dc.contributorTakeuchi, Caori Patricia
dc.contributorAnálisis, Diseño y Materiales Gies
dc.creatorBarahona Linares, Bryan
dc.date.accessioned2022-06-02T16:54:38Z
dc.date.available2022-06-02T16:54:38Z
dc.date.created2022-06-02T16:54:38Z
dc.date.issued2022-05-02
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81492
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa construcción en mampostería abarca más del 80% del total de las viviendas en Colombia siendo el bloque de perforación horizontal en viviendas de autoconstrucción uno de los ma-teriales más utilizados dados sus asequibles precios y buen funcionamiento ante las cargas de servicio de estos hogares. Gran parte de estas viviendas se encuentran en zonas de alta vulnerabilidad ante eventos sísmicos o remociones en masa, eventos para los cuales la mam-postería, de naturaleza frágil, no presenta el comportamiento deseado para salvaguardar la vida de las personas. El encarecido precio del acero de refuerzo, y las condiciones socioeco-nómica del país, demandan investigar materiales alternativos que, de manera análoga al ace-ro, confieran ductilidad al sistema con un balance entre el costo, su aporte mecánico y su baja complejidad constructiva. La presente investigación, plantea cuatro (4) alternativas de reforzamiento externo embebi-do en el pañete para la mampostería de bloque de perforación horizontal: (i) fibras metálicas con una dosificación de 40 kg/m³, (ii) fibras metálicas con una dosificación de 60 kg/m³, (iii) esterilla de guadua y (iv) malla de gallinero. El plan experimental incluyó la caracterización de cada uno de los materiales, y la construcción de tres (3) probetas para compresión axial por cada tipo de reforzamiento y tres (3) probetas para tensión diagonal por cada técnica considerada. Para propósitos de comparación se ensayaron muretes de mampostería no re-forzada sin pañetar y mampostería con pañete en una cara sin refuerzo. En términos de resistencia máxima a la compresión se reconoce el aporte del mortero pañete con o sin refuerzo, observando el mayor aumento de la resistencia en la alternativa con fi-bras metálicas a una dosificación de 40 kg/m³. De los ensayos a tensión diagonal, el princi-pal aporte de los reforzamientos sobre la mampostería corresponde a evitar una falla súbita de la mampostería, y generar un paulatino proceso de agrietamiento antes de ocurrir la falla, permitiendo la disipación de energía de la mampostería en un rango no lineal. En el caso de la esterilla de guadua, se registraron deformaciones considerablemente mayores a las otras técnicas y un agrietamiento progresivo uniforme en toda la cara pañetada del murete, te-niendo varias diagonales paralelas al momento de su falla. Finalmente, se realizó un análisis multicriterio considerando el aporte de cada técnica a la resistencia mecánica, a la ductilidad del sistema, su costo y facilidad de construcción, en-contrando como la alternativa más adecuada el refuerzo del pañete con fibras metálicas a una dosificación de 40 kg/m³, seguido de la esterilla de guadua y por último la malla de gallinero. El refuerzo con fibras metálicas a una dosificación de 60 kg/m³, no se recomienda como refuerzo debido a su alto costo y a que no representa mayores aportes mecánicos que la alternativa con menores proporciones de fibras. (Texto tomado de la fuente)
dc.description.abstractMasonry construction represents more than 80% of all homes in Colombia. The hollow block clay is one of the most used materials in self-construction homes because of its af-fordable prices and good performance in the face of the service charges of these homes. A large part of these homes is located in areas of high vulnerability to seismic events or mass removals. Masonry (of a fragile nature) does not present the desired behavior to safeguard people's lives. The high price of reinforcing steel, and the socio-economic conditions of the country, demand to investigate alternative and sustainable materials that, in a similar way to steel These materials should be confer ductility to the system with a balance between cost, mechanical contribution and its low constructive complexity. This research proposes four (4) alternatives for external reinforcement embedded in the mortar overlay for horizontally drilled block masonry: (i) steel fibers with a dosage of 40 kg/m, (ii) steel fibers with a dosage of 60 kg/m³, (iii) bamboo-guadua mat and (iv) chicken wire mesh. The experimental plan included the characterization of each of the materials, and the construction of three (3) specimens for axial compression for each type of reinforcement and three (3) specimens for diagonal tension for each technique considered. Unreinforced masonry walls without mortar overlay and masonry with mortar overlay on one face with-out reinforcement were tested for comparison purposes. The mortar overlay with or without reinforcement is gives higher compressive strength to the masonry. The greatest increase in resistance is the alternative with steel fibers at a dos-age of 40 kg/m³. In the diagonal tensile tests, the principal contribution of the reinforce-ments on the masonry corresponds to avoiding a sudden failure of the masonry. A gradual cracking process was also observed before the failure, allowing the dissipation of energy from the masonry in a non-linear range. In the case of the bamboo-guadua mat, higher de-formations were recorded than the other techniques and a uniform progressive cracking on the entire plastered face of the low wall. Several parallel diagonals were also observed at the time of its failure. Finally, an analytic hierarchy process of multicriteria analysis was carried out considering the contribution of each technique to the mechanical resistance, the ductility of the system, its cost and ease of construction. As a result, the most appropriate alternative to reinforce the mortar overlay is the steel fibers at a dosage of 40 kg/m³. In a second place the bamboo-guadua mat and third the chicken wire mesh. Reinforcement with steel fibers at a dosage of 60 kg/m³ is not recommended as reinforcement due to its high cost and because it does not represent greater mechanical contributions than the alternative with lower proportions.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.publisherDepartamento de Ingeniería Civil y Agrícola
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbramo, P. (2012). La ciudad comfusa: Mercado y producción de la estructura urbana en las grandes metrópolis latinoamericanas. Eure, 38(114), 35–69. https://doi.org/10.4067/S0250-71612012000200002
dc.relationAcero, W., Muñoz, S., & Melo, L. E. (2016). Rehabilitación de mampostería no estructural para muros divisorios con listones de guadua. Consultado en www.iranesrd.com
dc.relationACI Committe. (2014). ACI 318S-14.
dc.relationAIS. (2010). Reglamento Colombiano de Construcción Sismo Resistente NSR-10 - Título D.
dc.relationASTM. (2021). Standard Test Method for Compressive Strength of Masonry Prisms, C1314. American Society for Testing and Materials, 1–9.
dc.relationASTM. (2021). Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. E 519 – 02, United States. Astm, 1–5.
dc.relationBEKAERT. Ficha Técnica Dramix 3D 35 mm, (2012).
dc.relationBenedetti, A. (2019). In Plane Behaviour of Masonry Walls Reinforced with Mortar Coatings and Fibre Meshes. International Journal of Architectural Heritage, 13(7), 1029–1041. https://doi.org/10.1080/15583058.2019.1618972
dc.relationBigger, R. P., Carpenter, A., Scott, N., Dannemann, K., Chocron, S., & Williams, C. (2018). Dynamic Response of Aluminum 5083 During Taylor Impact Using Digital Image Correlation. Experimental Mechanics, 58(6), 951–961. https://doi.org/10.1007/s11340-018-0392-5
dc.relationBorri, A., Corradi, M., Castori, G., & Molinari, A. (2019). Stainless steel strip – A proposed shear reinforcement for masonry wall panels. Construction and Building Materials, 211, 594–604. https://doi.org/10.1016/j.conbuildmat.2019.03.197
dc.relationBruneau, M. (1994). State of the art Report On Seismic Performance of Unreinforced Masonry Buildings. Natural Sciences and Engineering Research Council of Canada, 120(1), 230–251
dc.relationCarrillo, Julian, Alcocer, S. M., & Pincheira, J. A. (2012). Seismic rehabilitation of lightly-reinforced, low-rise walls with SFRC overlays. American Concrete Institute, ACI Special Publication, (SP 296), 163–178
dc.relationCarrillo, Julián, Aperador, W., & González, G. (2013). Correlaciones entre las propiedades mecánicas del concreto reforzado con fibras de acero. Ingeniería. Investigación y Tecnología, (número 3), 435–450. Consultado en http://www.redalyc.org/articulo.oa?id=40428278013
dc.relationCarrillo, Julian, Pincheira, J. A., & Alcocer, S. M. (2017). Behavior of low-rise, steel fiber-reinforced concrete thin walls under shake table excitations. Engineering Structures, 138, 146–158. https://doi.org/10.1016/j.engstruct.2017.02.017
dc.relationChuang, S. W., & Zhuge, Y. (2005). Seismic Retrofitting of Unreinforced Masonry Buildings – A Literature Review. Australian Journal of Structural Engineering, 6(1), 25–36. https://doi.org/10.1080/13287982.2005.11464942
dc.relationCruz O., A. I., Pérez-Gavilán E., J. J., & Flores C., L. (2019). Experimental study of in-plane shear strength of confined concrete masonry walls with joint reinforcement. Engineering Structures, 182(June 2018), 213–226. https://doi.org/10.1016/j.engstruct.2018.12.040
dc.relationDANE. (2018). Censo Nacional de Población y Vivienda - CNPV 2018. Consultado en http://systema59.dane.gov.co/bincol/RpWebEngine.exe/Portal?BASE=CNPVBASE4V2&lang=esp
dc.relationDizhur, D., & Ingham, J. M. (2013). Diagonal tension strength of vintage unreinforced clay brick masonry wall panels. Construction and Building Materials, 43, 418–427. https://doi.org/10.1016/j.conbuildmat.2013.02.015
dc.relationFayala, I., Limam, O., & Stefanou, I. (2016). Experimental and numerical analysis of reinforced stone block masonry beams using GFRP reinforcement. Composite Structures, 152, 994–1006. https://doi.org/10.1016/j.compstruct.2016.06.046
dc.relationGallo Arciniegas, L. P., González Peñuela, G., & Carrillo León, J. (2013). Comportamiento del concreto reforzado con fibras de acero ZP-306 sometido a esfuerzos de compresión. Ciencia e Ingeniería Neogranadina, 23(1), 117. https://doi.org/10.18359/rcin.236
dc.relationGamba, C. (2019). Reforzamiento por una Cara de Muros de Mampostería de Arcilla con Unidades de p Perforación Horizontal. 87. Consultado en https://repositorio.unal.edu.co/bitstream/handle/unal/77673/1049631625.2020.pdf?sequence=1&isAllowed=y
dc.relationGattesco, N., & Boem, I. (2015). Experimental and analytical study to evaluate the effectiveness of an in-plane reinforcement for masonry walls using GFRP meshes. Construction and Building Materials, 88, 94–104. https://doi.org/10.1016/j.conbuildmat.2015.04.014
dc.relationGórszczyk, J., Malicki, K., & Zych, T. (2019). Application of digital image correlation (DIC) method for road material testing. Materials, 12(15). https://doi.org/10.3390/ma12152349
dc.relationGuo, Y., Chen, X., Yang, H., Hu, L., Zhang, J., & Fan, X. (2019). Experimental study on direct tension behavior of concrete through combined digital image correlation and acoustic emission techniques. Structural Concrete, 20(6), 2042–2055. https://doi.org/10.1002/suco.201800354
dc.relationHuang, Z., Tu, Y., Meng, S., Sabau, C., Popescu, C., & Sas, G. (2019). Experimental study on shear deformation of reinforced concrete beams using digital image correlation. Engineering Structures, 181(November 2018), 670–698. https://doi.org/10.1016/j.engstruct.2018.12.056
dc.relationIbáñez Londoño, A. M., & Moya, A. (2007). La población desplazada en Colombia : examen de sus condiciones socioeconómica y análisis de las políticas actuales (Departamento Nacional de Planeación, ed.). Bogotá D.C.: Gobierno de Colombia.
dc.relationInostroza, L., & Tábbita, J. H. (2016). Informal Urban Development in the Greater Buenos Aires Area: A Quantitative-Spatial Assessment Based on Households’ Physical Features Using GIS and Principal Component Analysis. Procedia Engineering, 161(0), 2138–2146. https://doi.org/10.1016/j.proeng.2016.08.806
dc.relationInstituto Colombiano de Normas Tecnicas. (2001). Norma Técnica Colombiana NTC 4925: Método de ensayo para determinar la resistencia a la tracción diagonal (cortante) en muretes de mampostería. 12
dc.relationInstituto Colombiano de Normas Tecnicas. (2003). Norma Técnica Colombiana NTC 3495: Método de ensayo para determinar la resistencia a la compresión de muretes de mampostería. 16.
dc.relationKadam, S. B., Singh, Y., & Li, B. (2014). Strengthening of unreinforced masonry using welded wire mesh and micro-concrete - Behaviour under in-plane action. Construction and Building Materials, 54, 247–257. https://doi.org/10.1016/j.conbuildmat.2013.12.033
dc.relationKamrava, A. R., Najafgholipour, M. A., Fathi, F., & Dehghan, S. M. (2021). An experimental study on the in-plane behavior of unreinforced masonry walls with an opening strengthened using steel fiber reinforced concrete overlays. Journal of Building Engineering, 36(December 2020), 102084. https://doi.org/10.1016/j.jobe.2020.102084
dc.relationKubica, J., & Nebojša, M. (2012). Reinforced Masonry in Europe – State of the Art : Masonry Under Compression and Shear. 15th International Brick and Block Masonry Conference
dc.relationLadrillera Santafé. (2017). Ficha Técnica - Bloque # 5. (74), 8–9. Consultado en http://santafe.com.co/images/fichas/FT_BL5.pdf
dc.relationLakavath, C., Joshi, S. S., & Prakash, S. S. (2019). Investigation of the effect of steel fibers on the shear crack-opening and crack-slip behavior of prestressed concrete beams using digital image correlation. Engineering Structures, 193(April), 28–42. https://doi.org/10.1016/j.engstruct.2019.05.030
dc.relationLópez S., Quiroga P., T. N. (2012). Evaluation of unreinforced masonry walls covered with reinforced mortars, Sebastián López ( A ); Pedro N . Quiroga ; Nancy Torres ( A ) En Colombia y en diferentes países de América Latina existe una gran cantidad de edificaciones construidas en muros de mampostería. XXXV Jornadas Sul Americanas de Engenharia Estrutural. Rio de Janeiro
dc.relationMenna, C., Asprone, D., Durante, M., Zinno, A., Balsamo, A., & Prota, A. (2015). Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid. Construction and Building Materials, 100, 111–121. https://doi.org/10.1016/j.conbuildmat.2015.09.051
dc.relationMolano, M. A., & Serrano, A. (2015). Rehabilitación sísmica de mampostería no estructural mediante listones de madera. Pontificia Universidad Javeriana, 1, 1–171
dc.relationMoroz, J. G., Lissel, S. L., & Hagel, M. D. (2014). Performance of bamboo reinforced concrete masonry shear walls. Construction and Building Materials, 61(2014), 125–137. https://doi.org/10.1016/j.conbuildmat.2014.02.006
dc.relationÓrgano de Difusión del Gobierno de la Ciudad de México. (2017). Jefatura de Gobierno Decreto por el que se derogan dos Normas de Ordenación sobre Vialidad , contenidas en el Programa Delegacional de Desarrollo Urbano en Álvaro Obregón Secretaría de Desarrollo Urbano y Vivienda y Secretaría de Obras y Servicios Sismo d. Gaceta Oficial de La Ciudad de México, (211)
dc.relationOskouei, A. V., Jafari, A., Bazli, M., & Ghahri, R. (2018). Effect of different retrofitting techniques on in-plane behavior of masonry wallettes. Construction and Building Materials, 169, 578–590. https://doi.org/10.1016/j.conbuildmat.2018.02.197
dc.relationRezaie, A., Achanta, R., Godio, M., & Beyer, K. (2020). Comparison of crack segmentation using digital image correlation measurements and deep learning. Construction and Building Materials, 261, 120474. https://doi.org/10.1016/j.conbuildmat.2020.120474
dc.relationSaaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8
dc.relationSandoval, O. J., Takeuchi, C., Carrillo, J., & Barahona, B. (2021). Performance of unreinforced masonry panels strengthened with mortar overlays reinforced with welded wire mesh and transverse connectors. Construction and Building Materials, 267, 121054. https://doi.org/10.1016/j.conbuildmat.2020.121054
dc.relationSathiparan, N. (2015). Mesh type seismic retrofitting for masonry structures: Critical issues and possible strategies. European Journal of Environmental and Civil Engineering, 19(9), 1136–1154. https://doi.org/10.1080/19648189.2015.1005160
dc.relationSeo, S. Y., & Jeon, S. M. (2017). Evaluation of prism and diagonal tension strength of masonry form-block walls reinforced with steel fibers. Construction and Building Materials, 152, 394–405. https://doi.org/10.1016/j.conbuildmat.2017.06.168
dc.relationSimoncello, N., Zampieri, P., Gonzalez-Libreros, J., & Pellegrino, C. (2019). Experimental behaviour of damaged masonry arches strengthened with steel fiber reinforced mortar (SFRM). Composites Part B: Engineering, 177(August). https://doi.org/10.1016/j.compositesb.2019.107386
dc.relationTakeuchi, C. (2010). Comportamiento en la mampostería estructural. Bogotá D.C.: Universidad Nacional de Colombia.
dc.relationTakeuchi, C. (2013). Diseño de vigas y muros en mampostería reforzada. (Editorial Universidad Nacional de Colombia, ed.). Bogotá D.C.: Universidad Nacional de Colombia.
dc.relationUNGRD. (2015). Guía de Integración de la Gestión del Riesgo y el Ordenamiento Territorial Municipal. 107. Consultado en www.gestiondelriesgo.gov.co
dc.relationWilding, B. V., Dolatshahi, K. M., & Beyer, K. (2017). Influence of load history on the force-displacement response of in-plane loaded unreinforced masonry walls. Engineering Structures, 152, 671–682. https://doi.org/10.1016/j.engstruct.2017.09.038
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de alternativas de reforzamiento externo para mampostería de bloque de perforación horizontal
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución