dc.contributorArunachalam, Viswanathan
dc.contributorProcesos Estocásticos
dc.creatorMartínez Salinas, Erika Johanna
dc.date.accessioned2020-12-15T14:45:15Z
dc.date.available2020-12-15T14:45:15Z
dc.date.created2020-12-15T14:45:15Z
dc.date.issued2020-07-31
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78717
dc.description.abstractIn this work, a stochastic model is presented in order to analyze the behavior over time, between the observed changes in sea surface temperature and its relationship with the catch and abundance of the Goldfish species, in a specific area of the Colombian Pacific. Estimation methods such as maximum likelihood and the Euler-Maruyama method are applied in order to estimate the model parameters and estimate values of sea surface temperature, species abundance and catch per unit of effort for the species under study, between the years 2000-2012. Finally, the simulation results of the exposed model are presented and a sensitivity analysis is developed for the estimated parameters.
dc.description.abstractEn este trabajo se presenta un modelo estocástico que permite analizar el comportamiento, a lo largo del tiempo, entre los cambios observados de temperatura superficial del mar y su relación con la captura y abundancia de la especie pez Dorado, en una zona específica del Pacífico Colombiano. Se aplican métodos de estimación como máxima verosimilitud y el método de Euler-Maruyama con el propósito de estimar los parámetros del modelo y estimar valores de temperatura superficial del mar, abundancia de la especie y captura por unidad de esfuerzo para la especie en estudio, durante el periodo comprendido entre los años 2000-2012. Finalmente se presentan los resultados de la simulación del modelo expuesto y se desarrolla un análisis de sensibilidad para los parámetros estimados.
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisherDepartamento de Estadística
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[Adamovich and Zhukova, 2014] Adamovich, B. and Zhukova, A. (2014). Relationship between chlorophyll α content and some phytoplankton characteristics in fish ponds and adjacent watercourses. Hydrobiological Journal, 50(5).
dc.relation[Aguilar et al., 1995] Aguilar, A., Malpica, Z., and Urbina, B. (1995). Dinamica de poblaciones de peces. primera edición, ed. Libertad, 304pp.
dc.relation[Aguirre et al., 2013] Aguirre, P., González-Olivares, E., and Torres, S. (2013). Stochastic predator–prey model with allee effect on prey. Nonlinear Analysis: Real World Applications, 14(1):768–779.
dc.relation[Alaton et al., 2002] Alaton, P., Djehiche, B., and Stillberger, D. (2002). On modelling and pricing weather derivatives. Applied mathematical finance, 9(1):1–20.
dc.relation[Allison et al., 2009] Allison, E. H., Perry, A. L., Badjeck, M.-C., Neil Adger, W., Brown, K., Conway, D., Halls, A. S., Pilling, G. M., Reynolds, J. D., Andrew, N. L., et al. (2009). Vulnerability of national economies to the impacts of climate change on fisheries. Fish and fisheries, 10(2):173–196.
dc.relation[Auger and Ducrot, 2009] Auger, P. and Ducrot, A. (2009). A model of a fishery with fish stock involving delay equations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1908):4907–4922.
dc.relation[Bahri et al., 2012] Bahri, T., De Young, C., Cochrane, K., and Soto, D. (2012). Consecuencias del cambio climático para la pesca y la acuicultura: visión de conjunto del estado actual de los conocimientos científicos. FAO.
dc.relation[Barbier et al., 2002] Barbier, E. B., Strand, I., and Sathirathai, S. (2002). Do open ac- cess conditions affect the valuation of an externality? estimating the welfare effects of mangrove-fishery linkages in thailand. Environmental and Resource Economics, 21(4):343– 365.
dc.relation[Barboza et al., 2014] Barboza, L., Li, B., Tingley, M. P., Viens, F. G., et al. (2014). Reconstructing past temperatures from natural proxies and estimated climate forcings using short-and long-memory models. The Annals of Applied Statistics, 8(4):1966–2001.
dc.relation[Basawa and Prakasa Rao, 1980] Basawa, I. and Prakasa Rao, B. (1980). Probability and mathematical statistics. a series of monographs and textbooks statistical inference for stochastic processes.
dc.relation[Bhowan, 2003] Bhowan, A. (2003). “temperature derivatives”. School of Computational and Applied Mathematics, University of Wiwatersrand, 1(2):27.
dc.relation[Bibby and Sørensen, 1995] Bibby, B. M. and Sørensen, M. (1995). Martingale estimation functions for discretely observed diffusion processes. Bernoulli, pages 17–39.
dc.relation[Bickel and Doksum, 2015] Bickel, P. J. and Doksum, K. A. (2015). Mathematical statistics: basic ideas and selected topics, volume I, volume 117. CRC Press.
dc.relation[Blanco-Castañeda et al., 2012] Blanco-Castañeda, L. B., Arunachalam, V., and Dharmaraja, S. (2012). Introduction to probability and stochastic processes with applications. John Wiley & Sons.
dc.relation[Brauer et al., 2012] Brauer, F., Castillo-Chavez, C., and Castillo-Chavez, C. (2012). Mathematical models in population biology and epidemiology, volume 2. Springer.
dc.relation[Brody et al., 2002] Brody, D. C., Syroka, J., Zervos, M., et al. (2002). Dynamical pricing of weather derivatives. Quantitative Finance, 2(3):189–198.
dc.relation[Butler et al., 2019] Butler, C., Cheng, J., Correa, L., Preciado-Rivas, M., Rios-Gutierrez, A., Montalvo, C., and Kribs, C. (2019). Comparison of screening for methicillin-resistant staphylococcus aureus (mrsa) at hospital admission and discharge. arXiv preprint arXiv:1911.07711.
dc.relation[Clark et al., 2000] Clark, C. W., Mangel, M., et al. (2000). Dynamic state variable models in ecology: methods and applications. Oxford University Press on Demand.
dc.relation[Cochrane et al., 2014] Cochrane, K., De Young, C., Soto, D., and Bahri, T. (2014). Consecuencias del cambio climático para la pesca y la acuicultura: visión de conjunto del estado actual de los conocimientos científicos. FAO.
dc.relation[Dávila-Cárdenes, 1996] Dávila-Cárdenes, N. (1996). Análisis económico de pesquerías mediante la teoría del control óptimo: una aplicación al modelo predador-presa. PhD thesis.
dc.relation[Dodge, 2008] Dodge, Y. (2008). The concise encyclopedia of statistics. Springer Science & Business Media.
dc.relation[Dornier and Queruel, 2000] Dornier, F. and Queruel, M. (2000). Caution to the wind. Energy & power risk management, 13(8):30–32.
dc.relation[Dzupire et al., 2018] Dzupire, N. C., Ngare, P., and Odongo, L. (2018). Lévy process based ornstein-uhlenbeck temperature model with time varying speed of mean reversion. Advances and applications in statistics, 53(3):199–224.
dc.relation[Einstein, 1956] Einstein, A. (1956). Investigations on the Theory of the Brownian Movement. Courier Corporation.
dc.relation[Friedman, 2010] Friedman, A. (2010). Stochastic differential equations and applications. In Stochastic Differential Equations, pages 75–148. Springer.
dc.relation[Higham, 2001] Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM review, 43(3):525–546.
dc.relation[Karatzas and Shreve, 1998] Karatzas, I. and Shreve, S. E. (1998). Brownian motion. In Brownian Motion and Stochastic Calculus, pages 47–127. Springer.
dc.relation[Kothandaraman, 1972] Kothandaraman, V. (1972). Air-water temperature relationship in illinois river 1. JAWRA Journal of the American Water Resources Association, 8(1):38–45.
dc.relation[Kreyszig, 1978] Kreyszig, E. (1978). Introductory functional analysis with applications, volume 1. wiley New York.
dc.relation[Lefebvre, 2007] Lefebvre, M. (2007). Applied stochastic processes. Springer Science & Business Media.
dc.relation[LEIVA et al., 2007] LEIVA, A. F. A., BONILLA, D. J. P., MOJICA, A. S., and MURCIA, C. T. (2007). Pesca y acuicultura colombia 2007. Ministro de Agricultura y Desarrollo Rural.
dc.relation[Lindop et al., 2015] Lindop, A., Chen, T., Zylich, K., and Zeller, D. (2015). A reconstruction of colombia’s marine fisheries catches. Fisheries Centre Working Paper, 32.
dc.relation[Marín Sánchez et al., 2007] Marín Sánchez, F. H. et al. (2007). Ecuaciones diferenciales estocásticas y casos de aplicación en finanzas. Master’s thesis, Universidad EAFIT.
dc.relation[Mchich et al., 2002] Mchich, R., Auger, P., De La Parra, R. B., and Raissi, N. (2002). Dynamics of a fishery on two fishing zones with fish stock dependent migrations: aggregation and control. Ecological modelling, 158(1-2):51–62.
dc.relation[Merton, 1975] Merton, R. C. (1975). Optimum consumption and portfolio rules in a continuous-time model. In Stochastic Optimization Models in Finance, pages 621–661. Elsevier.
dc.relation[Munro and Scott, 1985] Munro, G. R. and Scott, A. D. (1985). The economics of fisheries management. In Handbook of natural resource and energy economics, volume 2, pages 623–676. Elsevier.
dc.relation[Nelder and Mead, 1965] Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The computer journal, 7(4):308–313.
dc.relation[Oksendal, 2013] Oksendal, B. (2013). Stochastic differential equations: an introduction with applications. Springer Science & Business Media.
dc.relation[Pindyck, 2012] Pindyck, R. S. (2012). Uncertain outcomes and climate change policy. Journal of Environmental Economics and management, 63(3):289–303.
dc.relation[Puentes et al., 2014] Puentes, V., Escobar, F., Polo, C., and Alonso, J. (2014). Estado de los principales recursos pesqueros de colombia–2014. Serie Recursos Pesqueros de Colombia– AUNAP. Oficina de Generación del Conocimiento y la Información, Autoridad Nacional de Acuicultura y Pesca–AUNAP.
dc.relation[Resnick, 2013] Resnick, S. I. (2013). Adventures in stochastic processes. Springer Science & Business Media.
dc.relation[Rincón, 2005] Rincón, L. (2005). Construyendo la integral estocástica de itô. Sociedad Matemática.
dc.relation[Rincón, 2012] Rincón, L. (2012). Introducción a los procesos estocásticos. Departamento de Matemáticas, Facultad de Ciencias UNAM.
dc.relation[Rodríguez, 2015] Rodríguez, U. . (2015). Recursos pesqueros de Colombia, principales especies, conservación y pesca responsable. Ecosistema de agua dulce. Pp: 8-30. En: Zapata, J S. AUNAP y WWF Colombia. Cali, 64 p.
dc.relation[Ríos, 2019] Ríos, A. (2019). Modelos epidemiológicos estocásticos y su inferencia: casos SIS y SEIR. Master’s thesis, Universidad Nacional de Colombia, Bogotá D.C.
dc.relation[Saavedra-Díaz et al., 2016] Saavedra-Díaz, L. M., Pomeroy, R., and Rosenberg, A. A. (2016). Managing small-scale fisheries in colombia. Maritime Studies, 15(1):6.
dc.relation[Schaefer, 1957] Schaefer, M. B. (1957). Some considerations of population dynamics and economics in relation to the management of the commercial marine fisheries. Journal of the Fisheries Board of Canada, 14(5):669–681.
dc.relation[Selvaraj et al., 2020] Selvaraj, J. J., Arunachalam, V., Coronado-Franco, K. V., Romero- Orjuela, L. V., and Ramírez-Yara, Y. N. (2020). Time-series modeling of fishery landings in the colombian pacific ocean using an arima model. Regional Studies in Marine Science, 39:101477.
dc.relation[Shah and Yeolekar, 2016] Shah, N. H. and Yeolekar, B. M. (2016). Optimal fish harvesting with deterioration, effort and price-sensitive demand. Journal of Advances in Applied Mathematics, 1(2):125.
dc.relation[Smith, 1978] Smith, J. B. (1978). An analysis of optimal replenishable resource management under uncertainty.
dc.relation[Sobel and Camargo, 2011] Sobel, A. H. and Camargo, S. J. (2011). Projected future seasonal changes in tropical summer climate. Journal of Climate, 24(2):473–487.
dc.relation[Sørensen et al., 2012] Sørensen, M., Kessler, M., and Lindner, A., editors (2012). Statistical Methods for Stochastic Differential Equations. Monographs on Statistics and Applied Probability. CRC Press.
dc.relation[Thierfelder, 2015] Thierfelder, C. (2015). The trending ornstein-uhlenbeck process and its applications in mathematical finance. Mathematical Finance.
dc.relation[Todorovic, 2012] Todorovic, P. (2012). An introduction to stochastic processes and their applications. Springer Science & Business Media.
dc.relation[Torralba and Besada, 2015] Torralba, J. and Besada, M. (2015). A stochastic model for the iberoatlantic sardine fishery. global warming and economic effects. Ocean & Coastal Management, 114:175–184.
dc.relation[Torro et al., 2003] Torro, H., Meneu, V., and Valor, E. (2003). Single factor stochastic models with seasonality applied to underlying weather derivatives variables. The Journal of Risk Finance.
dc.relation[Wang et al., 2015] Wang, S., Song, S., and Wang, Y. (2015). Skew ornstein–uhlenbeck processes and their financial applications. Journal of Computational and Applied Mathematics, 273:363–382.
dc.relation[Weisberg, 2005] Weisberg, S. (2005). Applied linear regression, volume 528. John Wiley & Sons.
dc.relation[Xie et al., 2010] Xie, S.-P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T. (2010). Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23(4):966–986.
dc.relation[Zeller and Pauly, 2007] Zeller, D. and Pauly, D. (2007). Reconstruction of marine fisheries catches for key countries and regions (1950-2005).
dc.relation[Zill Dennis et al., 2012] Zill Dennis, G., Wright Warren, S., and Cullen Michael, R. (2012). Differential equations with boundary-value problems.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleUn modelo estocástico para analizar los efectos de la variación de la temperatura sobre la captura pesquera a lo largo de la costa del Pacífico Colombiano
dc.typeOtro


Este ítem pertenece a la siguiente institución