dc.contributor | Arenas Salazar, Jose Robel | |
dc.creator | Hurtado Mojica, Roger Anderson | |
dc.date.accessioned | 2021-06-22T20:18:55Z | |
dc.date.available | 2021-06-22T20:18:55Z | |
dc.date.created | 2021-06-22T20:18:55Z | |
dc.date.issued | 2020-12-10 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79680 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | In this work exact solutions of the field equations in the metric formalism of f(R) theory are found for a spherical non-rotating and electrically charged mass distribution within the framework of the non-linear Born-Infeld theory. From these solutions the Black Hole temperature, entropy and specific heat are found and it was demonstrated that they coincide with the analogous quantities for the Reissner-Nordström Black Hole of General Relativity with cosmological constant. It is also found a hypergeometric model of cosmologically viable f(R), whose main characteristic is to generalize the well-known Starobinsky and Hu-Sawicki models. In Chapter 2 there is a review of the metric formalism of f(R) theory, the the field equations are found and since the f(R) theory of gravity can be expressed as a scalar-tensor theory with a scalar degree of freedom phi, by a conformal transformation, the action and its Gibbons-York-Hawking boundary term are written in the Einstein frame and the field equations in this frame are written. An effective potential is defined from part of the trace of the field equations in such a way that it can be calculated as an integral of a purely geometric term. This potential as well as the scalar potential are found, plotted and analyzed for some viable models of f(R) and for two other proposed new, shown viable, models. In Chapter 3, a cosmologically viable hypergeometric model in the modified gravity theory f(R) is found from the need for asintoticity towards LambdaCDM, the existence of an inflection point in the f(R) curve, and the conditions of viability given by the phase space curves (m, r), where m and r are characteristic functions of the model. To analyze the constraints associated with the viability requirements, the models were expressed in terms of a dimensionless variable, i.e. Rto x and f(R)to y(x)=x+h(x)+lambda, where h(x) represents the deviation of the model from General Relativity. Using the geometric properties imposed by the inflection point, differential equations were constructed to relate h'(x) and h''(x), and the solutions found were Starobinsky (2007) and Hu-Sawicki type models, nonetheless, it was found that these differential equations are particular cases of a hypergeometric differential equation, so that these models can be obtained from a general hypergeometric model. The parameter domains of this model were analyzed to make the model viable. Solutions of the field equations in f(R) theory of gravity are found in Chapter 4 for a spherically symmetric and static spacetime in the non-linear electrodynamic theory of Born-Infeld (BI). It is found that the models allowed under these conditions must have the parametric form f'(R)|_r=m+nr, where m and n are constants, whose values and signs have a strong impact on the solutions, as well as on the form and range of the function f(R). When n=0, f(R)=m R+m_0 and Einstein-BI solution is found. When mneq 0 and nneq0, the theory f(R) is asymptotically equivalent to General Relativity (GR), so that the solutions of Schwarzschild and f(R)-Reissner-Nordström can be written in some limits. Similarly, if n>0 and rgg1, the form of f(R) can be approximated by an expansion in series and as a particular case, when R_S=-frac{m^2}{3n}, can be found explicitly f(R)=m R+2nsqrt{R}+m_0. Finally, the solutions, scalar curvature and parametric form of the function f(r) in the non-linear regime (m=0) of the f(R) theory are found, and some models are plotted for specific values of m and n. In Chapter 5 it is used the conformal transformation between Jordan and Einstein frames in the formalism of the scalar-tensor theory, and the definitions of scalar field potentials, to determine in which cases the exact solutions shown here evade some generalized non-hair theorems for f(R) theory. Also, the Starobinsky quadratic model is linearized using Green functions. Some relevant Black Hole thermodynamic properties, namely entropy, temperature and specific heat are described and in some cases plotted, depending on the parameters m, n, q and Lambda, of the f(R) model, for the solutions found in Chapter 4. The technique used to calculate the Black Hole entropy is the Wald method and the symplectic potentials are calculated. It is found that the Black Hole entropy in this theory is no longer proportional to the square of the radius of the horizon, but that its expression changes according to the value of m and n. Finally, the results are discussed in Chapter 7. (Texto tomado de la fuente) | |
dc.description.abstract | En este trabajo se encuentran soluciones exactas de las ecuaciones de campo en el formalismo métrico de la teoría f(R) para una distribución de masa esférica no rotante y cargada eléctricamente en el marco de la teoría no lineal de Born-Infeld. A partir de estas soluciones se encuentran la temperatura, la entropía y el calor específico del agujero negro y se demuestra que coinciden con las cantidades análogas para el agujero negro de Reissner-Nordström de la relatividad general con constante cosmológica. También se encuentra un modelo hipergeométrico de f(R) cosmológicamente viable, cuya principal característica es generalizar los conocidos modelos de Starobinsky y Hu-Sawicki. En el Capítulo 2 se hace una revisión del formalismo métrico de la teoría f(R), se encuentran las ecuaciones de campo y dado que la teoría f(R) de la gravedad puede expresarse como una teoría escalar-tensorial con un grado de libertad escalar phi, mediante una transformación conforme, se escribe la acción y su término de frontera de Gibbons-York-Hawking en el marco de Einstein y se escriben las ecuaciones de campo en este marco. Se define un potencial efectivo a partir de una parte de la traza de las ecuaciones de campo, de manera que pueda calcularse como una integral de un término puramente geométrico. Este potencial, así como el potencial escalar, se encuentran, se trazan y se analizan para algunos modelos viables de f(R) y para otros dos nuevos modelos propuestos, que se muestran viables. En el Capítulo 3, se encuentra un modelo hipergeométrico cosmológicamente viable en la teoría de la gravedad modificada f(R) a partir de la necesidad de asintoticidad hacia LambdaCDM, la existencia de un punto de inflexión en la curva de f(R), y las condiciones de viabilidad dadas por las curvas del espacio de fase (m, r), donde m y r son funciones características del modelo. Para analizar las restricciones asociadas a los requisitos de viabilidad, los modelos se expresaron en términos de una variable adimensional, es decir, R\to x y f(R)\to y(x)=x+h(x)+\lambda, donde h(x) representa la desviación del modelo respecto a la Relatividad General. Utilizando las propiedades geométricas impuestas por el punto de inflexión, se construyeron ecuaciones diferenciales para relacionar h'(x) y h''(x), y las soluciones encontradas fueron modelos del tipo Starobinsky (2007) y Hu-Sawicki, sin embargo, se encontró que estas ecuaciones diferenciales son casos particulares de una ecuación diferencial hipergeométrica, por lo que estos modelos pueden ser obtenidos a partir de un modelo hipergeométrico general. Se analizaron los dominios de los parámetros de este modelo para hacerlo viable. Las soluciones de las ecuaciones de campo en la teoría f(R) de la gravedad se encuentran en el capítulo 4 para un espaciotiempo esféricamente simétrico y estático en la teoría electrodinámica no lineal de Born-Infeld (BI). Se encuentra que los modelos permitidos bajo estas condiciones deben tener la forma paramétrica f'(R)|_r=m+nr, donde m y n son constantes, cuyos valores y signos tienen un fuerte impacto en las soluciones, así como en la forma y rango de la función f(R). Cuando n=0, f(R)=m R+m_0 y se encuentra la solución de Einstein-BI. Cuando m\neq 0 y n\neq 0, la teoría f(R) es asintóticamente equivalente a la Relatividad General (RG), por lo que las soluciones de Schwarzschild y f(R)-Reissner-Nordström pueden escribirse en algunos límites. De forma similar, si n>0 y r\gg1, la forma de f(R) puede aproximarse mediante una expansión en serie y, como caso particular, cuando R_S=-\frac{m^2}{3n}, puede encontrarse explícitamente f(R)=m R+2n\sqrt{R}+m_0. Finalmente, se encuentran las soluciones, la curvatura escalar y la forma paramétrica de la función f(r) en el régimen no lineal (m=0) de la teoría f(R), y se grafican algunos modelos para valores específicos de m y n. En el Capítulo 5 se utiliza la transformación conforme entre los marcos de Jordan y Einstein en el formalismo de la teoría escalar-tensorial, y las definiciones de los potenciales de campo escalar, para determinar en qué casos las soluciones exactas mostradas aquí evaden algunos teoremas generalizados de no-cabello para la teoría f(R). Además, el modelo cuadrático de Starobinsky se linealiza utilizando funciones de Green. Se describen algunas propiedades termodinámicas relevantes de los Agujeros Negros, a saber, la entropía, la temperatura y el calor específico, y en algunos casos se representan gráficamente, en función de los parámetros m, n, q y Lambda, del modelo f(R), para las soluciones encontradas en el capítulo 4. La técnica utilizada para calcular la entropía del Agujero Negro es el método de Wald y se calculan los potenciales simplécticos. Se encuentra que la entropía del Agujero Negro en esta teoría ya no es proporcional al cuadrado del radio del horizonte, sino que su expresión cambia según el valor de m y n. Finalmente, los resultados se discuten en el capítulo 7. (Texto tomado de la fuente) | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Doctorado en Ciencias - Física | |
dc.publisher | Departamento de Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | J. H. J ØRGENSEN , O. O. E. B JÆLDE , AND S. H ANNESTAD , Probing the spin of the central black hole in the galactic centre with secondary images, Mon. Not. Roy. Astron. Soc., 458 (2016), pp. 3614–3618. | |
dc.relation | B. A BBOTT , R. A BBOTT , T. A BBOTT , M. A BERNATHY , F. A CERNESE , K. A CKLEY , C. A DAMS ,
T. A DAMS , P. A DDESSO , R. A DHIKARI ,
AND ET AL .,
Observation of gravitational waves
from a binary black hole merger, Physical Review Letters, 116 (2016). | |
dc.relation | P. A. R. A DE , N. A GHANIM , M. I. R. A LVES , C. A RMITAGE -C APLAN , M. A RNAUD , M. A SH -
DOWN ,
F. A TRIO -B ARANDELA , J. A UMONT , H. A USSEL ,
AND ET AL .,
Planck2013
results. i. overview of products and scientific results, Astronomy & Astrophysics, 571
(2014), p. A1. | |
dc.relation | P. A. R. A DE , N. A GHANIM , C. A RMITAGE -C APLAN , M. A RNAUD , M. A SHDOWN , F. A TRIO -
B ARANDELA , J. A UMONT , C. B ACCIGALUPI , A. J. B ANDAY ,
AND ET AL .,
Planck2013
results. xvi. cosmological parameters, Astronomy & Astrophysics, 571 (2014), p. A16. | |
dc.relation | Planck2013 results. xvii. gravitational lensing by large-scale structure, Astronomy &
Astrophysics, 571 (2014), p. A17. | |
dc.relation | Planck2013 results. xxii. constraints on inflation, Astronomy & Astrophysics, 571
(2014), p. A22. | |
dc.relation | R. K ALLOSH , On inflation in string theory, Lect. Notes Phys., 738 (2008), pp. 119–156. | |
dc.relation | P. A. R. A DE , N. A GHANIM , M. A RNAUD , M. A SHDOWN , J. A UMONT , C. B ACCIGALUPI ,
A. J. B ANDAY , R. B. B ARREIRO , J. G. B ARTLETT ,
AND ET AL .,
Planck2015 results,
Astronomy & Astrophysics, 594 (2016), p. A13. | |
dc.relation | M. A KBAR
AND
R.-G. C AI , Friedmann equations of FRW universe in scalar-tensor gravity,
f(R) gravity and first law of thermodynamics, Phys. Lett., B635 (2006), pp. 7–10. | |
dc.relation | Thermodynamic Behavior of Field Equations for f(R) Gravity, Phys. Lett., B648
(2007), pp. 243–248. | |
dc.relation | L. A MENDOLA , R. G ANNOUJI , D. P OLARSKI ,
AND
S. T SUJIKAWA , Conditions for the
cosmological viability of f(R) dark energy models, Phys. Rev., D75 (2007), p. 083504. | |
dc.relation | Conditions for the cosmological viability off(r)dark energy models, Physical Review
D, 75 (2007).
133BIBLIOGRAPHY | |
dc.relation | L. A MENDOLA , D. P OLARSKI ,
AND
S. T SUJIKAWA , Aref(r)dark energy models cosmologi-
cally viable?, Physical Review Letters, 98 (2007). | |
dc.relation | T. A SAKA , S. I SO , H. K AWAI , K. K OHRI , T. N OUMI ,
AND
T. T ERADA , Reinterpretation of
the Starobinsky model, PTEP, 2016 (2016), p. 123E01. | |
dc.relation | V. A TANASOV , Entropic theory of Gravitation, arXiv e-prints, (2017), p. arXiv:1702.04184. | |
dc.relation | S. B AGHRAM , M. F ARHANG ,
AND
S. R AHVAR , Modified gravity with f(R) = square root of
R**- R**2(0), Phys. Rev., D75 (2007), p. 044024. | |
dc.relation | J. M. B ARDEEN , B. C ARTER ,
AND
S. W. H AWKING , The four laws of black hole mechanics,
Comm. Math. Phys., 31 (1973), pp. 161–170. | |
dc.relation | D. B AUMANN AND L. M C A LLISTER , Advances in Inflation in String Theory, Ann. Rev. Nucl.
Part. Sci., 59 (2009), pp. 67–94. | |
dc.relation | , Inflation and String Theory, Cambridge University Press, 2015.
R. B EAN , D. B ERNAT , L. P OGOSIAN , A. S ILVESTRI , AND M. T RODDEN , Dynamics of Linear
Perturbations in f(R) Gravity, Phys. Rev., D75 (2007), p. 064020. | |
dc.relation | J. D. B EKENSTEIN , Black holes and the second law, Lett. Nuovo Cim., 4 (1972), pp. 737–740. | |
dc.relation | J. D. B EKENSTEIN , Black holes and entropy, Phys. Rev., D7 (1973), pp. 2333–2346. | |
dc.relation | R. B ERNDT , An Introduction to Symplectic Geometry, 2001. | |
dc.relation | C. G. B OEHMER , T. H ARKO ,
AND
F. S. N. L OBO , Dark matter as a geometric effect in f(R)
gravity, Astropart. Phys., 29 (2008), pp. 386–392. | |
dc.relation | M. B OJOWALD
AND
K. V ANDERSLOOT , Loop quantum cosmology, boundary proposals, and
inflation, Phys. Rev., D67 (2003), p. 124023. | |
dc.relation | M. B ORN
AND
L. I NFELD , Foundations of the new field theory, Proc. Roy. Soc. Lond., A144
(1934), pp. 425–451. | |
dc.relation | R. B OUSSO
AND
S. W. H AWKING , (Anti)evaporation of Schwarzschild-de Sitter black holes,
Phys. Rev., D57 (1998), pp. 2436–2442. | |
dc.relation | C. B RANS
AND
R. H. D ICKE , Mach’s Principle and a Relativistic Theory of Gravitation,
Physical Review, 124 (1961), pp. 925–935. | |
dc.relation | P. B RAX
AND
J. M ARTIN , Quintessence and supergravity, Phys. Lett., B468 (1999), pp. 40–
45.
134BIBLIOGRAPHY | |
dc.relation | P. B RAX , C.
VAN DE
B RUCK , A.-C. D AVIS ,
AND
D. J. S HAW , f(r)gravity and chameleon
theories, Physical Review D, 78 (2008). | |
dc.relation | N. B RETÓN , Born-infeld black hole in the isolated horizon framework, Phys. Rev. D, 67
(2003), p. 124004. | |
dc.relation | N. B RETÓN , Geodesic structure of the born–infeld black hole, Classical and Quantum
Gravity, 19 (2002), p. 601. | |
dc.relation | I. H. B REVIK , S. N OJIRI , S. D. O DINTSOV ,
AND
L. V ANZO , Entropy and universality of
Cardy-Verlinde formula in dark energy universe, Phys. Rev., D70 (2004), p. 043520. | |
dc.relation | A. W. B ROOKFIELD , C.
B RUCK ,
VAN DE
AND
L. M. H. H ALL , Viability of f(R) Theories
with Additional Powers of Curvature, Phys. Rev., D74 (2006), p. 064028. | |
dc.relation | D. J. B UETTNER , P. D. M ORLEY ,
AND
I. S CHMIDT , Review of spectroscopic determination
of extra spatial dimensions in the early universe, (2003). | |
dc.relation | R.-G. C AI
AND
Y. S. M YUNG , Black holes in the Brans-Dicke-Maxwell theory, Phys. Rev.,
D56 (1997), pp. 3466–3470. | |
dc.relation | G. C ALCAGNI , de Sitter thermodynamics and the braneworld, JHEP, 09 (2005), p. 060. | |
dc.relation | M. C AMPANELLI
AND
C. O. L OUSTO , Are Black Holes in Brans-Dicke Theory Precisely the
same as in General Relativity?, International Journal of Modern Physics D, 2 (1993),
pp. 451–462. | |
dc.relation | P. C AÑATE , A no-hair theorem for black holes in f (r) gravity, Classical and Quantum
Gravity, 35 (2017), p. 025018. | |
dc.relation | P. C AÑATE , L. G. J AIME ,
AND
M. S ALGADO , Spherically symmetric black holes in f (r)
gravity: is geometric scalar hair supported?, Classical and Quantum Gravity, 33 (2016),
p. 155005.
S ILVA , Lectures on Symplectic Geometry, 2008. | |
dc.relation | A Cannas da SILVA , Lectures on Symplectic Geometry, 2008 | |
dc.relation | S. C APOZZIELLO , Curvature quintessence, Int. J. Mod. Phys., D11 (2002), pp. 483–492. | |
dc.relation | S. C APOZZIELLO , V. F. C ARDONE , S. C ARLONI ,
DA
AND
A. T ROISI , Higher order curvature
theories of gravity matched with observations: A Bridge between dark energy and dark
matter problems, AIP Conf. Proc., 751 (2005), pp. 54–63.
[,54(2004)]. | |
dc.relation | S. C APOZZIELLO , V. F. C ARDONE ,
AND
A. T ROISI , Low surface brightness galaxies rotation
curves in the low energy limit of r**n gravity: no need for dark matter?, Mon. Not. Roy.
Astron. Soc., 375 (2007), pp. 1423–1440. | |
dc.relation | S. C APOZZIELLO , N. F RUSCIANTE , AND D. V ERNIERI , New spherically symmetric solutions
in f(r)-gravity by noether symmetries, General Relativity and Gravitation, 44 (2012). | |
dc.relation | S. C APOZZIELLO , A. S TABILE ,
AND
A. T ROISI , Spherical symmetry inf(r)-gravity, Classical
and Quantum Gravity, 25 (2008), p. 085004.
S. V IGNOLO , The cauchy problem for f(r)-gravity: an overview, 2011. | |
dc.relation | S. C APOZZIELLO S. V IGNOLO , The cauchy problem for f(r)-gravity: an overview, 2011. | |
dc.relation | S. M. C ARROLL , The cosmological constant, Living Reviews in Relativity, 4 (2001).
, Spacetime and geometry: An introduction to general relativity, 2004. | |
dc.relation | S. M. C ARROLL , V. D UVVURI , M. T RODDEN ,
AND
M. S. T URNER , Is cosmic speed-up due
to new gravitational physics?, Phys. Rev. D, 70 (2004), p. 043528. | |
dc.relation | S. C HATTERJEE , A. B ANERJEE ,
AND
Y. Z. Z HANG , Accelerating universe from extra spatial
dimension, Int. J. Mod. Phys., A21 (2006), pp. 4035–4044. | |
dc.relation | B. C HAUVINEAU , Stationarity and large ω Brans Dicke solutions versus general relativity,
General Relativity and Gravitation, 39 (2007), pp. 297–306. | |
dc.relation | R. Y. C HIAO , Conceptual tensions between quantum mechanics and general relativity: Are
there experimental consequences?, (2003). | |
dc.relation | G. C OGNOLA , E. E LIZALDE , S. N OJIRI , S. D. O DINTSOV , L. S EBASTIANI ,
AND
S. Z ERBINI ,
A Class of viable modified f(R) gravities describing inflation and the onset of accelerated
expansion, Phys. Rev., D77 (2008), p. 046009. | |
dc.relation | G. C OGNOLA , E. E LIZALDE , S. N OJIRI , S. D. O DINTSOV ,
AND
S. Z ERBINI , One-loop f(R)
gravity in de Sitter universe, JCAP, 0502 (2005), p. 010. | |
dc.relation | E. J. C OPELAND , M. S AMI ,
AND
S. T SUJIKAWA , Dynamics of dark energy, Int. J. Mod.
Phys., D15 (2006), pp. 1753–1936. | |
dc.relation | E. C ORBELLI
AND
P. S ALUCCI , The extended rotation curve and the dark matter halo of
M33, Monthly Notices of the Royal Astronomical Society, 311 (2000), pp. 441–447. | |
dc.relation | D. G. D UFFY , Green’s functions with applications; 2nd ed., Taylor and Francis, Hoboken,
NJ, 2015. | |
dc.relation | E. D YER
AND
K. H INTERBICHLER , Boundary Terms, Variational Principles and Higher
Derivative Modified Gravity, Phys. Rev., D79 (2009), p. 024028. | |
dc.relation | I. D ÍAZ -S ALDAÑA , J. L ÓPEZ -D OMÍNGUEZ ,
AND
M. S ABIDO , An Effective Cosmological
Constant From an Entropic Formulation of Gravity, (2018). | |
dc.relation | A. E INSTEIN
AND
N. R OSEN , On gravitational waves, Journal of the Franklin Institute,
223 (1937), pp. 43 – 54. | |
dc.relation | E. E LIZALDE , G. G. L. N ASHED , S. N OJIRI ,
AND
S. D. O DINTSOV , Spherically symmetric
black holes with electric and magnetic charge in extended gravity: physical properties,
causal structure, and stability analysis in einstein’s and jordan’s frames, The European
Physical Journal C, 80 (2020). | |
dc.relation | A. L. E RICKCEK , T. L. S MITH ,
AND
M. K AMIONKOWSKI , Solar System tests do rule out
1/R gravity, Phys. Rev., D74 (2006), p. 121501. | |
dc.relation | V. F ARAONI , Black hole entropy in scalar-tensor and f(R) gravity: An Overview, Entropy, 12
(2010), p. 1246. | |
dc.relation | , Jebsen-birkhoff theorem in alternative gravity, Physical Review D, 81 (2010).
S. F AY , R. T AVAKOL ,
AND
S. T SUJIKAWA , f(R) gravity theories in Palatini formalism:
Cosmological dynamics and observational constraints, Phys. Rev., D75 (2007), p. 063509. | |
dc.relation | S. F ERRARA , A. K EHAGIAS ,
AND
A. R IOTTO , The Imaginary Starobinsky Model, Fortsch.
Phys., 62 (2014), pp. 573–583. | |
dc.relation | J. F RIEMAN , M. T URNER ,
AND
D. H UTERER , Dark Energy and the Accelerating Universe,
Ann. Rev. Astron. Astrophys., 46 (2008), pp. 385–432. | |
dc.relation | A. F ROLOV , Singularity problem with f ( r ) models for dark energy, Physical review letters,
101 (2008), p. 061103. | |
dc.relation | V. F ROLOV
AND
I. N OVIKOV , Black Hole Physics. Basic Concepts and New Developments,
1998. | |
dc.relation | A. G UARNIZO , L. C ASTANEDA ,
AND
J. M. T EJEIRO , Boundary Term in Metric f(R) Gravity:
Field Equations in the Metric Formalism, Gen. Rel. Grav., 42 (2010), pp. 2713–2728. | |
dc.relation | A. H. G UTH , Inflationary universe: A possible solution to the horizon and flatness problems,
Phys. Rev. D, 23 (1981), pp. 347–356. | |
dc.relation | , The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,
Phys. Rev., D23 (1981), pp. 347–356. | |
dc.relation | F. H AMMAD , f(R)-modified gravity, Wald entropy, and the generalized uncertainty principle,
Phys. Rev., D92 (2015), p. 044004. | |
dc.relation | T. H ARKO , F. S. N. L OBO , S. N OJIRI ,
AND
S. D. O DINTSOV , f (R, T) gravity, Phys. Rev.,
D84 (2011), p. 024020. | |
dc.relation | S. W. H AWKING , Black holes in general relativity, Commun. Math. Phys., 25 (1972),
pp. 152–166. | |
dc.relation | , Black holes in the Brans-Dicke theory of gravitation, Commun. Math. Phys., 25 (1972),
pp. 167–171. | |
dc.relation | S. W. H AWKING , Black holes in the Brans-Dicke: Theory of gravitation, Communications in
Mathematical Physics, 25 (1972), pp. 167–171. | |
dc.relation | S. W. H AWKING , Gravitational radiation - the theoretical aspect, Contemp. Phys., 13 (1972),
pp. 273–282. | |
dc.relation | Particle creation by black holes, Comm. Math. Phys., 43 (1975), pp. 199–220. | |
dc.relation | Black holes and thermodynamics, Phys. Rev. D, 13 (1976), pp. 191–197. | |
dc.relation | S. W. H AWKING
D. N. P AGE , Thermodynamics of black holes in anti-de sitter space,
AND
Communications in Mathematical Physics, 87 (1983), pp. 577–588. | |
dc.relation | B. H OFFMANN , Gravitational and electromagnetic mass in the born-infeld electrodynamics,
Phys. Rev., 47 (1935), pp. 877–880. | |
dc.relation | R. H OUGH , A. A BEBE ,
AND
S. F ERREIRA , Viability tests of f(R)-gravity models with
supernovae type 1a data, 2020. | |
dc.relation | W. H U
AND
I. S AWICKI , Models of f(R) Cosmic Acceleration that Evade Solar-System Tests,
Phys. Rev., D76 (2007), p. 064004. | |
dc.relation | , Models off(r)cosmic acceleration that evade solar system tests, Physical Review D, 76
(2007). | |
dc.relation | R. A. H URTADO
AND
R. A RENAS , Hypergeometric viable models in f (r) gravity, 2020.
AND
R. A RENAS , Scalar-field potential for viable models in f (r) theory,
2019. | |
dc.relation | R. A. H URTADO
AND
R. A RENAS , Spherically symmetric and static solutions in f(r) gravity
coupled with electromagnetic fields, Physical Review D, 102 (2020). | |
dc.relation | V. I YER
R. M. W ALD , Some properties of Noether charge and a proposal for dynamical
AND
black hole entropy, Phys. Rev., D50 (1994), pp. 846–864. | |
dc.relation | T. J ACOBSON , G. K ANG ,
AND
R. C. M YERS , Increase of black hole entropy in higher
curvature gravity, Phys. Rev., D52 (1995), pp. 3518–3528. | |
dc.relation | T. J ACOBSON
AND
R. C. M YERS , Black hole entropy and higher curvature interactions,
Phys. Rev. Lett., 70 (1993), pp. 3684–3687. | |
dc.relation | N. J AROSIK , C. L. B ENNETT , J. D UNKLEY , B. G OLD , M. R. G REASON , M. H ALPERN ,
R. S. H ILL , G. H INSHAW , A. K OGUT , E. K OMATSU ,
AND ET AL .,
Seven-year wilkinson
microwave anisotropy probe ( wmap ) observations: Sky maps, systematic errors, and
basic results, The Astrophysical Journal Supplement Series, 192 (2011), p. 14. | |
dc.relation | T. J OHANNSEN , C. W ANG , A. E. B RODERICK , S. S. D OELEMAN , V. L. F ISH , A. L OEB ,
AND
D. P SALTIS , Testing General Relativity with Accretion-Flow Imaging of Sgr A*,
Phys. Rev. Lett., 117 (2016), p. 091101. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos Reservados al Autor, 2021 | |
dc.title | Thermodynamics of Black Holes in maximally symmetric spacetimes in f(R) theories of gravity | |
dc.type | Trabajo de grado - Doctorado | |