 1–16. https://doi.org/10.3389/fpls.2013.00442.
dc.relationCreus, Cecilia M, Rolando J Sueldo, and Carlos A Barassi. 2004. “Water Relations and Yield in Azospirillum- Inoculated Wheat Exposed to Drought in the Field.” Canadian Journal of Botany 82 (2): 273–81. https://doi.org/10.1139/b03-119.
dc.relationCrowder, Loy V, Jaime Vanegas, Jaime Lotero, and Angelo Michelin. 1959. “The Adaptation and Production of Species and Selections of Grasses and Clover in Colombia.” Journal of Range Management Archives 12 (5): 225–30.
dc.relationCui, Yu, Jinsheng Wang, Xingchun Wang, and Yiwei Jiang. 2015. “Phenotypic and Genotypic Diversity for Drought Tolerance among and within Perennial Ryegrass Accessions.” HORTSCIENCE 50 (8): 1148–54.
dc.relationCyriac, Daliya, Rainer W. Hofmann, Alan Stewart, P. Sathish, Christopher S. Winefield, and Derrick J. Moot. 2018. “Intraspecific Differences in Long-Term Drought Tolerance in Perennial Ryegrass.” PLoS ONE 13 (4): 1–17. https://doi.org/10.1371/journal.pone.0194977.
dc.relationDane. 2016. “Encuesta Nacional Agropecuaria ENA-2016.” Boletin Tecnico Comunicación Informativa (DANE). http://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena.
dc.relationDanish, Subhan, and Muhammad Zafar-ul-Hye. 2019. “Co-Application of ACC-Deaminase Producing PGPR and Timber-Waste Biochar Improves Pigments Formation, Growth and Yield of Wheat under Drought Stress.” Scientific Reports 9 (1): 1–13. https://doi.org/10.1038/s41598-019-42374-9.
dc.relationDodd, Ian C, and Annette C Ryan. 2016. “Whole-Plant Physiological Responses to Water-Deficit Stress.” ELS, no. May 2018: 1–9. https://doi.org/10.1002/9780470015902.a0001298.pub3.
dc.relationDubois, Michel, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and Fred Smith. 1956. “Colorimetric Method for Determination of Sugars and Related Substances.” Analytical Chemistry 28 (3): 350–56. https://doi.org/10.1021/ac60111a017. Duca, Maria. 2015. Plant Physiology. Edited by Springer International Publishing. Plant Physiology. Vol. 126. https://doi.org/10.1007/978-3-319-17909-4.
dc.relationEdit Ábrahám, Cecile Hourton-Cabassa, László Erdei, and László Szabados. 2010. “Methods for Determination of Proline in Plants.” In , edited by Ramanjulu Sunkar. New York, USA: Humana Press.
dc.relationEtesami, Hassan. 2018. “Bacterial Mediated Alleviation of Heavy Metal Stress and Decreased Accumulation of Metals in Plant Tissues: Mechanisms and Future Prospects.” Ecotoxicology and Environmental Safety 147 (August 2017): 175–91.
dc.relationFang, Yujie, and Lizhong Xiong. 2015. “General Mechanisms of Drought Response and Their Application in Drought Resistance Improvement in Plants.” Cellular and Molecular Life Sciences 72 (4): 673–89. https://doi.org/10.1007/s00018-014-1767-0.
dc.relationFaralli, Michele, Jack Matthews, and Tracy Lawson. 2019. “Exploiting Natural Variation and Genetic Manipulation of Stomatal Conductance for Crop Improvement.” Current Opinion in Plant Biology 49: 1–7. https://doi.org/10.1016/j.pbi.2019.01.003.
dc.relationFariaszewska, A., J. Aper, J. Van Huylenbroeck, J. Baert, J. De Riek, M. Staniak, and Pecio. 2017. “Mild Drought Stress-Induced Changes in Yield, Physiological Processes and Chemical Composition in Festuca, Lolium and Festulolium.” Journal of Agronomy and Crop Science. https://doi.org/10.1111/jac.12168.
dc.relationFibach-Paldi, Sharon, Saul Burdman, and Yaacov Okon. 2012. “Key Physiological Properties Contributing to Rhizosphere Adaptation and Plant Growth Promotion Abilities of Azospirillum Brasilense.” FEMS Microbiology Letters 326 (2): 99–108. https://doi.org/10.1111/j.1574-6968.2011.02407.x.
dc.relationFoito, Alexandre, Stephen L. Byrne, Tom Shepherd, Derek Stewart, and Susanne Barth. 2009. “Transcriptional and Metabolic Profiles of Lolium Perenne L. Genotypes in Response to a PEG-Induced Water Stress.” Plant Biotechnology Journal 7 (8): 719–32. https://doi.org/10.1111/j.1467-7652.2009.00437.x.
dc.relationFrank, Albert B, Agri-food Canada, and Douglas A Johnson. 1979. “Water Relations of Cool-Season Grasses ’,” no. 34: 127–64.
dc.relationFukami, Josiane, Marco Antonio Nogueira, Ricardo Silva Araujo, and Mariangela Hungria. 2016. “Accessing Inoculation Methods of Maize and Wheat with Azospirillum Brasilense.” AMB Express 6 (1): 1–13. https://doi.org/10.1186/s13568-015-0171-y.
dc.relationGallagher, Joe A., Andrew J. Cairns, David Thomas, Emma Timms-Taravella, Kirsten Skøt, Adam Charlton, Peter Williams, and Lesley B. Turner. 2015. “Fructan Synthesis, Accumulation and Polymer Traits. II. Fructan Pools in Populations of Perennial Ryegrass (Lolium Perenne L.) with Variation for Water-Soluble Carbohydrate and Candidate Genes Were Not Correlated with Biosynthetic Activity and Demonstrate.” Frontiers in Plant Science 6 (OCTOBER). https://doi.org/10.3389/fpls.2015.00864.
dc.relationGarcía, Julia E., Guillermo Maroniche, Cecilia Creus, Ramón Suárez-Rodríguez, José Augusto Ramirez-Trujillo, and María D. Groppa. 2017. “In Vitro PGPR Properties and Osmotic Tolerance of Different Azospirillum Native Strains and Their Effects on Growth of Maize under Drought Stress.” Microbiological Research 202 (April): 21–29. https://doi.org/10.1016/j.micres.2017.04.007.
dc.relationGarcía, Julia E, Guillermo Maroniche, Cecilia Creus, Ramón Suárez-rodríguez, José Augusto Ramirez-trujillo, and María D Groppa. 2017. “In Vitro PGPR Properties and Osmotic Tolerance of Di Ff Erent Azospirillum Native Strains and Their e Ff Ects on Growth of Maize under Drought Stress.” Microbiological Research 202 (April): 21–29. https://doi.org/10.1016/j.micres.2017.04.007.
dc.relationGarcía, S. C., M. R. Islam, C. E.F. Clark, and P. M. Martin. 2014. “Kikuyu-Based Pasture for Dairy Production: A Review.” Crop and Pasture Science. https://doi.org/10.1071/CP13414.
dc.relationGilbert, Matthew E., and Viviana Medina. 2016. “Drought Adaptation Mechanisms Should Guide Experimental Design.” Trends in Plant Science 21 (8): 639–47. https://doi.org/10.1016/j.tplants.2016.03.003.
dc.relationGlick, Bernard R. 2014. “Bacteria with ACC Deaminase Can Promote Plant Growth and Help to Feed the World.” Microbiological Research 169 (1): 30–39. https://doi.org/10.1016/j.micres.2013.09.009.
dc.relation———. 2015. Beneficial Plant-Bacterial Interactions. Beneficial Plant-Bacterial Interactions. https://doi.org/10.1007/978-3-319-13921-0.
dc.relationGlickmann, E., and Y. Dessaux. 1995. “A Critical Examination of the Specificity of the Salkowski Reagent for Indolic Compounds Produced by Phytopathogenic Bacteria.” Applied and Environmental Microbiology 61 (2): 793–96.
dc.relationGOBERNACIÓN DE CUNDINAMARCA. 2014. “Estadísticas de Cundinamarca 2011-2013.” https://doi.org/10.1017/CBO9781107415324.004.
dc.relationGouda, Sushanto, Rout George, Gitishree Das, Spiros Paramithiotis, and Han-seung Shin. 2018. “Revitalization of Plant Growth Promoting Rhizobacteria for Sustainable Development in Agriculture.” Microbiological Research 206 (October
dc.relationGovarthanan, Muthusamy, Seralathan Kamala-Kannan, Seol Ah Kim, Young Seok Seo, Jung Hee Park, and Byung Taek Oh. 2016. “Synergistic Effect of Chelators and Herbaspirillum Sp. GW103 on Lead Phytoextraction and Its Induced Oxidative Stress in Zea Mays.” Archives of Microbiology 198 (8): 737–42. https://doi.org/10.1007/s00203-016-1231-7.
dc.relationHanin, Moez, Faïçal Brini, Chantal Ebel, Yosuke Toda, Shin Takeda, and Khaled Masmoudi. 2011. “Plant Dehydrins and Stress Tolerance: Versatile Proteins for Complex Mechanisms.” Plant Signaling and Behavior 6 (10): 1503–9. https://doi.org/10.4161/psb.6.10.17088.
dc.relationHannaway, David, Steve Fransen, James Cropper, Northeast Pasture Consortium, and Thomas Griggs. 1999. “Perennial Ryegrass (Lolium Perenne L.).” Oregon StateUniversity Extension Service, no. March 2014.
dc.relationHardoim, Pablo Rodrigo, Anna Maria Pirttilä, Fondazione Edmund, Mach Istituto, Pablo R Hardoim, Leonard S Van Overbeek, Gabriele Berg, Maria Pirttilä, Stéphane Compant, and Andrea Campisano. 2015. “The Hidden World within Plants : Ecological and Evolutionary Considerations for Defining Functioning of Microbial ... The Hidden World within Plants : Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes,” no. September. https://doi.org/10.1128/MMBR.00050-14.
dc.relationHassan, W., M. Hussain, S. Bashir, A. N. Shah, R. Bano, and J. David. 2015. “ACC-Deaminase and/or Nitrogen Fixing Rhizobacteria and Growth of Wheat (Triticum Aestivum L.).” Journal of Soil Science and Plant Nutrition 15 (1): 232–48. https://doi.org/10.4067/S0718-95162015005000019.
dc.relationHe, L., J.-H.B. Hatier, and C. Matthew. 2017. “Drought Tolerance of Two Perennial Ryegrass Cultivars with and without AR37 Endophyte.” New Zealand Journal of Agricultural Research 60 (2): 173–88. https://doi.org/10.1080/00288233.2017.1294083.
dc.relationHuang, Linkai, Haidong Yan, Xiaomei Jiang, Guohua Yin, Xinquan Zhang, Xiao Qi, Yu Zhang, Yanhong Yan, Xiao Ma, and Yan Peng. 2014. “Identification of Candidate Reference Genes in Perennial Ryegrass for Quantitative RT-PCR under Various Abiotic Stress Conditions.” PLoS ONE. https://doi.org/10.1371/journal.pone.0093724.
dc.relationIDEAM. 2019. “Boletín de Predicción Climática y Recomendación Sectorial Para Planear y Decidir.”
dc.relationIDEAM, and UDCA. 2015. “Estudio Nacional de La Degradación de Suelos Por Erosión En Colombia- 2015.”
dc.relationInstituto Von Humboldt - IDEAM. 2014. “Informe Técnico Final De Clima Insumos Y Bases De Datos Sig: Levantamiento De Inventarios De Estaciones Meteorológicas En El País, Control De Calidad De Las Bases De Datos De Información Climática, Análisis De La Climatología Nacional Y Generación De Prod.” Vol. 014. http://repository.humboldt.org.co/bitstream/handle/20.500.11761/9579/13-13-014-093CE.pdf?sequence=6&isAllowed=y.
dc.relationJiang, Yiwei, Yu Cui, Zhongyong Pei, Huifen Liu, and Shoujun Sun. 2016. “Growth Response and Gene Expression to Deficit Irrigation and Recovery of Two Perennial Ryegrass Accessions Contrasting in Drought Tolerance.” HORTSCIENCE 51 (7): 921–26.
dc.relationJochum, Michael D., Kelsey L. McWilliams, Eli J. Borrego, Mike V. Kolomiets, Genhua Niu, Elizabeth A. Pierson, and Young-Ki Jo. 2019. “Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses.” Frontiers in Microbiology 10 (September): 1–9. https://doi.org/10.3389/fmicb.2019.02106.
dc.relationJonavičienė, Kristina, Gražina Statkevičiūtė, Vilma Kemešytė, and Gintaras Brazauskas. 2014. “Genetic and Phenotypic Diversity for Drought Tolerance in Perennial Ryegrass (Lolium Perenne L.).” Zemdirbyste-Agriculture. https://doi.org/10.13080/z-a.2014.101.052.
dc.relationKanwal, Shadana, Noshin Ilyas, Nazima Batool, and Muhammad Arshad. 2017. “Amelioration of Drought Stress in Wheat by Combined Application of PGPR, Compost, and Mineral Fertilizer.” Journal of Plant Nutrition 40 (9): 1250–60. https://doi.org/10.1080/01904167.2016.1263322.
dc.relationKasotia, Amrita, and Devendra Kumar Choudhary. 2014. “Role of Endophytic Microbes in Mitigation of Abiotic Stress in Plants.” In Emerging Technologies and Management of Crop Stress Tolerance, edited by P Ahad, Second Edi, 2:97–108. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800875-1.00004-1.
dc.relationKaur, G, and B Asthir. 2014. “Proline : A Key Player in Plant Abiotic Stress Tolerance,” no. X: 1–11. Kaushal, Manoj, and Suhas P. Wani. 2016. “Plant-Growth-Promoting Rhizobacteria: Drought Stress Alleviators to Ameliorate Crop Production in Drylands.” Annals of Microbiology 66 (1): 35–42. https://doi.org/10.1007/s13213-015-1112-3.
dc.relationKhan, Naeem, Asghari Bano, and Peiman Zandi. 2018. “Effects of Exogenously Applied Plant Growth Regulators in Combination with PGPR on the Physiology and Root Growth of Chickpea ( Cicer Arietinum ) and Their Role in Drought Tolerance” 9145 (May). https://doi.org/10.1080/17429145.2018.1471527.
dc.relationKościelniak, Janusz, Władysław Filek, and Jolanta Biesaga-Kościelniak. 2006. “The Effect of Drought Stress on Chlorophyll Fluorescence in Lolium-Festuca Hybrids.” Acta Physiologiae Plantarum 28 (2): 149–58. https://doi.org/10.1007/s11738-006-0041-y.
dc.relationKumar, Manoj, Sankalp Mishra, Vijaykant Dixit, Manoj Kumar, Lalit Agarwal, Puneet Singh Chauhan, and Chandra Shekhar Nautiyal. 2016. “Synergistic Effect of Pseudomonas Putida and Bacillus Amyloliquefaciens Ameliorates Drought Stress in Chickpea (Cicer Arietinum L.).” Plant Signaling and Behavior 11 (1). https://doi.org/10.1080/15592324.2015.1071004.
dc.relationKumari, Sarita, Anukool Vaishnav, Shekhar Jain, Ajit Varma, and Devendra Kumar Choudhary. 2016. “Induced Drought Tolerance through Wild and Mutant Bacterial Strain Pseudomonas Simiae in Mung Bean (Vigna Radiata L.).” World Journal of Microbiology and Biotechnology 32 (1): 1–10. https://doi.org/10.1007/s11274-015-1974-3.
dc.relationLaxa, Miriam, Michael Liebthal, Wilena Telman, Kamel Chibani, and Karl Josef Dietz. 2019. “The Role of the Plant Antioxidant System in Drought Tolerance.” Antioxidants 8 (4). https://doi.org/10.3390/antiox8040094.
dc.relationLee, Jin Hyung, and Jintae Lee. 2010. “Indole as an Intercellular Signal in Microbial Communities.” FEMS Microbiology Reviews 34 (4): 426–44. https://doi.org/10.1111/j.1574-6976.2009.00204.x.
dc.relationLiu, Hongwei, Lilia C Carvalhais, Mark Crawford, Eugenie Singh, Paul G Dennis, Corné MJ Pieterse, and Peer M Schenk. 2017. “Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria.” Frontiers in Microbiology 8 (DEC): 1–17. https://doi.org/10.3389/fmicb.2017.02552.
dc.relationLiu, Qianhe, Chris S. Jones, Anthony J. Parsons, Hong Xue, and Susanne Rasmussen. 2015. “Does Gibberellin Biosynthesis Play a Critical Role in the Growth of Lolium Perenne? Evidence from a Transcriptional Analysis of Gibberellin and Carbohydrate Metabolic Genes after Defoliation.” Frontiers in Plant Science. https://doi.org/10.3389/fpls.2015.00944.
dc.relationMalusà, E., F. Pinzari, and L. Canfora. 2016. “Effi Cacy of Biofertilizers: Challenges to Improve Crop Production.” In Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications, edited by D.P. Singh et al. (eds.), 2:17–40. Springer India 2016. https://doi.org/10.1007/978-81-322-2644-4.
dc.relationMartínez-Vilalta, Jordi, and Núria Garcia-Forner. 2017. “Water Potential Regulation, Stomatal Behaviour and Hydraulic Transport under Drought: Deconstructing the Iso/Anisohydric Concept.” Plant Cell and Environment 40 (6): 962–76. https://doi.org/10.1111/pce.12846.
dc.relationMaxwell, Kate, and Giles N. Johnson. 2000. “Chlorophyll Fluorescence - A Practical Guide.” Journal of Experimental Botany 51 (345): 659–68. https://doi.org/10.1093/jxb/51.345.659.
dc.relationMcCrady, MH. 1915. “The Numerical Interpretation of Fermentation-Tube Results.” The Journal of Infectious Diseases 17 (1): 183–212.
dc.relationMelgarejo, Luz Marina. 2010. Libro Experimentos En Fisiología y Bioquímica Vegetal. Vol. 1.
dc.relationMercado-Blanco, Jesus, and Ben Lugtenberg. 2014. “Biotechnological Applications of Bacterial Endophytes.” Current Biotechnology 3: 60–75. https://doi.org/10.2174/22115501113026660038.
dc.relationMohammadipanah, Fatemeh, and Maryam Zamanzadeh. 2019. “Bacterial Mechanisms Promoting the Tolerance to Drought Stress in Plants.” In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, edited by H. B. Singh et al., 185–224. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-13-5862-3.
dc.relationMonteiro, Rose Adele, Eduardo Balsanelli, Roseli Wassem, Anelis M. Marin, Liziane C.C. Brusamarello-Santos, Maria Augusta Schmidt, Michelle Z. Tadra-Sfeir, et al. 2012. “Herbaspirillum-Plant Interactions: Microscopical, Histological and Molecular Aspects.” Plant and Soil 356 (1–2): 175–96. https://doi.org/10.1007/s11104-012-1125-7.
dc.relationMoreno-Galván, Andres Eduardo, Sandra Cortés-Patiño, Felipe Romero-Perdomo, Daniel Uribe-Vélez, Yoav Bashan, and Ruth Rebeca Bonilla. 2020. “Proline Accumulation and Glutathione Reductase Activity Induced by Drought-Tolerant Rhizobacteria as Potential Mechanisms to Alleviate Drought Stress in Guinea Grass.” Applied Soil Ecology 147 (January
dc.relationNaylor, Dan, Stephanie DeGraaf, Elizabeth Purdom, and Devin Coleman-Derr. 2017. “Drought and Host Selection Influence Bacterial Community Dynamics in the Grass Root Microbiome.” The ISME Journal, 1–14. https://doi.org/10.1038/ismej.2017.118.
dc.relationNeiverth, Adeline, Suellen Delai, Dayane M. Garcia, Kleber Saatkamp, Emanuel Maltempi de Souza, Fábio de Oliveira Pedrosa, Vandeir Francisco Guimarães, Marise Fonseca dos Santos, Eliane Cristina Gruszka Vendruscolo, and Antonio Carlos Torres da Costa. 2014. “Performance of Different Wheat Genotypes Inoculated with the Plant Growth Promoting Bacterium Herbaspirillum Seropedicae.” European Journal of Soil Biology 64: 1–5. https://doi.org/10.1016/j.ejsobi.2014.07.001.
dc.relationNihorimbere, Venant, Hélène Cawoy, Alexandre Seyer, Alain Brunelle, Philippe Thonart, and Marc Ongena. 2012. “Impact of Rhizosphere Factors on Cyclic Lipopeptide Signature from the Plant Beneficial Strain Bacillus Amyloliquefaciens S499.” FEMS Microbiology Ecology 79 (1): 176–91. https://doi.org/10.1111/j.1574-6941.2011.01208.x.
dc.relationNoctor, G., A. Mhamdi, and C. H. Foyer. 2014. “The Roles of Reactive Oxygen Metabolism in Drought: Not So Cut and Dried.” Plant Physiology 164 (4): 1636–48. https://doi.org/10.1104/pp.113.233478.
dc.relationNosalewicz, A., J. Siecińska, K. Kondracka, and M. Nosalewicz. 2018. “The Functioning of Festuca Arundinacea and Lolium Perenne under Drought Is Improved to a Different Extend by the Previous Exposure to Water Deficit.” Environmental and Experimental Botany 156 (September): 271–78. https://doi.org/10.1016/j.envexpbot.2018.09.016.
dc.relationO ’toole, John C, and Rolando T Cruz. 1980. “Response of Leaf Water Potential, Stomatal Resistance, and Leaf Rolling to Water Stress.” Plant Physiol 65: 428–32. https://doi.org/10.1104/pp.65.3.428.
dc.relationOECD-FAO Agricultural Outlook 2019-2028. 2019. OECD-FAO Agricultural Outlook. OECD. https://doi.org/10.1787/agr_outlook-2019-en.
dc.relationOsakabe, Yuriko, Keishi Osakabe, Kazuo Shinozaki, and Lam-Son P. Tran. 2014. “Response of Plants to Water Stress.” Frontiers in Plant Science 5 (March): 1–8. https://doi.org/10.3389/fpls.2014.00086.
dc.relationPan, Ling, Xinquan Zhang, Jianping Wang, Xiao Ma, Meiliang Zhou, LinKai Huang, Gang Nie, Pengxi Wang, Zhongfu Yang, and Ji Li. 2016. “Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium Multiflorum.” Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00519.
dc.relationPeirone, Laura S., Gustavo A. Pereyra Irujo, Alejandro Bolton, Ignacio Erreguerena, and Luis A.N. Aguirrezábal. 2018. “Assessing the Efficiency of Phenotyping Early Traits in a Greenhouse Automated Platform for Predicting Drought Tolerance of Soybean in the Field.” Frontiers in Plant Science 9 (May): 1–14. https://doi.org/10.3389/fpls.2018.00587.
dc.relationPeres, Amanda Ribeiro, Ricardo Antonio Ferreira Rodrigues, Orivaldo Arf, José Roberto Portugal, and Daiene Camila Dias Chaves Corsini. 2016. “Co-Inoculation of Rhizobium Tropici and Azospirillum Brasilense in Common Beans Grown under Two Irrigation Depths.” Revista Ceres 63 (2): 198–207. https://doi.org/10.1590/0034-737X201663020011.
dc.relationPham, Van T.K., Hans Rediers, Maarten G.K. Ghequire, Hiep H. Nguyen, René De Mot, Jos Vanderleyden, and Stijn Spaepen. 2017. “The Plant Growth-Promoting Effect of the Nitrogen-Fixing Endophyte Pseudomonas Stutzeri A15.” Archives of Microbiology 199 (3): 513–17. https://doi.org/10.1007/s00203-016-1332-3.
dc.relationPosada, Sandra, Juan Manuel Cerón, Jhon Arenas, Juan Fernando Hamedt, and Andrés Alvárez. 2013. “Evaluation of Ryegrass (Lolium Sp.) Establishment in Kikuyu Grass (Pennisetum Clandestinum) Paddocks Using Zero Tillage.” Revista CES Medicina Veterinaria y Zootecnia 8 (1): 26–35.
dc.relationPraburaman, Loganathan, Sung Hee Park, Min Cho, Kui Jae Lee, Jeong Ae Ko, Sang Sub Han, Sang Hyun Lee, Seralathan Kamala-Kannan, and Byung Taek Oh. 2017. “Significance of Diazotrophic Plant Growth-Promoting Herbaspirillum Sp. GW103 on Phytoextraction of Pband Zn by Zea Mays L.” Environmental Science and Pollution Research 24 (3): 3172–80. https://doi.org/10.1007/s11356-016-8066-2.
dc.relationPuente, Mariana L., José L. Gualpa, Gastón A. Lopez, Romina M. Molina, Susana M. Carletti, and Fabricio D. Cassán. 2018. “The Benefits of Foliar Inoculation with Azospirillum Brasilense in Soybean Are Explained by an Auxin Signaling Model.” Symbiosis 76 (1): 41–49. https://doi.org/10.1007/s13199-017-0536-x.
dc.relationPuente, Mariana L., Myriam Zawoznik, Marcelo López de Sabando, Gonzalo Perez, José L. Gualpa, Susana M. Carletti, and Fabricio D. Cassán. 2019. “Improvement of Soybean Grain Nutritional Quality under Foliar Inoculation with Azospirillum Brasilense Strain Az39.” Symbiosis 77 (1): 41–47. https://doi.org/10.1007/s13199-018-0568-x.
dc.relationRedmann, Re. 1985. “Adaptation of Grasses to Water Stress-Leaf Rolling and Stomate Distribution.” Annals of the Missouri Botanical Garden 72 (4): 833–42. https://doi.org/10.2307/2399225.
dc.relationRío, Luis A. Del. 2015. “ROS and RNS in Plant Physiology: An Overview.” Journal of Experimental Botany 66 (10): 2827–37. https://doi.org/10.1093/jxb/erv099.
dc.relationRizvi, Asfa, and Mohd Saghir Khan. 2017. “Biotoxic Impact of Heavy Metals on Growth, Oxidative Stress and Morphological Changes in Root Structure of Wheat (Triticum Aestivum L.) and Stress Alleviation by Pseudomonas Aeruginosa Strain CPSB1.” Chemosphere 185: 942–52. https://doi.org/10.1016/j.chemosphere.2017.07.088.
dc.relationRobins, Joseph G., and J. Alan Lovatt. 2016. “Cultivar by Environment Effects of Perennial Ryegrass Cultivars Selected for High Water Soluble Carbohydrates Managed under Differing Precipitation Levels.” Euphytica 208 (3): 571–81. https://doi.org/10.1007/s10681-015-1607-9.
dc.relationRojas-Tapias, Daniel, Andrés Moreno-Galván, Sergio Pardo-Díaz, Melissa Obando, Diego Rivera, and Ruth Bonilla. 2012. “Effect of Inoculation with Plant Growth-Promoting Bacteria (PGPB) on Amelioration of Saline Stress in Maize (Zea Mays).” Applied Soil Ecology 61 (October): 264–72. https://doi.org/10.1016/j.apsoil.2012.01.006.
dc.relationSade, Nir, Eyal Galkin, and Menachem Moshelion. 2015. “Measuring Arabidopsis, Tomato and Barley Leaf Relative Water Content (RWC).” Bio-Protocol 5 (8): e1451. https://doi.org/10.21769/BioProtoc.1451.
dc.relationSandhya, V., Ali SK Z., Minakshi Grover, Gopal Reddy, and B. Venkateswarlu. 2009. “Alleviation of Drought Stress Effects in Sunflower Seedlings by the Exopolysaccharides Producing Pseudomonas Putida Strain GAP-P45.” Biology and Fertility of Soils 46 (1): 17–26. https://doi.org/10.1007/s00374-009-0401-z.
dc.relationSantana, Sheilla Rios Assis, Tadeu Vinhas Voltolini, Gabiane dos Reis Antunes, Valterlina Moreira da Silva, Welson Lima Simões, Carolina Vianna Morgante, Ana Dolores Santiago de Freitas, Agnaldo Rodrigues de Melo Chaves, Saulo de Tarso Aidar, and Paulo Ivan Fernandes-Júnior. 2020. “Inoculation of Plant Growth-Promoting Bacteria Attenuates the Negative Effects of Drought on Sorghum.” Archives of Microbiology. https://doi.org/10.1007/s00203-020-01810-5.
dc.relationSantoyo, Gustavo, Gabriel Moreno-Hagelsieb, Ma del Carmen Orozco-Mosqueda, and Bernard R. Glick. 2016. “Plant Growth-Promoting Bacterial Endophytes.” Microbiological Research 183: 92–99. https://doi.org/10.1016/j.micres.2015.11.008.
dc.relationScharwies, Johannes Daniel, and José R. Dinneny. 2019. “Water Transport, Perception, and Response in Plants.” Journal of Plant Research 132 (3): 311–24. https://doi.org/10.1007/s10265-019-01089-8.
dc.relationShahidi, Reihaneh, Junko Yoshida, Mathias Cougnon, Dirk Reheul, and Marie Christine Van Labeke. 2017. “Morpho-Physiological Responses to Dehydration Stress of Perennial Ryegrass and Tall Fescue Genotypes.” Functional Plant Biology. https://doi.org/10.1071/FP16365.
dc.relationShahzad, Raheem, Abdul L. Khan, Saqib Bilal, Sajjad Asaf, and In Jung Lee. 2018. “What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth.” Frontiers in Plant Science 9 (January): 1–10. https://doi.org/10.3389/fpls.2018.00024.
dc.relationShameer, Syed, and T. N. V. K. V. Prasad. 2018. “Plant Growth Promoting Rhizobacteria for Sustainable Agricultural Practices with Special Reference to Biotic and Abiotic Stresses.” Plant Growth Regulation 0 (0): 0. https://doi.org/10.1007/s10725-017-0365-1.
dc.relationSharma, Pallavi, Ambuj Bhushan Jha, Rama Shanker Dubey, and Mohammad Pessarakli. 2012. “Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions.” Journal of Botany 2012: 1–26. https://doi.org/10.1155/2012/217037.
dc.relationShiva, Sai, Krishna Prasad Vurukonda, Sandhya Vardharajula, Manjari Shrivastava, and Ali Skz. 2016. “Enhancement of Drought Stress Tolerance in Crops by Plant Growth Promoting Rhizobacteria.” Microbiological Research 184: 13–24. https://doi.org/10.1016/j.micres.2015.12.003.
dc.relationSkZ, Ali, Sandhya Vardharajula, and Sai Shiva Krishna Prasad Vurukonda. 2018. “Transcriptomic Profiling of Maize (Zea Mays L.) Seedlings in Response to Pseudomonas Putida Stain FBKV2 Inoculation under Drought Stress.” Annals of Microbiology 68 (6): 331–49. https://doi.org/10.1007/s13213-018-1341-3.
dc.relationSong, Mi Cho, Ryong Kang Beom, Hee Han Song, Anne J. Anderson, Ju Young Park, Yong Hwan Lee, Ho Cho Baik, Kwang Yeol Yang, Choong Min Ryu, and Young Cheol Kim. 2008. “2R,3R-Butanediol, a Bacterial Volatile Produced by Pseudomonas Chlororaphis O6, Is Involved in Induction of Systemic Tolerance to Drought in Arabidopsis Thaliana.” Molecular Plant-Microbe Interactions 21 (8): 1067–75. https://doi.org/10.1094/MPMI-21-8-1067.
dc.relationSu, An Yu, Shu Qi Niu, Yuan Zheng Liu, Ao Lei He, Qi Zhao, Paul W. Paré, Meng Fei Li, Qing Qing Han, Sardar Ali Khan, and Jin Lin Zhang. 2017. “Synergistic Effects of Bacillus Amyloliquefaciens (GB03) and Water Retaining Agent on Drought Tolerance of Perennial Ryegrass.” International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18122651.
dc.relationSzabados, László, and Arnould Savouré. 2010. “Proline: A Multifunctional Amino Acid.” Trends in Plant Science 15 (2): 89–97. https://doi.org/10.1016/j.tplants.2009.11.009.
dc.relationThomas, Henry, and Aneurin R. James. 1999. “Partitioning of Sugars in Lolium Perenne (Perennial Ryegrass) during Drought and on Rewatering.” New Phytologist. https://doi.org/10.1046/j.1469-8137.1999.00388.x.
dc.relationTruyens, Sascha, Nele Weyens, Ann Cuypers, and Jaco Vangronsveld. 2015. “Bacterial Seed Endophytes: Genera, Vertical Transmission and Interaction with Plants.” Environmental Microbiology Reports 7 (1): 40–50. https://doi.org/10.1111/1758-2229.12181.
dc.relationVacheron, Jordan, Guilhem Desbrosses, Marie Lara Bouffaud, Bruno Touraine, Yvan Moënne-Loccoz, Daniel Muller, Laurent Legendre, Florence Wisniewski-Dyé, and Claire Prigent-Combaret. 2013. “Plant Growth-Promoting Rhizobacteria and Root System Functioning.” Frontiers in Plant Science 4 (SEP): 1–19. https://doi.org/10.3389/fpls.2013.00356.
dc.relationVaishnav, Anukool, Ajit Varma, Narendra Tuteja, and Devendra Kumar Choudhary. 2017. “Characterization of Bacterial Volatiles and Their Impact on Plant Health Under Abiotic Stress.” In Volatiles and Food Security: Role of Volatiles in Agro-Ecosystems, edited by Devendra K. Choudhary, Prachi Agarwal, Narendra Tuteja, Anil K. Sharma, and Ajit Varma, 25–43. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-10-5553-9_3.
dc.relationVardharajula, Sandhya, Shaik Zulfikar Ali, Minakshi Grover, Gopal Reddy, and Venkateswarlu Bandi. 2011. “Drought-Tolerant Plant Growth Promoting Bacillus Spp.: Effect on Growth,Osmol Ytes,and Antioxidant Status of Maize under Drought
dc.relationVerslues, Paul E., Manu Agarwal, Surekha Katiyar-Agarwal, Jianhua Zhu, and Jian Kang Zhu. 2006. “Methods and Concepts in Quantifying Resistance to Drought, Salt and Freezing, Abiotic Stresses That Affect Plant Water Status.” Plant Journal 45 (4): 523–39. https://doi.org/10.1111/j.1365-313X.2005.02593.x.
dc.relationVIMAL, Shobhit Raj, Jay Shankar SINGH, Naveen Kumar ARORA, and Surendra SINGH. 2017. “Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review.” Pedosphere 27 (2): 177–92. https://doi.org/10.1016/S1002-0160(17)60309-6.
dc.relationVolaire, Florence, Karim Barkaoui, and Mark Norton. 2014. “Designing Resilient and Sustainable Grasslands for a Drier Future: Adaptive Strategies, Functional Traits and Biotic Interactions.” European Journal of Agronomy 52: 81–89. https://doi.org/10.1016/j.eja.2013.10.002.
dc.relationWang, Wangxia, Basia Vinocur, Oded Shoseyov, and Arie Altman. 2004. “Role of Plant Heat-Shock Proteins and Molecular Chaperones in the Abiotic Stress Response.” Trends in Plant Science 9 (5): 244–52. https://doi.org/10.1016/j.tplants.2004.03.006.
dc.relationWellburn, Alan R. 1994. “The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution.” Journal of Plant Physiology 144 (3): 307–13. https://doi.org/10.1016/S0176-1617(11)81192-2.
dc.relationWilson, Dennis. 1975. “Leaf Growth , Stornatal Diffusion Resistances and Photosynthesis during Droughting of Lolium Perenne Populations Selected for Contrasting Stornatal Length and Frequency.” Annals of Applied Biology 79: 67–82. Wilson, Samuel. 2016. “Intraspecific Differences in the Response of Perennial Ryegrass (Lolium Perenne L.) to Drought.” Lincoln University.
dc.relationZaheer, Muhammad Saqlain, Muhammad Aown Sammar Raza, Muhammad Farrukh Saleem, Imran Haider Khan, Salman Ahmad, Rashid Iqbal, and Kiril Manevski. 2019. “Investigating the Effect of Azospirillum Brasilense and Rhizobium Pisi on Agronomic Traits of Wheat (Triticum Aestivum L.).” Archives of Agronomy and Soil Science 65 (11): 1554–64. https://doi.org/10.1080/03650340.2019.1566954.
dc.relationZarattini, Marco, and Giuseppe Forlani. 2017. “Toward Unveiling the Mechanisms for Transcriptional Regulation of Proline Biosynthesis in the Plant Cell Response to Biotic and Abiotic Stress Conditions” 8 (June): 1–8. https://doi.org/10.3389/fpls.2017.00927.
dc.relationZawoznik, Myriam S., Mayra Ameneiros, María P. Benavides, Susana Vázquez, and María D. Groppa. 2011. “Response to Saline Stress and Aquaporin Expression in Azospirillum- Inoculated Barley Seedlings.” Applied Microbiology and Biotechnology 90 (4): 1389–97. https://doi.org/10.1007/s00253-011-3162-1
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEfecto de la inoculación de bacterias promotoras de crecimiento vegetal en pasto Ryegrass perenne sometido a déficit hídrico
dc.typeDocumento de trabajo


Este ítem pertenece a la siguiente institución