dc.contributorHernández Pardo, Orlando
dc.contributorCampos Enriquez, Oscar
dc.creatorQuintero Camacho, Wilson
dc.date.accessioned2021-02-09T15:28:12Z
dc.date.available2021-02-09T15:28:12Z
dc.date.created2021-02-09T15:28:12Z
dc.date.issued2020-12-11
dc.identifierQuintero Camacho, W. (2020). Modelamiento termo-mecánico en la zona de subducción del Caribe colombiano -área Sinú San Jacinto- a partir de la interpretación de anomalías de campos potenciales [Tesis de doctorado, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79157
dc.description.abstractSe propone una estructura térmica para la zona de subducción del Caribe colombiano, área Sinú-San Jacinto, en la esquina Noroccidental de Suramérica, bajo las hipótesis de subducción plana para la placa Caribe bajo la placa Suramérica y un origen Pacífico Oriental para la placa Caribe. La estructura térmica de la zona se obtiene al aplicar los códigos Temspol (cinemático) e i3Elvis (dinámico) en Matlab, que resuelven las ecuaciones de energía, masa, momento y Navier-Stoke, bajo un esquema numérico de diferencias finitas. En el modelamiento cinemático se resuelve solamente la ecuación de energía con una geometría fija y predefinida. En el modelamiento termo-cinemático-reológico, se incorporan parámetros reológicos a los nodos del modelo termo-cinemático. En el modelamiento termo-mecánico, se resuelven en forma simultánea las ecuaciones de energía, masa, momento y Navier-Stoke; aquí, la geometría no es fija, es producto de: (1) la libertad del movimiento de la placa en subducción; (2) los parámetros físicos de la placa; (3) las condiciones de frontera del modelo; y (4) las propiedades reológicas de la litología de las capas que componen el modelo. La estructura térmica propuesta, se valida mediante la comparación del flujo de calor estimado por los modelos termo-mecánico y termo-cinemático, con el flujo de calor estimado por el método de la profundidad del punto de Curie (CPD), calculado mediante la técnica espectral, en su modalidad fractal, para anomalías magnéticas. La interpretación de la estructura térmica está sujeta a restricciones impuestas por: (1) el modelamiento directo bidimensional del subsuelo a partir de señales de métodos potenciales; (2) las estimaciones de la frontera cortical frágil-dúctil, desde los modelos térmicos y los análisis isostáticos, en sus mecanismos de compensación tipo Airy y regional, en sus formas unidimensional y bidimensional, bajo las técnicas espacial y espectral; y (3) la información geológica y geofísica, principalmente de los modelos evolutivos paleo-tectónicos y palinpásticos. Se encontró que: (1) el flujo de calor estimado a partir de los modelos térmicos es coherente con el flujo de calor estimado por el método del CPD; (2) la distribución espacial del flujo de calor superficial es válida para el Caribe colombiano; (3) el flujo de calor estimado conserva la misma forma que el flujo de calor en una zona de subducción en el noroeste de Japón; y (4) la interpretación de la estructura térmica propuesta es coherente con las reconstrucciones paleo-tectónicas, donde se plantea que la evolución de la zona de convergencia entre las placas Caribe y Suramérica probablemente ha sufrido dos eventos subductivos, uno en el Cretácico-Paleógeno y otro en el Mioceno Medio. Se concluye que el régimen térmico del Caribe colombiano está caracterizado por: la subducción plana de la placa Caribe bajo la placa Suramérica, con un ángulo de subducción menor a 30° y una velocidad de convergencia promedio de 2 cm/año; una litosfera oceánica que contiene una corteza oceánica caribeña de edad Cretácica, cuya segunda fase de subducción inició hace 45 Ma, aproximadamente; y que el régimen térmico en la zona de estudio es un 20% menor que el régimen térmico calculado para una zona de subducción normal.
dc.description.abstractThe objective of this work is to propose a thermal structure for the Colombian Caribbean subduction zone, Sinú-San Jacinto área, in the Northwestern corner of South America, under the hypothesis that the Caribbean plate presents flat subduction under the South American plate, with Eastern Pacific origin; associated to the Caribbean plate. The thermal structure of the study area was obtained by applying the Temspol (kinematic) and i3Elvis (dynamic) Matlab codes. Such codes solve the energy, mass, momentum, and Navier-Stokes equations, under a finite difference numerical scheme. Concerning to kinematic modeling, the geometry is fixed and predefined, involving only the energy equation; which is solved. In kinematic-rheological modeling, rheological parameters are incorporated in thermo-kinematic model’s nodes. In thermo-mechanical modeling, energy, mass, momentum, and Navier-Stokes equations are solved simultaneously; geometry is not fixed, as in kinematic modeling, it is the product of: (1) free movement of the plate in subduction; (2) physical plate parameters; (3) model boundary conditions; and (4) rheological properties based on a stratified media model. The proposed thermal structure in this work is well founded by comparing the estimated heat flux from the thermo-mechanical and thermo-kinematic models, with the heat flux estimated by the Curie point depth methodology (CPD), through the spectral technique in its fractal modality, applied to magnetic anomalies. The thermal structure interpretation is subject to restrictions such as: (1) two-dimensional direct modelling based on potential fields data (2) cortical boundary fragile-ductile based on estimations of thermal models and the isostatic analysis based on Airy and regional compensation mechanisms, in one and two-dimensional forms, using spatial and spectral techniques; and (3) geological and geophysical information, mainly from paleo-tectonic and palinspastic evolutionary models. Relevant remarks are: heat flux estimated from the thermal models is consistent with the heat flux estimated by the CPD method; spatial distribution of surface heat flux is valid for the Colombian Caribbean sea; heat flux estimated in this work retains the same shape as the heat flux in a similar subduction zone in northwestern Japan; the interpretation of the proposed thermal structure is consistent with the paleo-tectonic reconstructions as well, where the convergence zone evolution between the Caribbean and South American plates has probably undergone two subductive events, first in the Cretaceous-Paleogene, and another later in the Middle Miocene. Such evidences lead to the conclusion that the thermal regime of the Colombian Caribbean sea is characterized by the flat subduction of the Caribbean plate under the South American plate, with a subduction angle lower than 30° and an average convergence speed of 2 cm/year; the existence of an oceanic lithosphere containing a Caribbean oceanic crust of Cretaceous age, whose second subduction phase began approximately 45 Ma ago; and thermal regime in the study zone is 20% lower than the calculated thermal regime for a normal subduction zone.
dc.languagespa
dc.publisherBogotá - Ciencias - Doctorado en Geociencias
dc.publisherDepartamento de Geociencias
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbraham, E. M., Obande, E. G., Chukwu, M., Chukwu, C. G., y Onwe, M. R. (2015). Estimating depth to the bottom of magnetic sources at Wikki Warm Spring region, northeastern Nigeria, using fractal distribution of sources approach. Turkish Journal of Earth Sciences, 24(5), 494–512. https://doi.org/10.3906/yer-1407-12
dc.relationAgencia Nacional de Hidrocarburos. (2012) Anomalías Bouguer Total. Recuperado el 15 de marzo, 2018, de http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Metodos-Remotos /Paginas/Anomalias-Bouguer-total.aspx
dc.relationAguilera, R. (2011). Sinú And San Jacinto Basins Vol. 12. Medellín, Colombia: ANH-University EAFIT. Department of Geology
dc.relationAleman, A. (1983). Geology and Hydrocarbon Evolution of Northwest Colombia. Report of Central Exploration Technology Center. Gulf Oil Exploration and Production Company, 66
dc.relationAlldredge, L. R., y Van Voorhis, G. D. (1961). Depth to sources of magnetic anomalies. Journal of Geophysical Research, 66(11), 3793–3800. https://doi.org/10.1029/JZ066i011p03793
dc.relationAllMcC. 2013. Moho map - Mohorovičić Discontinuity. Germany: Christian-Albrechts University of Kiel. http://commons.wikimedia.org/wiki/File:Mohomap.png#mediaviewer/ File: Mo ho map.png, accedido Agosto 26, 2014
dc.relationAlvarado, L. M. (2014). Modelado del Cinturón Deformado del Caribe Sur mediante el análisis de flexión de placas, al Norte de la Antillas Holandesas. (Tesis de pregrado). Universidad Central de Venezuela, Caracas, Venezuela. Recuperado de http://saber.ucv.ve/handle/123456789/15220
dc.relationAnakwuba, E. K., y Chinwudo, A. I. (2015). One Dimensional Spectral Analysis and Curie Depth Isotherm of Eastern Chad Basin, Nigeria. Journal of Natural Sciences Research, 519(19), 14-22. Recuperado de https://www.iiste.org/Journals/index.php/JNSR/article/view/26482
dc.relationAngiboust, S., Wolf, S., Burov, E., Agard, P., y Yamato, P. (2012). Effect of Fluid Circulation on Subduction Interface Tectonic Processes: Insights from Thermo-Mechanical Numerical Modelling. Earth and Planetary Science Letters, 357, 238–248. https://doi.org/10.1016/j.epsl.2012.09.012
dc.relationArnaiz, M. S., y Audemard, F. (2014). Variations in Elastic Thickness and Flexure of the Maracaibo Block. Journal of South American Earth Sciences, 56, 251–264. https://doi.org/10.1016/j.jsames.2014.09.014
dc.relationArnaiz, M. S., Rodríguez, I., y Audemard, F. (2011). Análisis Gravimétrico y Flexural Del Occidente de Venezuela. Revista Mexicana de Ciencias Geológicas, 28(3), 420-438. [Links]
dc.relationArnaiz-Rodríguez, M. S., y Orihuela, N. (2013). Curie point depth in Venezuela and the Eastern Caribbean. Tectonophysics, 590, 38–51. https://doi.org/10.1016/j.tecto.2013.01.004
dc.relationArvidson, R. E., Guinnes E. A., Strebeck J. W., Davies G. F., y Schulz, K. J. (1982). Image Processing Applied to Gravity and Topography Data Covering the Continental US. Eos, Transactions American Geophysical Union, 63(18), 257–265. https://doi.org/10.1029/EO063i018p00257
dc.relationAtes, A., Bilim, F., y Buyuksarac, A. (2005). Curie point depth investigation of Central Anatolia, Turkey. Pure and Applied Geophysics, 162(2), 357–371. https://doi.org/10.1007/s00024-004-2605-3
dc.relationAudemard, FA, M Schmitz, y F. Urbani. 2014. Active Block Tectonics in and around the Caribbean: A Review. El Límite Noreste de La Placa Suramericana-Estructuras Litosféricas de La Superficie al Manto (The Northeastern Limit of the South American Plate-Lithospheric Structures from Surface to the Mantle): 29–77. Recuperado de https://www.academia.edu/27080902/El_L%C3%ADmite_Noreste_de_la_Placa_SuramericanaEstructuras_Litosf%C3%A9ricas_de_la_Superficie_al_Manto_The_Northeastern_Limit_of_the_South_American_Plate_-Lithospheric_Structures_from_Surface_to_the_Mantle
dc.relationAydın, I., y Oksum, E. (2012). MATLAB code for estimating magnetic basement depth using prisms. Computers & Geosciences, 46, 183–188. https://doi.org/10.1016/j.cageo.2011.12.006
dc.relationBagherbandi, M. (2012). A Comparison of Three Gravity Inversion Methods for Crustal Thickness Modelling in Tibet Plateau. Journal of Asian Earth Sciences, 43(1), 89–97. ttps://doi.org/10.1016/j.jseaes.2011.08.013
dc.relationBalogun, O. B. (2019). Preliminary Interpretation of Isostatic Residual Gravity Anomalies within the Central Portion of the Equatorial Atlantic African Region. SN Applied Sciences, 1. https://doi.org/10.1007/s42452-019-0440-5
dc.relationBansal, A., Anand, S., Rajaram, M., Rao, V., y Dimri, V. (2013). Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central India using modified centroid method for fractal distribution of sources. Tectonophysics, 603, 155–161. https://doi.org/10.1016/j.tecto.2013.05.024
dc.relationBansal, A., Gabriel, G., y Dimri, V. (2010). Power law distribution of susceptibility and density and its relation to seismic properties: An example from the German Continental Deep Drilling Program (KTB). Journal of Applied Geophysics, 72(2), 123–128. https://doi.org/10.1016/j.jappgeo.2010.08.001
dc.relationBansal, A., Gabriel, G., Dimri, V., y Krawczyk, C. (2011). Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany. Geophysics, 76(3), L11–L22. https://doi.org/10.1190/1.3560017
dc.relationBansal, A. R., y Anand, S. P. (2012). Estimation of depth to the bottom of magnetic sources (DBMS) using modified centroid method from Aeromagnetic data of Central India. En 9th India Conference, SPG, Expanded Abstract (p. P343). Recuparado de https://www.spgindia.org/spg_2012/spgp343.pdf
dc.relationBansal, S., y Dimri, V. (1994). Scaling properties of potential fields due to scaling sources. Geophysical Research Letters, 21(10), 891–894. https://doi.org/10.1029/94GL00771
dc.relationBayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J., y Reyes, A. (2008). An Integrated Analysis of an Orogen–Sedimentary Basin Pair: Latest Cretaceous–Cenozoic Evolution of the Linked Eastern Cordillera Orogen and the Llanos Foreland Basin of Colombia. Geological Society of America Bulletin, 120(9–10): 1171–1197. https://doi.org/10.1130/B26187.1
dc.relationBeardsmore, G. R., y Cull, J. P. (2001). Crustal Heat Flow: A Guide to Measurement and Modelling. Cambridge University Press, Cambridge, Inglaterra. Doi:10.1017/CBO9780511606021
dc.relationBecker, T. W., y Kaus, B. (2016). Numerical Modeling of Earth Systems. An Introduction to Computational Methods with Focus on Solid Earth Applications of Continuum Mechanics. University of Southern California, Los Angeles. Notas de lectura (224Páginas), Disponible Online en https://ndownloader.figshare.com/files/2287816
dc.relationBello, R., Ofoha, C., y Wehiuzo, N. (2017). Geothermal Gradient, Curie Point Depth and Heat Flow Determination of Some Parts of Lower Benue Trough and Anambra Basin, Nigeria, Using High Resolution Aeromagnetic Data. Physical Science International Journal, 15 (2), 1-11. https://doi.org/10.9734/PSIJ/2017/34654
dc.relationBelmonte, S. (2010). Estudio de la isoterma de Curie en una zona de Oaxaca. Modelado numérico de datos Magnéticos. Instituto politécnico nacional. Recuperado de http://www.ciidiroaxaca.ipn.mx/sjimenez/sites/www.ciidiroaxaca.ipn.mx.sjimenez/files/pdf/Producto%20Sabatico%20SALVADOR%20BELMONTE%20J.pdf
dc.relationBernal, R. (2014). Tectonostratigraphic Evolution of the Sinu Accretionary Prism and Lower Magdalena Forearc Basin Formed above a Shallow-Dipping Subduction Zone, Caribbean Margin of Colombia (Tesis de Doctorado). University oh Houston, Texas, Estados Unidos. Recuperado de https://uh-ir.tdl.org/handle/10657/1567
dc.relationBernal-Olaya, R., Mann, P., y Vargas, C. (2015). Earthquake, Tomographic, Seismic Reflection, and Gravity Evidence for a Shallowly Dipping Subduction Zone beneath the Caribbean Margin of Northwestern Colombia. En Petroleum Geology and Potential of the Colombian Caribbean Margin. American Association of Petroleum Geologists. https://doi.org/10.1306/13531939M1083642
dc.relationBhattacharyya, B. K., y Leu, L.-K. (1975). Analysis of magnetic anomalies over Yellowstone National Park: Mapping of Curie point isothermal surface for geothermal reconnaissance. Journal of Geophysical Research, 80(32), 4461–4465. https://doi.org/10.1029/JB080i032p04461
dc.relationBhattacharyya, B., y Leu, L.K. (1977). Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics, 42(1), 41–50. https://doi.org/10.1190/1.1440712
dc.relationBhattacharyya, B., y Morley, L. (1965). The Delineation of Deep Crustal Magnetic Bodies from Total Field Aeromagnetic Anomalies. Journal of geomagnetism and geoelectricity, 17(3-4), 237-252. https://doi.org/10.5636/jgg.17.237
dc.relationBlakely, R. J. (1996). Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge, Inglaterra. https://doi.org/10.1017/CBO9780511549816
dc.relationBoler, F. M. (1978). Aeromagnetic measurements, magnetic source depths, and the Curie point isotherm in the Vale-Owyhee, Oregon geothermal area. (Tesis de Maestria). Oregon State University, Oregón, Estados Unidos. Recuperado de https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/rj4307136
dc.relationBoschman, L., van Hinsbergen, J., Torsvik, T., Spakman, W., y Pindell, J. (2014). Kinematic Reconstruction of the Caribbean Region since the Early Jurassic. Earth-Science Reviews, 138, 102–136. https://doi.org/10.1016/j.earscirev.2014.08.007
dc.relationBouligand, C., Glen, J. M., y Blakely, R. J. (2009). Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. Journal of Geophysical Research: Solid Earth, 114, 1-25. https://doi.org/10.1029/2009JB006494
dc.relationBowie, W. (1912). Geodesy; Effect of Topography and Isostatic Compensation Upon the Intensity of Gravity. (Second Paper) by William Bowie. US Government Printing Office.
dc.relationBraz, C., Seton, M., Flament, N., y Müller, R. D. (2018). Geodynamic reconstruction of an accreted Cretaceous back-arc basin in the Northern Andes. Journal of Geodynamics, 121, 115–132. https://doi.org/10.1016/j.jog.2018.09.008
dc.relationBrown, K., Bangs, N., Froelich, P., y Kvenvolden, K. (1996). The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region. Earth and Planetary Science Letters, 139(3-4), 471–483. https://doi.org/10.1016/0012-821X(95)00243-6
dc.relationBurke, K., Fox, P. J., y Şengör A. (1978). Buoyant Ocean Floor and the Evolution of the Caribbean. Journal of Geophysical Research: Solid Earth, 83(B8), 3949–3954. https://doi.org/10.1029/JB083iB08p03949
dc.relationButler, R. F., y Banerjee, S. K. (1975). Theoretical single-domain grain size range in magnetite and titanomagnetite. Journal of Geophysical Research, 80(29), 4049–4058. https://doi.org/10.1029/JB080i029p04049
dc.relationByerly, P., y Stolt, R. (1977). An attempt to define the Curie point isotherm in northern and central Arizona. Geophysics, 42(7), 1394–1400. https://doi.org/10.1190/1.1440800
dc.relationByrne, D. E., Davis, D. M., y Sykes, L. (1988). Loci and Maximum Size of Thrust Earthquakes and the Mechanics of the Shallow Region of Subduction Zones. Tectonics, 7(4), 833–857. https://doi.org/10.1029/TC007i004p00833
dc.relationCarminati, E., Negredo, A. M., Valera, J. L., y Doglioni, C. (2005). Subduction-related intermediate-depth and deep seismicity in Italy: Insights from thermal and rheological modelling. Physics of the Earth and Planetary Interiors, 149(1–2), 65–79. https://doi.org/10.1016/j.pepi.2004.04.006
dc.relationCaballero, V., Mora, A., Quintero, I., Blanco V., Parra, M., Rojas, L., … Duddy, I. (2013). Tectonic Controls on Sedimentation in an Intermontane Hinterland Basin Adjacent to Inversion Structures: The Nuevo Mundo Syncline, Middle Magdalena Valley, Colombia. Geological Society, London, Special Publications, 377, 315–342. https://doi.org/10.1144/SP377.12
dc.relationCalais, Eric. 2013. ISOSTASY. http://web.ics.purdue.edu/~ecalais/teaching/eas450/Gravity5.pdf, accedido Mayo 20, 2015
dc.relationCampbell, C. J., y Velasco, G. (1965). The Geology and Oil prospects of the Cauca Basin, Colombia (International Report) (p. 100). Sinclair and BP Colombian Inc.
dc.relationCampos-Enriquez, J., Arroyo-Esquivel, M., y Urrutia-Fucugauchi, J. (1990). Basement, Curie isotherm and shallow-crustal structure of the Trans-Mexican Volcanic Belt, from aeromagnetic data. Tectonophysics, 172(1-2), 77–90. https://doi.org/10.1016/0040-1951(90)90060-L
dc.relationCardona, A., Bustamante, C., Echeverri, S., Hincapie, S., Jaramillo, J. S., Leon S., … Valencia, V. (2017). Contrasting tectonic behaviors of jurassic and neogene continental arcs in the Colombian Andes. En GSA Annual Meeting in Seattle, Washington, Estados Unidos. [Links]
dc.relationCardona, A., Valencia, V., Bustamante, C., García, A., Ojeda, G., Ruiz, J., … Weber, M. (2010). Tectonomagmatic Setting and Provenance of the Santa Marta Schists, Northern Colombia: Insights on the Growth and Approach of Cretaceous Caribbean Oceanic Terranes to the South American Continent. Journal of South American Earth Sciences, 29(4), 784–804. https://doi.org/10.1016/j.jsames.2009.08.012
dc.relationCardoso, R., Hamza, V., y Alfaro, C. (2010). Geothermal resource base for South America: A continental perspective. En World Geothermal Congress, Bali, Indonesia. Recuperado de https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/1618.pdf
dc.relationCaro, M., y Spratt, D. (2003). Tectonic Evolution of the San Jacinto Fold Belt, NW Colombia. CSEG Recorder, 28(2), 36–43. Recuperado de https://csegrecorder.com/articles/view/tectonic-evolution-of-the-san-jacinto-fold-belt-nw-colombia
dc.relationCaroll, L., y Ojeda, G. (2006). Heat flow in the Colombian Caribbean from the bottom simulating reflector (BSR). CT&F - Ciencia, Tecnología y Futuro, 3(2), 29-39. Recuperado de https://www.redalyc.org/articulo.oa?id=46530202
dc.relationCediel, F., Barrero, D., y Cáceres, C. (1998). Seismic Atlas of Colombia: seismic Expression of structural styles in the basins of Colombia. Ecopetrol, Geotec Ltda. & Robertson Research International Ltd, Bogotá, Colombia.
dc.relationCediel, F., Shaw, R. P., y Caceres, C. (2003). Tectonic Assembly of the Northern Andean Block. En The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics, AAPG Special Volumes. https://doi.org/10.1306/M79877C37
dc.relationCeron-Abril, J. F. (2008). Crustal Structure of the Colombian Caribbean Basin and Margins (Tesis de Doctorado). University of South Carolina, Carolina del Sur, Estados Unidos. Recuperado de http://andeangeophysical.com/index.php?ID=37
dc.relationChapin, D. A. (1996). A deterministic approach toward isostatic gravity residuals—A case study from South America. Geophysics, 61(4), 1022–1033. https://doi.org/10.1190/1.1444024
dc.relationChaubey, A. K., Srinivas, K., Ashalatha, B., y Gopala Rao, D. (2008). Isostatic response of the Laccadive Ridge from admittance analysis of gravity and bathymetry data. Journal of Geodynamics, 46(1–2), 10–20. https://doi.org/10.1016/j.jog.2008.03.001
dc.relationChiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., y Prieto, G. (2016). Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1), 16–27. https://doi.org/10.1002/2015GC006048
dc.relationChiozzi, P., Matsushima, J., Okubo, Y., Pasquale, V., y Verdoya, M. (2005). Curie-point depth from spectral analysis of magnetic data in central–southern Europe. Physics of the Earth and Planetary Interiors, 152(4), 267–276. https://doi.org/10.1016/j.pepi.2005.04.005
dc.relationChopping, R., y Kennett, B. L. (2015). Maximum depth of magnetisation of Australia, its uncertainty, and implications for Curie depth. GeoResJ, 7, 70–77. https://doi.org/10.1016/j.grj.2015.06.003
dc.relationClift, P., y Vannucchi, P. (2004). Controls on Tectonic Accretion versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. Reviews of Geophysics, 42(2), 1-31. https://doi.org/10.1029/2003RG000127
dc.relationContreras, J., Herrera, G.,, y Tolson, G. (2015). Modelado de Procesos Terrestres. (Libro no publicado) https://www.ugm.org.mx/publicaciones/geos/pdf/geos08-2/sesiones_especia les/SE02.pdf. Accedido julio 15 2019.
dc.relationDavies, J. H. (2013). Global map of solid Earth surface heat flow. Geochemistry, Geophysics, Geosystems, 14(10), 4608–4622. https://doi.org/10.1002/ggge.20271
dc.relationDe Ritis, R., Ventura, G., Chiappini, M., Carluccio, R., y von Frese, R. (2010). Regional Magnetic and Gravity Anomaly Correlations of the Southern Tyrrhenian Sea. Physics of the Earth and Planetary Interiors, 181(1-2), 27–41. https://doi.org/10.1016/j.pepi.2010.04.003
dc.relationDe Ritis, R., Ravat, D., Ventura, G., y Chiappini, M. (2013). Curie isotherm depth from aeromagnetic data constraining shallow heat source depths in the central Aeolian Ridge (Southern Tyrrhenian Sea, Italy). Bulletin of volcanology, 75, 1-11. https://doi.org/10.1007/s00445-013-0710-9
dc.relationDickens, G. R., y Quinby-Hunt, M. S. (1994). Methane hydrate stability in seawater. Geophysical Research Letters, 21(19), 2115–2118. https://doi.org/10.1029/94GL01858
dc.relationDiebold, J., Stoffa, P., Buhl, P., y Truchan, M. (1981). Venezuela Basin crustal structure. Journal of Geophysical Research: Solid Earth, 86(B9), 7901-7923. https://doi.org/10.1029/JB086iB09p07901
dc.relationDimri, V. (2016). Fractal Solutions for Understanding Complex Systems in Earth Sciences. Springer Earth System Sciences. Doi: 10.1007/978-3-319-24675-8
dc.relationDolmaz, M. N., Ustaömer, T., Hisarli, Z. M., y Orbay, N. (2005). Curie Point Depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Planets Space, 57(5), 373–383. https://doi.org/10.1186/BF03351821
dc.relationDonnelly, T., Beets, D., Carr, M., Jackson, T., Klaver, G., Lewis, J., Maury, R., Schellemkems, H., Smith, A., Wadge, G., y Westercamp, D. (1991). History and tectonic setting of Caribbean magmatism. En The Caribbean Region (339–374). The Geology of North America. https://doi.org/10.1130/DNAG-GNA-H.339
dc.relationDorman, L. M., y Lewis, B. (1970). Experimental Isostasy: 1. Theory of the Determination of the Earth’s Isostatic Response to a Concentrated Load. Journal of Geophysical Research, 75(17), 3357–3365. https://doi.org/10.1029/JB075i017p03357
dc.relationDuque-Caro, H. (1980). Geotectónica y evolución de la región noroccidental colombiana. Boletín Geológico - Ingeominas, 23(3), 4–37. Recuperado de https://revistas.sgc.gov.co/index.php/boletingeo/article/view/257
dc.relationDyment, J., Choi, Y., Hamoudi, M., Lesur, V., y Thébault, E. (2015). Global equivalent magnetization of the oceanic lithosphere. Earth and Planetary Science Letters, 430, 54–65. https://doi.org/10.1016/j.epsl.2015.08.002
dc.relationDziewonski, A. M., Chou, T. A., y Woodhouse, J. H. (1981). Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/JB086iB04p02825
dc.relationEbbing, J. (2004). The Crustal Structure of the Eastern Alps from a Combination of 3D Gravity Modelling and Isostatic Investigations. Tectonophysics, 380(1–2), 89–104. https://doi.org/10.1016/j.tecto.2003.12.002
dc.relationEdgar, N. T., Ewing, J. I., y Hennion, J. (1971). Seismic refraction and reflection in Caribbean Sea. AAPG Bulletin, 55(6), 833–870. https://doi.org/10.1306/819A3C76-16C5-11D7-8645000102C1865D
dc.relationEkström, G., Nettles, M., y Dziewoński, A. M. (2012). The Global CMT Project 2004–2010: Centroid-Moment Tensors for 13,017 Earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
dc.relationEspinosa-Cardeña, J., Campos-Enríquez, J., y Unsworth, M. (2016). Heat flow pattern at the Chicxulub impact crater, northern Yucatan, Mexico. Journal of Volcanology and Geothermal Research, 311, 135-149. https://doi.org/10.1016/j.jvolgeores.2015.12.013
dc.relationFedi, M., Quarta, T., y De Santis, A. (1997). Inherent power-law behavior of magnetic field power spectra from a Spector and Grant ensemble. Geophysics, 62(4), 1143-1150. https://doi.org/10.1190/1.1444215
dc.relationFedi, M. (2003). Global and Local Multiscale Analysis of Magnetic Susceptibility Data. Pure and applied geophysics, 160(12), 2399–2417. https://doi.org/10.1007/s00024-003-2401-5
dc.relationFialko,Y. (2015). Lecture 2: Gravity, Isostasy and Flexure (Diapositivas). Recuperado el 20 de mayo, 2015, de https://igppweb.ucsd.edu/~fialko/tectonics/Lecture2GravityIsostasy.pdf
dc.relationFoote, R. W. (1986). Curie-point isotherm mapping and interpretation from aeromagnetic measurements in the northern Oregon Cascades. (Tesis de Maestria). Oregon State University, Oregón, Estados Unidos. Recuperado de https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9p290d03f
dc.relationGanguly, N., Spence, G., Chapman, N., y Hyndman, R. (2000). Heat flow variations from bottom simulating reflectors on the Cascadia margin. Marine geology, 164(1-2), 53–68. https://doi.org/10.1016/S0025-3227(99)00126-7
dc.relationGailler, L., Arcay, D., Münch, P., Martelet, G., Thinon, I., Lebrun J. F. (2017). Forearc Structure in the Lesser Antilles Inferred from Depth to the Curie Temperature and Thermo-Mechanical Simulations. Tectonophysics, 706, 71–90. https://doi.org/10.1016/j.tecto.2017.03.014
dc.relationGarcia-Abdeslem, J., y Ness, G. (1994). Inversion of the power spectrum from magnetic anomalies. Geophysics, 59(3), 336-490. https://doi.org/10.1190/1.1443601
dc.relationGarcía-Casco, A., Torres-Roldán, R. L., Iurralde-Vinent, M. A., Millan, G., Nuñez, K., Lázaro, C., y Rodriguez A. (2006). High pressure metamorphism of ophiolites in Cuba. Geologica Acta, 4(1), 63–88. https://doi.org/10.1344/105.000000358
dc.relationGarel, F., Goes, S., Davies, D. R., Davies, J. H., Kramer, S. C., y Wilson, C. R. (2014). Interaction of Subducted Slabs with the Mantle Transition-Zone: A Regime Diagram from 2-D Thermo-Mechanical Models with a Mobile Trench and an Overriding Plate. Geochemistry, Geophysics, Geosystems, 15(5), 1739–1765. https://doi.org/10.1002/2014GC005257
dc.relationGerya, T. (2010). Introduction to Numerical Geodynamic Modelling. Cam
dc.relationGayet, P., Dicharry, C., Marion, G., Graciaa, A., Lachaise, J., y Nesterov, A. (2005). Experimental determination of methane hydrate dissociation curve up to 55MPa by using a small amount of surfactant as hydrate promoter. Chemical engineering science, 60(21), 5751–5758. https://doi.org/10.1016/j.ces.2005.04.069
dc.relationGeosoft Inc. (2016). Creating an Isostatic Regional Grid. Recuperado de http://updates.geosoft.com/downloads/files/guidedlearning/isostatic_residual/creating_isostatic_regional_grid.pdf
dc.relationGoetze, C., y Evans, B. (1979). Stress and Temperature in the Bending Lithosphere as Constrained by Experimental Rock Mechanics. Geophysical Journal International, 59(3), 463–478. https://doi.org/10.1111/j.1365-246X.1979.tb02567.x
dc.relationGomes, A. J., y Hamza, V. M. (2005). Geothermal gradient and heat flow in the state of Rio de Janeiro. Revista Brasileira de Geofísica, 23(4), 325–347. DOI:10.1590/S0102-261X2005000400001
dc.relationGómez, J. L., Späth, F., y Pianelli, L. (2016). Evidencias sísmicas de hidratos de gas y cuantificación de su potencial económico en el mar Argentino, Cuenca de Malvinas. Geoacta, 41(1), 35–49. Recuperado de http://ppct.caicyt.gov.ar/index.php/geoacta/article/view/5620
dc.relationGómez-Ortiz, D., Tejero, R., Ruiz, J., Babín-Vich, R., y González-Casado, J. M. (2005). Estimating the Effective Elastic Thickness of the Lithosphere of the Iberian Peninsula Based on Multitaper Spectral Analysis. Geophysical Journal International, 160(2), 729–735. https://doi.org/10.1111/j.1365-246X.2004.02499.x
dc.relationGorbatov, A., y Kostoglodov, V. (1997). Maximum Depth of Seismicity and Thermal Parameter of the Subducting Slab: General Empirical Relation and Its Application. Tectonophysics, 277(1–3), 165–187. https://doi.org/10.1016/S0040-1951(97)00084-X
dc.relationGranja-Bruña, J. L. (2005). Geodinámica del borde noreste de la placa Caribe (Tesis de Doctorado). Universidad Complutense de Madrid, Madrid, España. Recuperado de http://ppct.caicyt.gov.ar/index.php/geoacta/article/view/5620
dc.relationGrevemeyer, I., y Villinger, H. (2001). Gas hydrate stability and the assessment of heat flow through continental margins. Geophysical Journal International, 145(3), 647–660. https://doi.org/10.1046/j.0956-540x.2001.01404.x
dc.relationGutscher, M. A., Spakman, W., Bijwaard, H., y Engdahl, E. R. (2000). Geodynamics of Flat Subduction: Seismicity and Tomographic Constraints from the Andean Margin. Tectonics, 19(5), 814–833. https://doi.org/10.1029/1999TC001152
dc.relationHarris, R. N., Grevemeyer, I., Ranero, C. R., Villinger, H., Barckhausen, U., Henke, T., … Neben, S. (2010). Thermal regime of the Costa Rican convergent margin: 1. Along-strike variations in heat flow from probe measurements and estimated from bottom-simulating reflectors. Geochemistry, Geophysics, Geosystems, 11(12), 1-21. https://doi.org/10.1029/2010GC003272
dc.relationHenrys, S. A., Ellis, S., y Uruski, C. (2003). Conductive heat flow variations from bottom-simulating reflectors on the Hikurangi margin, New Zealand. Geophysical Research Letters, 30(2). 371-374. https://doi.org/10.1029/2002GL015772
dc.relationHeywood, C. E. (1992). Isostatic Residual Gravity Anomalies of New Mexico. Water-Resources Investigations Report 91-4065. US Geological Survey & US Department of the Interior. https://doi.org/10.3133/wri914065
dc.relationHoutz, R. E., y Ludwig, W. J. (1977). Structure of Colombia Basin, Caribbean Sea, from Profiler-Sonobuoy measurements. Journal of Geophysical Research, 82(30), 4861–4867. https://doi.org/10.1029/JB082i030p04861
dc.relationHsieh, H., Chen, C., Lin, P., y Yen, H. (2014). Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences, 90, 26–33. https://doi.org/10.1016/j.jseaes.2014.04.007
dc.relationHussein, M., Mickus, K., y Serpa, L. (2013). Curie Point Depth Estimates from Aeromagnetic Data from Death Valley and Surrounding Regions, California. Pure and Applied Geophysics, 170(4), 617–632. https://doi.org/10.1007/s00024-012-0557-6
dc.relationIdárraga-García, J., Kendall, J. M., y Vargas, C. A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems, 17(9), 3655–3673. https://doi.org/10.1002/2016GC006323
dc.relationINTEF.2012.ProyectoBiosfera. http://recursos.cnice.mec.es/biosfera/alumno/4ESO/Medio Natu ral1I/contenido1.htm, accedido May 20, 2015.
dc.relationInternational Heat Flow Commission (IHFC). (2008). Global Heat Flow Map. Recuperado a partir de http://www.geophysik.rwth-aachen.de/IHFC/heatflow.html
dc.relationIsmail, I. S., Saada, A. S., Ali, Y., y Ibrahem, Y. (2015). An Integrated Study of Gravity and Magnetic Data to Determine Subsurface Structure and Depth to Basement in Alamein Area, Western Desert, Egypt. Journal of Applied Geology and Geophysics, 3(6), 11-29. Doi: 10.9790/0990-03621129
dc.relationJames, K. (2005). Arguments for and against the Pacific origin of the Caribbean Plate and arguments for an in situ origin. Caribbean Journal of Earth Science, 39, 47–67. Recuperado de https://www.mona.uwi.edu/geoggeol/JamGeolSoc/CJES%20Web%20page/CJESpdf/CJES%2039-06%20-%20James%20-%20origin.pdf
dc.relationJames, K. (2005). Palaeocene to middle Eocene flysch-wildflysch deposits of the Caribbean area: A chronological compilation of literature reports, implications for tectonic history and recommendations for further investigation. Caribbean Journal of Earth Science, 39, 29–46. Recuperado de http://caribjes.com/CJESpdf/CJES%2039-05%20-%20James%20-%20flysch.pdf
dc.relationJaramillo, C., Montes, C., Cardona, A., Silvestro, D., Antonelli, A., y Bacon, C. D. (2017). Comment (1) on “Formation of the Isthmus of Panama” by O’Dea et al., Science Advances, 3(6). DOI: 10.1126/sciadv.1602321
dc.relationJaramillo, J. S., Cardona, A., León, S., Valencia, V., y Vinasco, C. (2017). Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35′N, western flank of the Central Cordillera (Colombian Andes): Magmatic record of arc growth and collision. Journal of South American Earth Sciences, 76, 460–481. https://doi.org/10.1016/j.jsames.2017.04.012
dc.relationJeanloz, R., y Romanowicz, B. (1997). Geophysical Dynamics at the Center of the Earth. Physics Today, 50(8), 22–27. http://dx.doi.org/10.1063/1.881885
dc.relationKaban, M. K., El Khrepy, S., y Al-Arifi, N. (2016). Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings. Pure and Applied Geophysics, 173, 1211–1221. https://doi.org/10.1007/s00024-015-1164-0
dc.relationKasidi, S, y Nur, A. (2012). Curie depth isotherm deduced from spectral analysis of Magnetic data over sarti and environs North-Eastern Nigeria. Scholarly Journals of Biotechnology, 1(3), 49–56. Recuperado de http://www.scholarly-journals.com/sjb/archive/2012/Oct/pdf/Kasidi%20and%20Nur.pdf
dc.relationKasidi, S., y Nur, A. (2013). Estimation of Curie Point Depth, Heat Flow and Geothermal Gradient Infered from Aeromagnetic Data over Jalingo and Environs North–Eastern Nigeria. International Journal of Science & Emerging Technologies, 6(6). Recuperado de http://ojs.excelingtech.co.uk/index.php/IJSET/article/view/704
dc.relationKearey, P., Klepeis, K. A., y Vine, F. J. (2009). Global Tectonics, third edition. Oxford: John Wiley & Sons
dc.relationKellogg, J., Ogujiofor, I., y Kansakar, D. (1985). Cenozoic tectonics of the Panama and North Andes blocks. VI Congreso Latinoamericano de Geología. Memoirs, 1, 34–49, Bogotá, Colombia
dc.relationKellogg, J., Toto, E., y Cerón, J. (2005). Structure and Tectonics of the Sinu-San Jacinto Accretionary Prism in Northern Colombia. En X Congreso Colombiano de Geología, Bogota, Colombia. Recuperado de http://andeangeophysical.com/userfiles/file/Kellogg%20et%20al,%20%20X%20Congreso.pdf
dc.relationKellogg, J. N., Trenkamp, R. A., y Freymueller, J. T. (2001). North Andean deformation associated with the oblique subduction of the Nazca and Caribbean plates and the Carnegie Ridge: new CASA GPS results. American Geophysical Union. Recuperado de https://ui.adsabs.harvard.edu/abs/2001AGUFM.G41A0191K/abstract
dc.relationKorhonen, J., Fairhead, J., Hamoundi, M., Lesur, V., Mandea, M., Maus, S., Purucker, M., … Thébault, E. (2007). Magnetic anomaly map of the world = Carte des anomalies magnétiques du monde. Commission for Geological Map of the World (1ra Edición). Paris, France. Recuerado de https://searchworks.stanford.edu/view/7541739
dc.relationKerr, A. C., Tarney, J., Marriner, G. F., Nivia, A., y Saunders, A. D. (1997). The Caribbean-Colombian Cretaceous Igneous Province: The Internal Anatomy of an Oceanic Plateau. En Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (pp. 123-144). American Geophysical Union. https://doi.org/10.1029/GM100p0123
dc.relationKroehler, M. E., Mann, P., Escalona, a., y Christeson, G. L. (2011). Late Cretaceous-Miocene diachronous onset of back thrusting along the South Caribbean deformed belt and its importance for understanding processes of arc collision and crustal growth. Tectonics, 30(6), 1-31. https://doi.org/10.1029/2011TC002918
dc.relationLangel, R. A., y Hinze, W. J. (1998). The Magnetic Field of the Earth’s Lithosphere: The Satellite Perspective. Cambridge University Press.
dc.relationLesur, V, Rother, M., Vervelidou, F., Hamoudi, M., y Thébault, E. (2013). Post-processing scheme for modelling the lithospheric magnetic field. Solid Earth, 4(1), 105-118. https://doi.org/10.5194/se-4-105-2013
dc.relationLesur, V., Hamoudi, M., Choi, Y., Dyment, J., y Thébault, E. (2016). Building the second version of the World Digital Magnetic Anomaly Map (WDMAM). Earth, Planets and Space, 68(27), 2-13. https://doi.org/10.1186/s40623-016-0404-6
dc.relationLewis, B., y Dorman, L. M. (1970). Experimental isostasy: 2. An isostatic model for the U.S.A. derived from gravity and topographic data. Journal of Geophysical Research, 75(17), 3367–3386. https://doi.org/10.1029/JB075i017p03367
dc.relationLi, C., Lu, Y., y Wang, J. (2017). A global reference model of Curie-point depths based on EMAG2. Scientific Reports, 7, 1-9. Doi: 10.1038/srep45129
dc.relationLi, C., Wang, J., Lin, J., y Wang, T. (2013). Thermal evolution of the North Atlantic lithosphere: New constraints from magnetic anomaly inversion with a fractal magnetization model. Geochemistry, Geophysics, Geosystems, 14(12), 5078–5105. https://doi.org/10.1002/2013GC004896
dc.relationLiao, W., Lin, A., Liu, C., Oung, J., y Wang, Y. (2014). Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications. Journal of Asian Earth Sciences, 92, 233–244. https://doi.org/10.1016/j.jseaes.2014.01.003
dc.relationLikkason, O. K. (2011). 2. Spectral Analysis of Geophysical Data. En Advances in Data, Methods, Models and Their Applications in Geoscience (pp. 27–52). Croacia: InTech.
dc.relationLu, Z., y Sultan, N. (2008). Empirical expressions for gas hydrate stability law, its volume fraction and mass-density at temperatures 273.15 K to 290.15 K. Geochemical Journal, 42(2), 163–175. https://doi.org/10.2343/geochemj.42.163
dc.relationLugo, J., y Mann, P. (1995). Jurassic-Eocene Tectonic Evolution of the Maracaibo Basin, Venezuela. En Petroleum Basins of South America (pp. 699-725). American Association of Petroleum Geologists. https://doi.org/10.1306/M62593C38
dc.relationLyustikh, E.N. (1960). Isostasy and isostatic hypothesis. New York: American Geophysical Union.
dc.relationMalavé, G., y Suárez, G. (1995). Intermediate-depth seismicity in northern Colombia and western Venezuela and its relationship to Caribbean plate subduction. Tectonics, 14(3), 617–628. https://doi.org/10.1029/95TC00334
dc.relationManea, M., y Manea, V. C. (2011). Curie point depth estimates and correlation with subduction in Mexico. Pure and applied geophysics, 168, 1489–1499. https://doi.org/10.1007/s00024-010-0238-2
dc.relationManea, M., Manea, V. C., Kostoglodov, V., y Guzmán-Speziale, M. (2005). Elastic thickness of the oceanic lithosphere beneath Tehuantepec ridge. Geofísica Internacional, 44(2), 157–168. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0016-71692005000200157&lng=pt&nrm=iso
dc.relationMann, P. (1999). Chapter 1 Caribbean sedimentary basins: Classification and tectonic setting from jurassic to present. En Sedimentary Basins of the World (Vol. 4, pp. 3-31). Elsevier Science, Amsterdam, Países Bajos. https://doi.org/10.1016/S1874-5997(99)80035-5
dc.relationMann, P., Escalona, A., y Castillo, M. V. (2006). Regional geologic and tectonic setting of the Maracaibo supergiant basin, western Venezuela. American Association of Petroleum Geologists Bulletin, 90(4), 445–477. https://doi.org/10.1306/10110505031
dc.relationMantilla-Pimiento, A. M., Alfonso-Pava, C. A., Jentzsch, G., y Kley, J. (2005). Crustal structure of the southwestern Colombian Caribbean area. En 6th International Symposium on Andean Geodynamics, Barcelona, España. Recuperado de https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers09-03/010040279.pdf
dc.relationMantilla-Pimiento, A. M., Jentzsch, G., Kley, J., y Alfonso-Pava, C. (2009). Configuration of the Colombian Caribbean Margin: Constraints from 2D Seismic Reflection Data and Potential Fields Interpretation. En Subduction Zone Geodynamics (pp. 247-272), Berlin, Heidelberg: Springer.
dc.relationMarcaillou, B., Spence, G., Collot, J.Y., y Wang, K. (2006). Thermal regime from bottom simulating reflectors along the north Ecuador–south Colombia margin: Relation to margin segmentation and great subduction earthquakes. Journal of Geophysical Research: Solid Earth, 111, 1-16. https://doi.org/10.1029/2005JB004239
dc.relationMatthews, K. J., Maloney, K. T, Zahirovic, S., Williams, S. E., Seton, M., y Müller, R. D. (2016). Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146, 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002
dc.relationMaus, S. (20 de Agosto, 2010). Magnetic Field of the Lithosphere. Geomagnetism. Recuperado el 22 de Agosto, 2018, de http://geomag.org/info/lithosphere.html
dc.relationMaus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., … Caratori, F. (2009). EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems, 10(8), 1-12. https://doi.org/10.1029/2009GC002471
dc.relationMaus, S., y Dimri, V. (1995). Potential field power spectrum inversion for scaling geology. Journal of Geophysical Research: Solid Earth, 100(B7), 12605–12616. https://doi.org/10.1029/95JB00758
dc.relationMaus, S., y Dimri, V. (1996). Depth estimation from the scaling power spectrum of potential fields?. Geophysical Journal International, 124(1), 113–120. https://doi.org/10.1111/j.1365-246X.1996.tb06356.x
dc.relationMaus, S., Gordon, D., y Fairhead, D. (1997). Curie-temperature depth estimation using a self-similar magnetization model. Geophysical Journal International, 129(1), 163–168. https://doi.org/10.1111/j.1365-246X.1997.tb00945.x
dc.relationMcKenzie, D., y Bowin, C. (1976). The relationship between bathymetry and gravity in the Atlantic Ocean. Journal of Geophysical Research, 81(11), 1903–1915. https://doi.org/10.1029/JB081i011p01903
dc.relationMcKenzie, D., Jackson, J., y Priestley, K. (2005). Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233(3-4), 337–349. https://doi.org/10.1016/j.epsl.2005.02.005
dc.relationMcNutt, M. (1979). Compensation of oceanic topography: An Application of the Response Function Technique to the Surveyor area. Journal of Geophysical Research: Solid Earth, 84(B13), 7589–7598. https://doi.org/10.1029/JB084iB13p07589
dc.relationMeschede, M., Frisch, W., Herrmann, U. R., y Ratschbacher, L. (1996). Stress transmission across an active plate boundary: an example from southern Mexico. Tectonophysics, 266(1-4), 81–100. https://doi.org/10.1016/S0040-1951(96)00184-9
dc.relationMeschede, M., y Frisch, W. (1998). A plate-tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophysics, 296(3-4), 269–291. https://doi.org/10.1016/S0040-1951(98)00157-7
dc.relationMiles, P. (1995). Potential distribution of methane hydrate beneath the European continental margins. Geophysical Research Letters, 22(23), 3179–3182. https://doi.org/10.1029/95GL03013
dc.relationMiller, M. S., Levander, A., Niu, F., y Li, A. (2009). Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave tomography. Journal of Geophysical Research: Solid Earth, 114(B1), 1-13. https://doi.org/10.1029/2007JB005507
dc.relationMinshull, T. A. (2011). Some comments on the estimation of geothermal gradients from depths of bottom simulating reflectors. En 7th international Conference on Gas Hydrates, Edimburgo, Escosia. Recuperado de https://www.pet.hw.ac.uk/icgh7/papers/icgh2011Final00731.pdf
dc.relationMishra, D., y Naidu, P. (1974). Two-dimensional power spectral analysis of aeromagnetic fields. Geophysical Prospecting, 22(2), 345–353. https://doi.org/10.1111/j.1365-2478.1974.tb00090.x
dc.relationMontes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., y Cardona A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198, 1-19. https://doi.org/10.1016/j.earscirev.2019.102903
dc.relationMora, A. (2018). Upper Cretaceous to Recent plate tectonics, basin formation and tectono-stratigraphy of the Lower Magdalena valley and San Jacinto fold belt of Northwestern Colombia: Implications for hydrocarbon systems (Tesis de Doctorado). Freie Universität, Berlin. http://dx.doi.org/10.17169/refubium-34
dc.relationMora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R., Diederix, H., … Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes–A new GPS velocity field. Journal of South American Earth Sciences, 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002
dc.relationMüller, R. D., Roest, W. R., Royer, J.-Y., Gahagan, L. M., y Sclater, J. G. (1997). Digital isochrons of the world’s ocean floor. Journal of Geophysical Research: Solid Earth, 102(B2), 3211–3214. https://doi.org/10.1029/96JB01781
dc.relationNakamura, A., Bacchin, M., y Tracey, R. (2010). Isostatic Residual Gravity Anomaly Grid of Onshore Australia. ASEG Extended Abstracts, 2010(1), 1-4. https://doi.org/10.1081/22020586.2010.12041952
dc.relationNASA Jet Propulsion Laboratory. (14 de Marzo, 2016). Shuttle Radar Topography Mission: Data Products. Recuperado el 20 de Enero, 2020, de https://www2.jpl.nasa.gov/srtm/dataprod.htm
dc.relationNegredo, A. M., Valera, J. L., y Carminati, E. (2004). TEMSPOL: a MATLAB thermal model for deep subduction zones including major phase transformations. Computers & Geosciences, 30(3), 249–258. https://doi.org/10.1016/j.cageo.2004.01.002
dc.relationNettleton, L. L. (1976). Gravity and Magnetics in Oil Prospecting. McGraw-Hill Companies.
dc.relationNondorf, L. M. (2016). Thermal conductivity, thermal gradient, and heat-flow estimations for the Smackover Formation, southwest Arkansas. En Geothermal Energy: An Important Resource(pp. 95-114). The Geological Society of America Special Papers. https://doi.org/10.1130/2016.2519(07)
dc.relationNwankwo, L. I., y Sunday, A. J. (2017). Regional estimation of Curie-point depths and succeeding geothermal parameters from recently acquired high-resolution aeromagnetic data of the entire Bida Basin, north-central Nigeria. Geothermal Energy Science, 5, 1-9. https://doi.org/10.5194/gtes-5-1-2017
dc.relationOasis Montaj (Versión 6.4.2) [Software de mapeo y procesamiento de datos de las Ciencias de La Tierra]. Geosoft Inc.
dc.relationOkubo, Y., Graf, R. J., Hansen, R. O., Ogawa, K., y Tsu, H. (1985). Curie point depths of the Island of Kyushu and surrounding area, Japan. Geophysics, 53(3), 481-494. https://doi.org/10.1190/1.1441926
dc.relationOkubo, Y., Matsushima, J., y Correia, A. (2003). Magnetic spectral analysis in Portugal and its adjacent seas. Physics and Chemistry of the Earth, Parts A/B/C, 28(9-11), 511–519. https://doi.org/10.1016/S1474-7065(03)00070-6
dc.relationØstergaard, K., Tohidi, B., Danesh, A., Todd, A., Burgass, R. (2000). A general correlation for predicting the hydrate-free zone of reservoir fluids. SPE Production & Facilities, 15(04), 228–233. https://doi.org/10.2118/66523-PA
dc.relationParker, R. L. (1973). The Rapid Calculation of Potential Anomalies. Geophysical Journal International, 31(4), 447–455. https://doi.org/10.1111/j.1365-246X.1973.tb06513.x
dc.relationPennington, W. D. (1981). Subduction of the Eastern Panama Basin and Seismotectonics of Northwestern South America. Journal of Geophysical Research: Solid Earth, 86(B11), 10753–10770. https://doi.org/10.1029/JB086iB11p10753
dc.relationPérez, O. J., Jaimes, M. A., y Garciacaro, E. (1997). Microseismicity evidence for subduction of the Caribbean plate beneath the South American Plate in northwestern Venezuela. Journal of Geophysical Research: Solid Earth, 102(B8), 17875–17881. https://doi.org/10.1029/96JB03174
dc.relationPidwirny, M., y Jones, S. (2006). CHAPTER 10: Introduction to the Lithosphere. En Fundamentals of Physical Geography, 2nd Edition. Recuperado de http://www.physicalgeography.net/fundamentals/10h.html
dc.relationPilkington, M., y Todoeschuck, J. (1995). Scaling nature of crustal susceptibilities. Geophysical Research Letters, 22(7), 779–782. https://doi.org/10.1029/95GL00486
dc.relationPilkington, M., Gregotski, M., y Todoeschuck, J. (1994). Using fractal crustal magnetization models in magnetic interpretation. Geophysical prospecting, 42(6), 677–692. https://doi.org/10.1111/j.1365-2478.1994.tb00235.x
dc.relationPilkington, M., y Todoeschuck, J. (1993). Fractal magnetization of continental crust. Geophysical Research Letters, 20(7), 627–630. https://doi.org/10.1029/92GL03009
dc.relationPindell, J., y Kennan, L. (2001). Kinematic evolution of the Gulf of Mexico and Caribbean. En Petroleum Systems of Deep-Water Basins-Global and Gulf of Mexico Experiece (pp. 2-5). SEPM Society for Sedimentary Geology. https://doi.org/10.5724/gcs.01.21.0193
dc.relationPindell, J., y Barrett, S. F. (1991). Geological evolution of the Caribbean region: A plate tectonic perspective. En The Caribbean Region (pp. 405–432). The Geological Society of America. https://doi.org/10.1130/DNAG-GNA-H.405
dc.relationPindell, J., Cande, S., Pitman, W., Rowley, D., Dewey, J., LaBrecque, J., y Haxby, W. (1988). A plate-kinematic framework for models of Caribbean evolution. Tectonophysics, 155(1-4), 121–138. https://doi.org/10.1016/0040-1951(88)90262-4
dc.relationPindell, J., Kennan, L., Stanek, K. P., Maresch, W., y Draper, G. (2006). Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved. Geologica Acta, 4(1–2), 303-341. https://doi.org/10.1344/105.000000371
dc.relationPoveda, E., Monsalve, G., y Vargas, C. A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120(4), 2408–2425. https://doi.org/10.1002/2014JB011304
dc.relationQuintero, W. 2004. Mapa de Anomalías Gravimétricas de Bouguer Total Versión 2.0. Escala 1 : 2 000 000. Bogotá: INGEOMINAS.
dc.relationRamos, V. A., y Folguera, A. (2009). Andean Flat-Slab Subduction through Time. Geological Society, London, Special Publications, 327(1), 31–54. DOI: 10.1144/SP327.3
dc.relationRajaram, M., Anand, S., Hemant, K., y Purucker, M. (2009). Curie isotherm map of Indian subcontinent from satellite and aeromagnetic data. Earth and Planetary Science Letters, 281(3-4), 147–158. https://doi.org/10.1016/j.epsl.2009.02.013
dc.relationRavat, D., Pignatelli, A., Nicolosi, I., y Chiappini, M. (2007). A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophysical Journal International, 169(2), 421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x
dc.relationRoomer, J., Uzcátegui, O., y Malavé, G. (2006). Estudio Geofísico sobre la Factibilidad de la Presencia de Hidratos de Metano en la Plataforma Continental de la República Bolivariana de Venezuela. Geophysical Study on the Feasibility of the Presence of Methane Hydrate in the Continen.
dc.relationRoss, H. E., Blakely, R. J., y Zoback, M. D. (2006). Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics, 71(5), L51–L59. https://doi.org/10.1190/1.2335572
dc.relationRoss, M. I., y Scotese, C. R. (1988). A hierarchical tectonic model of the Gulf of Mexico and Caribbean region. Tectonophysics, 155(1-4), 139–168. https://doi.org/10.1016/0040-1951(88)90263-6
dc.relationRossello, E. A., y Cossey, S. (2012). What Is the Evidence for Subduction in the Caribbean Margin of Colombia?. En XI Simposio Bolivariano: Petroleum exploration in subandean basins. Cartagena de Indias, Colombia. Recuperado de https://www.researchgate.net/publication/258616174_What_is_the_evidence_for_subduction_in_the_Caribbean_Margin_of_Colombia
dc.relationSabaka, T. J., Olsen, N., y Langel, R. A. (2002). A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3. Geophysical Journal International, 151(1), 32–68. https://doi.org/10.1046/j.1365-246X.2002.01774.x
dc.relationSabaka, T. J., Olsen, N., y Purucker, M. E. (2004). Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophysical Journal International, 159(2), 521–547. https://doi.org/10.1111/j.1365-246X.2004.02421.x
dc.relationSaibi, H., Aboud, E., y Azizi, M. (2015). Curie point depth map for western Afghanistan deduced from the analysis of aeromagnetic data. En World Geothermal Congress, Melbourne, Australia. Recuperado de https://www.semanticscholar.org/paper/Curie-Point-Depth- Map-For-Western-Afghanistan-From-Saibi-Aboud/0161bdcf0bbedbce062a6db01e8a48e60 35d97bb
dc.relationSalazar, J. M., Vargas, C. A., y Leon, H. (2017). Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies. Tectonophysics, 694, 400–413. https://doi.org/10.1016/j.tecto.2016.11.023
dc.relationSaleh, S., Salk, M., y Pamukçu, O. (2013). Estimating Curie point depth and heat flow map for northern Red Sea rift of Egypt and its surroundings, from aeromagnetic data. Pure and applied geophysics, 170, 863–885. https://doi.org/10.1007/s00024-012-0461-0
dc.relationSalem, A., Green, C., Ravat, D., Singh, K. H., East, P., Fairhead, J. D., … Biegert, E. (2014). Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics, 624, 75–86. https://doi.org/10.1016/j.tecto.2014.04.027
dc.relationSalem, A., Ushijima, K., Elsirafi, A., y Mizunaga, H. (2000). Spectral analysis of aeromagnetic data for geothermal reconnaissance of Quseir area, northern Red Sea, Egypt. En World geothermal congress (pp. 1669–1674). Tohoku, Japon. Recuperado de https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0221.PDF
dc.relationSánchez, M. A., Ariza, J. A., García, H., Gianni, G. M., Weidmann, M. C., Folguera, A., … Martinez, M. P. (2018). Thermo-mechanical analysis of the Andean lithosphere over the Chilean-Pampean flat-slab region. Journal of South American Earth Sciences, 87, 247–257. https://doi.org/10.1016/j.jsames.2017.09.036
dc.relationSanchez-Rojas, J., y Palma, M. (2014). Crustal density structure in northwestern South America derived from analysis and 3-D modeling of gravity and seismicity data. Tectonophysics, 634, 97–115. https://doi.org/10.1016/j.tecto.2014.07.026
dc.relationSánchez-Rojas, J. (2012). New Bouguer Gravity Maps of Venezuela: Representation and Analysis of Free-Air and Bouguer Anomalies with Emphasis on Spectral Analyses and Elastic Thickness. International Journal of Geophysics, 2012. https://doi.org/10.1155/2012/731545
dc.relationSarmiento, G, G Bonilla, and J Osorio. 2016. Evidencias de Vulcanismo Penecontemporáneo En La Formación San Cayetano de La Cuenca Sinu-San Jacinto e Implicaciones En El Entorno Geológico Regional. Abstract in the Memoirs of The Colombian and Venezuelan Caribbean Geology Workshop: (pp. 29-30) Bogotá: Universidad Nacional de Colombia.
dc.relationScholz, C. H. (2002). The Mechanics of Earthquakes and Faulting. Cambridge university press.
dc.relationSchmeling, H., Monz, R., y Rubie, D. C. (1999). The influence of olivine metastability on the dynamics of subduction. Earth and Planetary Science Letters, 165(1), 55–66. https://doi.org/10.1016/S0012-821X(98)00249-0
dc.relationSerson, P., y Hannaford, W. (1957). A statistical analysis of magnetic profiles. Journal of Geophysical Research, 62(1), 1–18. https://doi.org/10.1029/JZ062i001p00001
dc.relationShankar, U., y Sain, K. (2009). Heat flow variation from bottom simulating reflector in the Kerala-Konkan basin of the western continental margin of India. Indian Journal of Marine Sciences, 38(1), 110-115. Recuperado de https://pdfs.semanticscholar.org/c3bf/2ccba6080c657205910c006d91e8353114c2.pdf
dc.relationShipley, T., Houston, M., Buffler, R., Shaub, F., McMillen, K., Ladd, J., y Worzel, J. (1979). Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. The American Association of Petroleum Geologists Bulletin, 63(12), 2204–2213. https://doi.org/10.1306/2F91890A-16CE-11D7-8645000102C1865D
dc.relationShyu, C. T., Chen, Y. J., Chiang, S. T., y Liu, C. S. (2006). Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences journal, 17(4), 845–869. Doi: 10.3319/TAO.2006.17.4.845(GH)
dc.relationSibson, R. H. (1981). Controls on low-stress hydro-fracture dilatancy in thrust, wrench and normal fault terrains. Nature, 289, 665–667. https://doi.org/10.1038/289665a0
dc.relationSigismondi, M. E., y Ramos, V. A. (2008). El flujo de calor de la cuenca Neuquina, Argentina. En VII Congreso de Exploración y Desarrollo de Hidrocarburos (Simposio de La Geofísica: Integradora del Conocimiento del Subsuelo).Buenos Aires, Argentia. https://doi.org/10.3997/2214-4609-pdb.261.6
dc.relationSimpson, R. W., Jachens, R. C., y Blakely, R. J. (1983). AIRYROOT; a FORTRAN Program for calculating the gravitational attraction of an airy isostatic root out to 166.7 Km. US Geological Survey Publication.
dc.relationSimpson, R. W., Jachens, R. C., Blakely, R. J., y Saltus, R. W. (1986). A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies. Journal of Geophysical Research: Solid Earth, 91(B8), 8348–8372. https://doi.org/10.1029/JB091iB08p08348
dc.relationSloan, E. D. (1998). Clathrate Hydrates of Natural Gases, Second Edition, Revised and Expanded. Boca Ratón, Florida: CRC Press
dc.relationSloan Jr, E. D., y Koh, C. (2007). Clathrate hydrates of natural gases, Trid Edition. Boca Ratón, Florida:CRC press.
dc.relationSpector, A., y Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293-302. https://doi.org/10.1190/1.1440092
dc.relationSpikings, R., Cochrane, R., Villagomez, D., van der Lelij, R., Vallejo, C., Winkler, W., y Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1), 95–139. https://doi.org/10.1016/j.gr.2014.06.004
dc.relationStacey, F. D., y Davis, P. M. (2008). Physics of the Earth. Cambridge University Press. Symithe, S., Calais, E., de Chabalier, J. B., Robertson, R., y Higgins, M. (2015). Current block motions and strain accumulation on active faults in the Caribbean. Journal of Geophysical Research: Solid Earth, 120(5), 3748–3774. https://doi.org/10.1002/2014JB011779
dc.relationStacey, F. D., y Banerjee, S. K. (1974). The physical principles of rock magnetism. Elsevier scientific publishing company.
dc.relationStein, C. A. (1995). Heat Flow of the Earth. En Global Earth Physics: A Handbook of Physical Constants (pp. 144-158). American Geophysical Union. https://doi.org/10.1029/RF001p0144
dc.relationStein, C. A. (2003). Heat Flow and Flexure at Subduction Zones. Geophysical Research Letters, 30(23), 1-4. Doi:10.1029/2003GL01847
dc.relationStein, C. A., y Stein, S. (1992). A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–129. https://doi.org/10.1038/359123a0
dc.relationStein, S., y Stein, C. A. (1996). Thermo-Mechanical Evolution of Oceanic Lithosphere: Implications for the Subduction Process and Deep Earthquakes. Subduction: op to Bottom, 96, 1–17. https://doi.org/10.1029/GM096p0001
dc.relationSymithe, S., Calais, E., de Chabalier, J. B., Robertson, R., y Higgins, M. (2015). Current block motions and strain accumulation on active faults in the Caribbean. Journal of Geophysical Research: Solid Earth, 120(5), 3748–3774. https://doi.org/10.1002/2014JB011779
dc.relationStacey, F. D., y Davis, P. M. (2008). Physics of the Earth. Cambridge University Press. https://doi.org/10.1017/CBO9780511812910
dc.relationSyracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., y Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050
dc.relationTaboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., … Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787–813. https://doi.org/10.1029/2000TC900004
dc.relationTanaka, A., Okubo, Y., y Matsubayashi, O. (1999). Curie point depth depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306(3-4), 461-470. https://doi.org/10.1016/S0040-1951(99)00072-4
dc.relationTissot, B. P., y Welte, D. H. (1984). Petroleum formation and occurrence. Springer Science & Business Media.
dc.relationToto, E. A., y Kellogg, J. N. (1992). Structure of the Sinu-San Jacinto fold belt—an active accretionary prism in northern Colombia. Journal of South American Earth Sciences, 5(2), 211–222. https://doi.org/10.1016/0895-9811(92)90039-2
dc.relationTrenkamp, R., Kellogg, J. N., Freymueller, J. T., y Mora, H. P. (2002). Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2), 157–171. https://doi.org/10.1016/S0895-9811(02)00018-4
dc.relationTrifonova, P., Zhelev, Z., Petrova, T., y Bojadgieva, K. (2009). Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophysics, 473(3), 362–374. https://doi.org/10.1016/j.tecto.2009.03.014
dc.relationTurcotte, D. L., y Schubert, G. (2002). Geodynamics. Cambridge University Press. https://doi.org/10.1017/CBO9780511807442
dc.relationUghi, A. (2014). Estudio de la estructura cortical en la zona centro norte de Venezuela mediante el análisis de flexión de placas. Revista Mexicana de Ciencias Geológicas, 31(1), 93–103. Recuperado de https://www.redalyc.org/articulo.oa?id=57231378007
dc.relationUniversidad de Granada. 2008. Caribbean. https://www.ugr.es/~agcasco/igcp546/CaribMetGeol/ caribbean.htm, accedido Febrero 10, 2020.
dc.relationUSGS . (2020). USGS EROS Archive - Digital Elevation - Shuttle Radar Topography Mission (SRTM)Shuttle Radar Topography Mission. Recuperado de https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-ra dar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center _objects
dc.relationUssami, N., de Sá, N. C., y Molina, E. C. (1993). Gravity map of Brazil: 2. Regional and residual isostatic anomalies and their correlation with major tectonic provinces. Journal of Geophysical Research: Solid Earth, 98(B2), 2199–2208. https://doi.org/10.1029/92JB01398
dc.relationUyeda, S. (1982). Subduction zones: An introduction to comparative subductology. Tectonophysics, 81(3–4), 133–159. https://doi.org/10.1016/0040-1951(82)90126-3
dc.relationVacquier, V., y Affleck, J. (1941). A computation of the average depth to the bottom of the Earth’s magnetic crust, based on a statistical study of local magnetic anomalies. Eos, Transactions American Geophysical Union, 22(2), 446–450. https://doi.org/10.1029/TR022i002p00446
dc.relationValera, J. L. (2010). Desarrollo y Aplicación de Modelos Numéricos Termomecánicos de Procesos de Delaminación Continental (Tesis de Doctorado). Universidad Complutense de Madrid, Madrid, Recuperado de https://eprints.ucm.es/9824/
dc.relationvan Benthem, S., Govers, R., Spakman, W., y Wortel, R. (2013). Tectonic Evolution and Mantle Structure of the Caribbean. Journal of Geophysical Research: Solid Earth 118(6), 3019–3036. https://doi.org/10.1002/jgrb.50235
dc.relationvan der Hilst, R., y Mann P. (1994). Tectonic Implications of Tomographic Images of Subducted Lithosphere beneath Northwestern South America. Geology, 22(5), 451–454. https://doi.org/10.1130/0091-7613(1994)022<0451:TIOTIO>2.3.CO;2
dc.relationVan der Meer, D., van Hinsbergen, D., y Spakman, W. (2017). The Atlas of the Underworld: a catalogue of slab remnants in the mantle imaged by seismic tomography, and their geological interpretation. En 19th EGU General Assembly Conference Abstracts, Viena, Austria. Recuperado de https://ui.adsabs.harvard.edu/abs/2017EGUGA..19.3798V/abs tract
dc.relationVargas, C. A., Alfaro, C., Briceño, L. A., Alvarado, I., y Quintero, W. (2009). Mapa Geotérmico de Colombia, 2009. En X Simposio Bolivariano - Exploración Petrolera en Cuencas Subandinas, Colombia. Recuperado de http://old.earthdoc.org/publication/publicationdetails/?publication=44484
dc.relationVargas, CA. (2020). Subduction geometries in northwestern South America. En The Geology of Colombia, Volume 4 (pp. 1-26). Bogota: Ser¬vicio Geológico Colombiano, Publicaciones Geológicas Especiales. https://doi.org/10.32685/pub.esp.38.2019.11
dc.relationVargas, C. A., Idarraga-Garcia, J., y Salazar, J. M. (2015). Curie point depths in northwestern Sout America and the Soutwestern Caribbea Sea. En Petroleum geology and potential of the Colombian Caribbean Margin (pp. 179-200). American Association of Petroleum Geologists. https://doi.org/10.1306/13531936M1083642
dc.relationVargas, C. A., y Mann, P. (2013). Tearing and Breaking Off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328
dc.relationVargas-Cordero, I., Tinivella, U., Villar, L., y Giustiniani, M. (2016). Gas hydrate and free gas estimation from seismic analysis offshore Chiloé island (Chile). Andean Geology, 43(3), 263-274. http://dx.doi.org/10.5027/andgeoV43n3-a02
dc.relationVeloza, G., Styron, R., Taylor, M., y Mora, A. (2012). Open-source archive of active faults for northwest South America. Gsa Today, 22(10), 4–10. Doi: 10.1130/GSAT-G156A.1
dc.relationVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., y Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3–4), 875–896. https://doi.org/10.1016/j.lithos.2011.05.003
dc.relationVohat, P., Sain, K., y Thakur, N. (2003). Heat flow and geothermal gradient from a bottom simulating reflector: A case study. Current science, 85(9), 1263–1265.
dc.relationvon Frese, R., Hinze, W. J., y Braile, L- W. (1982). Regional North American gravity and magnetic anomaly correlations. Geophysical Journal International, 69(3), 745–761. https://doi.org/10.1111/j.1365-246X.1982.tb02773.x
dc.relationWatts, A. B. (1978). An analysis of isostasy in the world’s oceans 1. Hawaiian-Emperor Seamount Chain. Journal of Geophysical Research: Solid Earth, 83(B12), 5989–6004. https://doi.org/10.1029/JB083iB12p05989
dc.relationWatts, A. B. (2010). Treatise on Geophysics, Volume 6: Crust and Lithosphere Dynamics. Oxford: Elsevier.
dc.relationWatts, A. B. (1978). An analysis of isostasy in the world’s oceans 1. Hawaiian-Emperor Seamount Chain. Journal of Geophysical Research: Solid Earth, 83(B12), 5989–6004. https://doi.org/10.1029/JB083iB12p05989
dc.relationWatts, A. (3 de Marzo, 2012). Fundamental Questions on Isostasy and Mean Sea-Level. Watts Up With That?. Recuperado el 20 de Mayo, 2019, de https://wattsupwiththat.wordpress.com/ 2012/03/03/new-questions-on-isostacy-and-ean-sea-level/
dc.relationWatts, A. B. (2010). Treatise on Geophysics, Volume 6: Crust and Lithosphere Dynamics. Oxford: Elsevier.
dc.relationWatts, A. B. (2001). Isostasy and Flexure of the Lithosphere. Oxford: Cambridge University Press.
dc.relationYamano, M., Uyeda, S., Aoki, Y., y Shipley, T. (1982). Estimates of heat flow derived from gas hydrates. Geology, 10(7), 339–343. https://doi.org/10.1130/0091-7613(1982)10<339:EOHFDF>2.0.CO;2
dc.relationYang, K., Xing, J., Gong, W., Li, C., y Wu, X. (2017). Curie Point Depth from Spectral Analysis of Magnetic Data in the Southeast Tibet. Earth Sciences, 6(5), 88-96. Recuperado de http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=161&doi=10.11648/j.earth.20170605.15
dc.relationYarce, J., Monsalve, G., Becker, T. W., Cardona, A., Poveda, E., Alvira, D., y Ordoñez-Carmoma, O. (2014). Seismological observations in northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics, 637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006
dc.relationZapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., … Castañeda, J. P. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research, 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleModelamiento termo-mecánico en la zona de subducción del Caribe colombiano -área Sinú San Jacinto- a partir de la interpretación de anomalías de campos potenciales
dc.typeOtro


Este ítem pertenece a la siguiente institución