dc.contributor | Osorio Londoño, Gustavo Adolfo | |
dc.contributor | Angulo García, David | |
dc.contributor | Percepción y Control Inteligente (PCI) | |
dc.creator | Galindo González, Cristian Camilo | |
dc.date.accessioned | 2020-11-05T16:02:23Z | |
dc.date.available | 2020-11-05T16:02:23Z | |
dc.date.created | 2020-11-05T16:02:23Z | |
dc.date.issued | 2020 | |
dc.identifier | C. C. Galindo-González, "Resilience and stability of power grids using the Kuramoto model", Master's Thesis, Universidad Nacional de Colombia, 2020 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78588 | |
dc.description.abstract | In this document, a methodology is developed to test the non-linear stability of the synchronous state in a power grid as well as its resilience to structural failures by applying a percolation-inspired algorithm based in link and node removal simulations. Vulnerability measures are de ned in terms of either dynamical or topological features of the power grid and both methods are compared. A basic analysis of the Colombian power grid is also included and used to test the proposed algorithm. | |
dc.description.abstract | En este documento, se desarrolla una metodología para estudiar la estabilidad no lineal del estado sincronizado en una red de potencia, así como la resiliencia de la misma ante fallas estructurales aplicando un algoritmo inspirado en la percolación en simulaciones de remoción de conexiones y nodos. Se definen medidas de vulnerabilidad en términos de las características topológicas y dinámicas del sistema de potencia y se comparan ambos métodos. Se presenta además un análisis básico del sistema de transmisión de Colombia y se usa como caso particular de estudio para desarrollar las pruebas del algoritmo propuesto. | |
dc.language | eng | |
dc.publisher | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial | |
dc.publisher | Departamento de Ingeniería Eléctrica y Electrónica | |
dc.publisher | Universidad Nacional de Colombia - Sede Manizales | |
dc.relation | Hypernet Labs, \Galileo." https://hypernetlabs.io/galileo/, 2020. | |
dc.relation | T. Coletta, R. Delabays, I. Adagideli, and P. Jacquod, \Topologically protected loop | |
dc.relation | ows in high voltage AC power grids This," | |
dc.relation | P. Schultz, J. Heitzig, and J. Kurths, \A random growth model for power grids and
other spatially embedded infrastructure networks," European Physical Journal: Special
Topics, vol. 223, no. 12, pp. 2593{2610, 2014. | |
dc.relation | J. Nitzbon, P. Schultz, J. Heitzig, J. Kurths, and F. Hellmann, \Deciphering the imprint
of topology on nonlinear dynamical network stability," New Journal of Physics, vol. 19,
no. 3, 2017. | |
dc.relation | T. Nishikawa and A. E. Motter, \Comparative analysis of existing models for power-grid
synchronization," New Journal of Physics, vol. 17, 2015. | |
dc.relation | A. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization, A Universal Concept
in Nonlinear Sciences. Cambridge: Cambridge University Press, 2001 | |
dc.relation | A. Arenas, A. D az-Guilera, J. Kurths, Y. Moreno, and C. Zhou, \Synchronization in
complex networks," Physics Reports, vol. 469, no. 3, pp. 93 { 153, 2008. | |
dc.relation | G. V. Osipov, J. Kurths, and C. Zhou, Synchronization in oscillatory networks. Berlin,
Germany: Springer, 2007. | |
dc.relation | F. Dorfler, M. Chertkov, and F. Bullo, \Synchronization in complex oscillator networks
and smart grids," Proceedings of the National Academy of Sciences, vol. 110, no. 6,
pp. 2005{2010, 2013. | |
dc.relation | A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, \Spontaneous synchrony in
power-grid networks," Nature Physics, vol. 9, no. 3, pp. 191{197, 2013. | |
dc.relation | H. Sakaguchi and T. Matsuo, \Cascade Failure in a Phase Model of Power Grids,"
vol. 81, pp. 1{7, 2012. | |
dc.relation | S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, \Catastrophic
cascade of failures in interdependent networks," Nature, vol. 464, no. 7291, pp. 1025{
1028, 2010. | |
dc.relation | D. Teather, \Blackout cost New York $36m an hour," The Guardian, 2003. | |
dc.relation | P. Brockway, A. Owen, L. I. Brand Correa, and L. Hardt | |
dc.relation | K. Xi, J. L. A. Dubbeldam, H. X. Lin, and J. H. V. Schuppen, \Power-Imbalance Allocation
Control of Power Systems-Secondary Frequency Control," Automatica, vol. 92,
pp. 70{72, 2018. | |
dc.relation | S. Tamrakar, M. Conrath, and S. Kettemann, \Propagation of disturbances in AC
electricity grids," Scienti c Reports, vol. 8, no. 1, pp. 1{11, 2018. | |
dc.relation | \La revoluci on renovable que hay en Colombia," Semana, 2019. | |
dc.relation | D. J. Hill and Guanrong Chen, \Power systems as dynamic networks," in 2006 IEEE
International Symposium on Circuits and Systems, pp. 4 pp.{725, 2006. | |
dc.relation | C. D. Brummitt, P. D. H. Hines, I. Dobson, C. Moore, and R. M. D'Souza, \Transdisciplinary
electric power grid science," Proceedings of the National Academy of Sciences,
vol. 110, no. 30, pp. 12159{12159, 2013. | |
dc.relation | G. Filatrella, A. H. Nielsen, and N. F. Pedersen, \Analysis of a power grid using a
Kuramoto-like model," European Physical Journal B, vol. 61, no. 4, pp. 485{491, 2008. | |
dc.relation | Y. Kuramoto, \Self-entrainment of a population of coupled non-linear oscillators," in
International Symposium on Mathematical Problems in Theoretical Physics (H. Araki,
ed.), (Berlin, Heidelberg), pp. 420{422, Springer Berlin Heidelberg, 1975. | |
dc.relation | J. A. Acebr on, L. L. Bonilla, C. J. P erez Vicente, F. Ritort, and R. Spigler, \The
kuramoto model: A simple paradigm for synchronization phenomena," Rev. Mod. Phys.,
vol. 77, pp. 137{185, Apr 2005. | |
dc.relation | F. Dor
er and F. Bullo, \On the Critical Coupling for Kuramoto Oscillators," pp. 1{27,
2010. | |
dc.relation | M. Rohden, A. Sorge, D. Witthaut, and M. Timme, \Impact of network topology on
synchrony of oscillatory power grids," vol. 013123, pp. 0{8, 2013. | |
dc.relation | M. Rohden, A. Sorge, M. Timme, and D. Witthaut, \Self-organized synchronization in
decentralized power grids," Physical Review Letters, vol. 109, no. 6, pp. 1{5, 2012. | |
dc.relation | S. Olmi, A. Navas, S. Boccaletti, and A. Torcini, \Hysteretic transitions in the Kuramoto
model with inertia," Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
vol. 90, no. 4, pp. 1{16, 2014. | |
dc.relation | F. A. Rodrigues, T. K. Peron, P. Ji, and J. Kurths, \The Kuramoto model in complex
networks," Physics Reports, vol. 610, pp. 1{98, 2016. | |
dc.relation | H. . Chiang, F. F.Wu, and P. P. Varaiya, \Foundations of the potential energy boundary
surface method for power system transient stability analysis," IEEE Transactions on
Circuits and Systems, vol. 35, no. 6, pp. 712{728, 1988. | |
dc.relation | H. Kwatny, L. Bahar, and A. Pasrija, \Energy-like lyapunov functions for power system
stability analysis," IEEE Transactions on Circuits and Systems, vol. 32, no. 11,
pp. 1140{1149, 1985. | |
dc.relation | K. Xi, J. L. Dubbeldam, and H. X. Lin, \Synchronization of cyclic power grids: Equilibria
and stability of the synchronous state," Chaos, vol. 27, no. 1, 2017. | |
dc.relation | P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, \How basin stability complements
the linear-stability paradigm," Nature Physics, vol. 9, no. 2, pp. 89{92, 2013. | |
dc.relation | P. J. Menck, J. Heitzig, J. Kurths, and H. J. Schellnhuber, \How dead ends undermine
power grid stability," Nature Communications, vol. 5, pp. 1{8, 2014. | |
dc.relation | C. Mitra, A. Choudhary, S. Sinha, J. Kurths, and R. V. Donner, \Multiple-node basin
stability in complex dynamical networks," Physical Review E, vol. 95, no. 3, pp. 1{9,
2017. | |
dc.relation | C. Mitra, T. Kittel, A. Choudhary, J. Kurths, and R. V. Donner, \Recovery time after
localized perturbations in complex dynamical networks Recovery time after localized
perturbations in complex dynamical networks," 2017. | |
dc.relation | M. F. Wol , P. G. Lind, and P. Maass, \Power grid stability under perturbation of
single nodes: E ects of heterogeneity and internal nodes," Chaos: An Interdisciplinary
Journal of Nonlinear Science, vol. 28, no. 10, p. 103120, 2018. | |
dc.relation | P. Schultz, J. Heitzig, and J. Kurths, \Detours around basin stability in power networks,"
New Journal of Physics, vol. 16, 2014. | |
dc.relation | A. Plietzsch, P. Schultz, J. Heitzig, and J. Kurths, \Local vs. global redundancy { tradeo
s between resilience against cascading failures and frequency stability," European
Physical Journal: Special Topics, vol. 225, no. 3, pp. 551{568, 2016. | |
dc.relation | A. N. Montanari, E. I. Moreira, and L. A. Aguirre, \E ects of network heterogeneity and
tripping time on the basin stability of power systems," Communications in Nonlinear
Science and Numerical Simulation, vol. 89, p. 105296, 2020. | |
dc.relation | M. Tyloo, L. Pagnier, and P. Jacquod, \The key player problem in complex oscillator
networks and electric power grids: Resistance centralities identify local vulnerabilities,"
Science Advances, vol. 5, no. 11, 2019. | |
dc.relation | M. Tyloo and P. Jacquod, \Global robustness versus local vulnerabilities in complex
synchronous networks," Phys. Rev. E, vol. 100, p. 032303, Sep 2019. | |
dc.relation | F. Hellmann, P. Schultz, P. Jaros, R. Levchenko, T. Kapitaniak, J. Kurths, and Y. Maistrenko,
\Network-induced multistability through lossy coupling and exotic solitary states,"
Nature Communications, vol. 11, p. 592, Jan 2020. | |
dc.relation | M. Tyloo, R. Delabays, and P. Jacquod, \Noise-induced desynchronization and stochastic
escape from equilibrium in complex networks," Phys. Rev. E, vol. 99, p. 062213, Jun
2019. | |
dc.relation | I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and D. Helbing, \Transient dynamics
increasing network vulnerability to cascading failures," Physical Review Letters, vol. 100,
no. 21, pp. 1{4, 2008. | |
dc.relation | M. Rohden, D. Jung, S. Tamrakar, and S. Kettemann, \Cascading failures in ac electricity
grids," Physical Review E, vol. 94, no. 3, pp. 1{8, 2016. | |
dc.relation | B. Sch afer, D. Witthaut, M. Timme, and V. Latora, \Dynamically induced cascading
failures in power grids," Nature Communications, vol. 9, no. 1, 2018. | |
dc.relation | M. Fazlyab, F. D or
er, and V. M. Preciado, \Optimal network design for synchronization
of coupled oscillators," Automatica, vol. 84, pp. 181 { 189, 2017. | |
dc.relation | H. Taher, S. Olmi, and E. Sch oll, \Enhancing power grid synchronization and stability
through time-delayed feedback control," Phys. Rev. E, vol. 100, p. 062306, Dec 2019. | |
dc.relation | S. Dietrich and A. Amnon, \Introduction to percolation theory," 1994. | |
dc.relation | W. Chen, Z. Zheng, and R. M. D'Souza, \Deriving an underlying mechanism for discontinuous
percolation," Epl, vol. 100, no. 6, pp. 1{6, 2012. | |
dc.relation | R. M. D'Souza and M. Mitzenmacher, \Local cluster aggregation models of explosive
percolation," Physical Review Letters, vol. 104, no. 19, pp. 10{13, 2010. | |
dc.relation | Z. Kong and E. M. Yeh, \Correlated and cascading node failures in random geometric
networks: A percolation view," ICUFN 2012 - 4th International Conference on Ubiquitous
and Future Networks, Final Program, vol. 56, no. 11, pp. 520{525, 2012. | |
dc.relation | H. Xiao and E. M. Yeh, \Cascading link failure in the power grid: A percolation-based
analysis," IEEE International Conference on Communications, 2011. | |
dc.relation | L. A. Machuca Moreno, \An alisis de estabilidad transitoria basado en teor a de redes
complejas y el fen omeno de percolaci on," 2017. | |
dc.relation | M. Mureddu, G. Caldarelli, A. Damiano, A. Scala, and H. Meyer-Ortmanns, \Islanding
the power grid on the transmission level: less connections for more security," Scienti c
Reports, vol. 6, p. 34797, Oct 2016. | |
dc.relation | J. Gao, X. Liu, D. Li, and S. Havlin, \Recent progress on the resilience of complex
networks," Energies, vol. 8, no. 10, pp. 12187{12210, 2015. | |
dc.relation | D. H. Kim, D. A. Eisenberg, Y. H. Chun, and J. Park, \Network topology and resilience
analysis of south korean power grid," Physica A: Statistical Mechanics and its
Applications, vol. 465, pp. 13 { 24, 2017. | |
dc.relation | C. Fu, Y. Gao, S. Cai, H. Yang, and C. Yang, \Center of mass in complex networks,"
Scienti c Reports, vol. 7, no. December 2016, pp. 1{7, 2017. | |
dc.relation | R. V. Sol e, M. Rosas-Casals, B. Corominas-Murtra, and S. Valverde, \Robustness of
the european power grids under intentional attack," Phys. Rev. E, vol. 77, p. 026102,
Feb 2008. | |
dc.relation | D. Li, Q. Zhang, E. Zio, S. Havlin, and R. Kang, \Network reliability analysis based on
percolation theory," Reliability Engineering and System Safety, vol. 142, pp. 556{562,
2015. | |
dc.relation | L. Chen, P. Ji, D. Waxman, W. Lin, and J. Kurths, \E ects of dynamical and structural
modi cations on synchronization," Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 29, no. 8, p. 083131, 2019. | |
dc.relation | Z. Huang, C.Wang, S. Ruj, M. Stojmenovic, and A. Nayak, \Modeling cascading failures
in smart power grid using interdependent complex networks and percolation theory,"
Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications,
ICIEA 2013, pp. 1023{1028, 2013. | |
dc.relation | Y. Yang and A. E. Motter, \Cascading failures as continuous phase-space transitions,"
Phys. Rev. Lett., vol. 119, p. 248302, Dec 2017. | |
dc.relation | C. Caro-Ruiz, J. Ma, D. Hill, A. Pavas, and E. Mojica-Nava, \A minimum cut-set
vulnerability analysis of power networks," Sustainable Energy, Grids and Networks,
vol. 21, p. 100302, 2020. | |
dc.relation | J. Saram aki, M. Kivel a, J. P. Onnela, K. Kaski, and J. Kert esz, \Generalizations of the
clustering coe cient to weighted complex networks," Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, vol. 75, no. 2, pp. 1{4, 2007. | |
dc.relation | U. Brandes, \A faster algorithm for betweenness centrality," The Journal of Mathematical
Sociology, vol. 25, no. 2, pp. 163{177, 2001. | |
dc.relation | P. M. Anderson and A. A. Fouad, Power system control and stability. 2002. | |
dc.relation | K. Schmietendorf, J. Peinke, R. Friedrich, and O. Kamps, \Self-organized synchronization
and voltage stability in networks of synchronous machines," European Physical
Journal: Special Topics, vol. 223, no. 12, pp. 2577{2592, 2014. | |
dc.relation | Y. Kuramoto, Chemical oscillations, waves, and turbulence. 2003. | |
dc.relation | S. H. Strogatz, \From Kuramoto to Crawford: Exploring the onset of synchronization in
populations of coupled oscillators," Physica D: Nonlinear Phenomena, vol. 143, no. 1-4,
pp. 1{20, 2000. | |
dc.relation | S. Strogatz, SYNC: The emerging science of spontaneous order. 2003. | |
dc.relation | P. Ji, T. K. D. M. Peron, F. A. Rodrigues, and J. Kurths, \Low-dimensional behavior of
Kuramoto model with inertia in complex networks," Scienti c Reports, vol. 4, pp. 1{6,
2014. | |
dc.relation | B. Sonnenschein, T. K. Peron, F. A. Rodrigues, J. Kurths, and L. Schimansky-Geier,
\Collective dynamics in two populations of noisy oscillators with asymmetric interactions,"
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 91,
no. 6, pp. 1{7, 2015. | |
dc.relation | M. Rohden, D. Witthaut, M. Timme, and H. Meyer-Ortmanns, \Curing critical links
in oscillator networks as power grid models," Submitted, no. December, pp. 0{10, 2015. | |
dc.relation | H. Kim, S. H. Lee, and P. Holme, \Building blocks of the basin stability of power grids,"
Physical Review E, vol. 93, no. 6, pp. 1{8, 2016. | |
dc.relation | L. Cao, C. Tian, Z. Wang, X. Zhang, and Z. Liu, \In
uence of stochastic perturbations
on the cluster explosive synchronization of second-order Kuramoto oscillators on
networks," Physical Review E, vol. 022220, pp. 1{7, 2018 | |
dc.relation | J. M. Grzybowski, E. E. Macau, and T. Yoneyama, \On synchronization in power-grids
modelled as networks of second-order Kuramoto oscillators," Chaos, vol. 26, 2016. | |
dc.relation | A. B. Birch eld, E. Schweitzer, M. H. Athari, T. Xu, T. J. Overbye, A. Scaglione, and
Z. Wang, \A metric-based validation process to assess the realism of synthetic power
grids," Energies, vol. 10, no. 8, 2017. | |
dc.relation | A. S. Eran Schweitzer and R. Thomas, \The validation of synthetic power system cases,"
IREP'2017 Symposium, 2017. | |
dc.relation | Z. Liu, Y. Zhang, Y. Wang, N. Wei, and C. Gu, \Development of the interconnected
power grid in europe and suggestions for the energy internet in china," Global Energy
Interconnection, vol. 3, no. 2, pp. 111 { 119, 2020. | |
dc.relation | S. H. Yook and H. Meyer-Ortmanns, \Synchronization of R ossler oscillators on scalefree
topologies," Physica A: Statistical Mechanics and its Applications, vol. 371, no. 2,
pp. 781{789, 2006. | |
dc.relation | T. Nishikawa, A. E. Motter, Y. C. Lai, and F. C. Hoppensteadt, \Heterogeneity in Oscillator
Networks: Are Smaller Worlds Easier to Synchronize?," Physical Review Letters,
vol. 91, no. 1, pp. 2{5, 2003. | |
dc.relation | A. G. H. (auth.), Percolation Theory For Flow In Porous Media. Lecture Notes in
Physics 674, Springer Berlin Heidelberg, 1 ed., 2005. | |
dc.relation | R. Carareto, M. S. Baptista, and C. Grebogi, \Natural synchronization in power-grids
with anti-correlated units," Communications in Nonlinear Science and Numerical Simulation,
vol. 18, no. 4, pp. 1035{1046, 2013. | |
dc.relation | D. Witthaut and M. Timme, \Braess's paradox in oscillator networks, desynchronization
and power outage," New Journal of Physics, vol. 14, pp. 1{17, 2012. | |
dc.relation | E. B. T. Tchuisseu, D. Gomila, P. Colet, D. Witthaut, M. Timme, and B. Sch afer,
\Curing braess' paradox by secondary control in power grids," New Journal of Physics,
vol. 20, no. 8, pp. 1{11, 2018. | |
dc.relation | J. P. Pade and T. Pereira, \Improving Network Structure can lead to Functional Failures,"
Nature Publishing Group, pp. 1{6, 2015. | |
dc.relation | R. S. Pinto and A. Saa, \Synchrony-optimized networks of Kuramoto oscillators with
inertia," Physica A: Statistical Mechanics and its Applications, vol. 463, pp. 77{87, 2016. | |
dc.relation | M. Fazlyab, F. D or
er, and V. M. Preciado, \Optimal network design for synchronization
of coupled oscillators," Automatica, vol. 84, pp. 181{189, 2017. | |
dc.relation | H. Kim, S. H. Lee, J. Davidsen, and S.-w. Son, \Multistability and variations in basin
of attraction in power-grid systems," 2018. | |
dc.relation | Wei Wu and Chikong Wong, \Facts applications in preventing loop
ows in interconnected
systems," in 2003 IEEE Power Engineering Society General Meeting (IEEE Cat.
No.03CH37491), vol. 1, pp. 170{174 Vol. 1, 2003. | |
dc.relation | P. Schultz, P. J. Menck, J. Heitzig, and J. Kurths, \Potentials and limits to basin
stability estimation," New Journal of Physics, vol. 19, p. 023005, feb 2017. | |
dc.relation | M. Khedkar, G. Dhole, and V. Neve, \Transient stability analysis by transient energy
function method: Closest and controlling unstable equilibrium point approach," Journal
of the Institution of Engineers (India): Electrical Engineering Division, vol. 85, pp. 83{
88, 09 2004 | |
dc.relation | H.-D. Chang, C.-C. Chu, and G. Cauley, \Direct stability analysis of electric power
systems using energy functions: Theory, applications, and perspective," Proceedings of
the IEEE, vol. 83, pp. 1497 { 1529, 12 1995. | |
dc.relation | F. Hellmann, P. Schultz, C. Grabow, J. Heitzig, and J. Kurths, \Survivability of Deterministic
Dynamical Systems," Scienti c Reports, vol. 6, no. March, pp. 1{12, 2016. | |
dc.relation | UPME, STN - Sistema de Transmisi on Nacional de Energ a El ectrica, Colombia,
http://sig.simec.gov.co/GeoPortal/Mapas/Mapas, 2016. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Resilience and stability of power grids using the Kuramoto model | |
dc.type | Otro | |