dc.contributorOsorio Londoño, Gustavo Adolfo
dc.contributorAngulo García, David
dc.contributorPercepción y Control Inteligente (PCI)
dc.creatorGalindo González, Cristian Camilo
dc.date.accessioned2020-11-05T16:02:23Z
dc.date.available2020-11-05T16:02:23Z
dc.date.created2020-11-05T16:02:23Z
dc.date.issued2020
dc.identifierC. C. Galindo-González, "Resilience and stability of power grids using the Kuramoto model", Master's Thesis, Universidad Nacional de Colombia, 2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78588
dc.description.abstractIn this document, a methodology is developed to test the non-linear stability of the synchronous state in a power grid as well as its resilience to structural failures by applying a percolation-inspired algorithm based in link and node removal simulations. Vulnerability measures are de ned in terms of either dynamical or topological features of the power grid and both methods are compared. A basic analysis of the Colombian power grid is also included and used to test the proposed algorithm.
dc.description.abstractEn este documento, se desarrolla una metodología para estudiar la estabilidad no lineal del estado sincronizado en una red de potencia, así como la resiliencia de la misma ante fallas estructurales aplicando un algoritmo inspirado en la percolación en simulaciones de remoción de conexiones y nodos. Se definen medidas de vulnerabilidad en términos de las características topológicas y dinámicas del sistema de potencia y se comparan ambos métodos. Se presenta además un análisis básico del sistema de transmisión de Colombia y se usa como caso particular de estudio para desarrollar las pruebas del algoritmo propuesto.
dc.languageeng
dc.publisherManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationHypernet Labs, \Galileo." https://hypernetlabs.io/galileo/, 2020.
dc.relationT. Coletta, R. Delabays, I. Adagideli, and P. Jacquod, \Topologically protected loop
dc.relationows in high voltage AC power grids This,"
dc.relationP. Schultz, J. Heitzig, and J. Kurths, \A random growth model for power grids and other spatially embedded infrastructure networks," European Physical Journal: Special Topics, vol. 223, no. 12, pp. 2593{2610, 2014.
dc.relationJ. Nitzbon, P. Schultz, J. Heitzig, J. Kurths, and F. Hellmann, \Deciphering the imprint of topology on nonlinear dynamical network stability," New Journal of Physics, vol. 19, no. 3, 2017.
dc.relationT. Nishikawa and A. E. Motter, \Comparative analysis of existing models for power-grid synchronization," New Journal of Physics, vol. 17, 2015.
dc.relationA. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization, A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press, 2001
dc.relationA. Arenas, A. D az-Guilera, J. Kurths, Y. Moreno, and C. Zhou, \Synchronization in complex networks," Physics Reports, vol. 469, no. 3, pp. 93 { 153, 2008.
dc.relationG. V. Osipov, J. Kurths, and C. Zhou, Synchronization in oscillatory networks. Berlin, Germany: Springer, 2007.
dc.relationF. Dorfler, M. Chertkov, and F. Bullo, \Synchronization in complex oscillator networks and smart grids," Proceedings of the National Academy of Sciences, vol. 110, no. 6, pp. 2005{2010, 2013.
dc.relationA. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, \Spontaneous synchrony in power-grid networks," Nature Physics, vol. 9, no. 3, pp. 191{197, 2013.
dc.relationH. Sakaguchi and T. Matsuo, \Cascade Failure in a Phase Model of Power Grids," vol. 81, pp. 1{7, 2012.
dc.relationS. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, \Catastrophic cascade of failures in interdependent networks," Nature, vol. 464, no. 7291, pp. 1025{ 1028, 2010.
dc.relationD. Teather, \Blackout cost New York $36m an hour," The Guardian, 2003.
dc.relationP. Brockway, A. Owen, L. I. Brand Correa, and L. Hardt
dc.relationK. Xi, J. L. A. Dubbeldam, H. X. Lin, and J. H. V. Schuppen, \Power-Imbalance Allocation Control of Power Systems-Secondary Frequency Control," Automatica, vol. 92, pp. 70{72, 2018.
dc.relationS. Tamrakar, M. Conrath, and S. Kettemann, \Propagation of disturbances in AC electricity grids," Scienti c Reports, vol. 8, no. 1, pp. 1{11, 2018.
dc.relation\La revoluci on renovable que hay en Colombia," Semana, 2019.
dc.relationD. J. Hill and Guanrong Chen, \Power systems as dynamic networks," in 2006 IEEE International Symposium on Circuits and Systems, pp. 4 pp.{725, 2006.
dc.relationC. D. Brummitt, P. D. H. Hines, I. Dobson, C. Moore, and R. M. D'Souza, \Transdisciplinary electric power grid science," Proceedings of the National Academy of Sciences, vol. 110, no. 30, pp. 12159{12159, 2013.
dc.relationG. Filatrella, A. H. Nielsen, and N. F. Pedersen, \Analysis of a power grid using a Kuramoto-like model," European Physical Journal B, vol. 61, no. 4, pp. 485{491, 2008.
dc.relationY. Kuramoto, \Self-entrainment of a population of coupled non-linear oscillators," in International Symposium on Mathematical Problems in Theoretical Physics (H. Araki, ed.), (Berlin, Heidelberg), pp. 420{422, Springer Berlin Heidelberg, 1975.
dc.relationJ. A. Acebr on, L. L. Bonilla, C. J. P erez Vicente, F. Ritort, and R. Spigler, \The kuramoto model: A simple paradigm for synchronization phenomena," Rev. Mod. Phys., vol. 77, pp. 137{185, Apr 2005.
dc.relationF. Dor er and F. Bullo, \On the Critical Coupling for Kuramoto Oscillators," pp. 1{27, 2010.
dc.relationM. Rohden, A. Sorge, D. Witthaut, and M. Timme, \Impact of network topology on synchrony of oscillatory power grids," vol. 013123, pp. 0{8, 2013.
dc.relationM. Rohden, A. Sorge, M. Timme, and D. Witthaut, \Self-organized synchronization in decentralized power grids," Physical Review Letters, vol. 109, no. 6, pp. 1{5, 2012.
dc.relationS. Olmi, A. Navas, S. Boccaletti, and A. Torcini, \Hysteretic transitions in the Kuramoto model with inertia," Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 90, no. 4, pp. 1{16, 2014.
dc.relationF. A. Rodrigues, T. K. Peron, P. Ji, and J. Kurths, \The Kuramoto model in complex networks," Physics Reports, vol. 610, pp. 1{98, 2016.
dc.relationH. . Chiang, F. F.Wu, and P. P. Varaiya, \Foundations of the potential energy boundary surface method for power system transient stability analysis," IEEE Transactions on Circuits and Systems, vol. 35, no. 6, pp. 712{728, 1988.
dc.relationH. Kwatny, L. Bahar, and A. Pasrija, \Energy-like lyapunov functions for power system stability analysis," IEEE Transactions on Circuits and Systems, vol. 32, no. 11, pp. 1140{1149, 1985.
dc.relationK. Xi, J. L. Dubbeldam, and H. X. Lin, \Synchronization of cyclic power grids: Equilibria and stability of the synchronous state," Chaos, vol. 27, no. 1, 2017.
dc.relationP. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, \How basin stability complements the linear-stability paradigm," Nature Physics, vol. 9, no. 2, pp. 89{92, 2013.
dc.relationP. J. Menck, J. Heitzig, J. Kurths, and H. J. Schellnhuber, \How dead ends undermine power grid stability," Nature Communications, vol. 5, pp. 1{8, 2014.
dc.relationC. Mitra, A. Choudhary, S. Sinha, J. Kurths, and R. V. Donner, \Multiple-node basin stability in complex dynamical networks," Physical Review E, vol. 95, no. 3, pp. 1{9, 2017.
dc.relationC. Mitra, T. Kittel, A. Choudhary, J. Kurths, and R. V. Donner, \Recovery time after localized perturbations in complex dynamical networks Recovery time after localized perturbations in complex dynamical networks," 2017.
dc.relationM. F. Wol , P. G. Lind, and P. Maass, \Power grid stability under perturbation of single nodes: E ects of heterogeneity and internal nodes," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 10, p. 103120, 2018.
dc.relationP. Schultz, J. Heitzig, and J. Kurths, \Detours around basin stability in power networks," New Journal of Physics, vol. 16, 2014.
dc.relationA. Plietzsch, P. Schultz, J. Heitzig, and J. Kurths, \Local vs. global redundancy { tradeo s between resilience against cascading failures and frequency stability," European Physical Journal: Special Topics, vol. 225, no. 3, pp. 551{568, 2016.
dc.relationA. N. Montanari, E. I. Moreira, and L. A. Aguirre, \E ects of network heterogeneity and tripping time on the basin stability of power systems," Communications in Nonlinear Science and Numerical Simulation, vol. 89, p. 105296, 2020.
dc.relationM. Tyloo, L. Pagnier, and P. Jacquod, \The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities," Science Advances, vol. 5, no. 11, 2019.
dc.relationM. Tyloo and P. Jacquod, \Global robustness versus local vulnerabilities in complex synchronous networks," Phys. Rev. E, vol. 100, p. 032303, Sep 2019.
dc.relationF. Hellmann, P. Schultz, P. Jaros, R. Levchenko, T. Kapitaniak, J. Kurths, and Y. Maistrenko, \Network-induced multistability through lossy coupling and exotic solitary states," Nature Communications, vol. 11, p. 592, Jan 2020.
dc.relationM. Tyloo, R. Delabays, and P. Jacquod, \Noise-induced desynchronization and stochastic escape from equilibrium in complex networks," Phys. Rev. E, vol. 99, p. 062213, Jun 2019.
dc.relationI. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and D. Helbing, \Transient dynamics increasing network vulnerability to cascading failures," Physical Review Letters, vol. 100, no. 21, pp. 1{4, 2008.
dc.relationM. Rohden, D. Jung, S. Tamrakar, and S. Kettemann, \Cascading failures in ac electricity grids," Physical Review E, vol. 94, no. 3, pp. 1{8, 2016.
dc.relationB. Sch afer, D. Witthaut, M. Timme, and V. Latora, \Dynamically induced cascading failures in power grids," Nature Communications, vol. 9, no. 1, 2018.
dc.relationM. Fazlyab, F. D or er, and V. M. Preciado, \Optimal network design for synchronization of coupled oscillators," Automatica, vol. 84, pp. 181 { 189, 2017.
dc.relationH. Taher, S. Olmi, and E. Sch oll, \Enhancing power grid synchronization and stability through time-delayed feedback control," Phys. Rev. E, vol. 100, p. 062306, Dec 2019.
dc.relationS. Dietrich and A. Amnon, \Introduction to percolation theory," 1994.
dc.relationW. Chen, Z. Zheng, and R. M. D'Souza, \Deriving an underlying mechanism for discontinuous percolation," Epl, vol. 100, no. 6, pp. 1{6, 2012.
dc.relationR. M. D'Souza and M. Mitzenmacher, \Local cluster aggregation models of explosive percolation," Physical Review Letters, vol. 104, no. 19, pp. 10{13, 2010.
dc.relationZ. Kong and E. M. Yeh, \Correlated and cascading node failures in random geometric networks: A percolation view," ICUFN 2012 - 4th International Conference on Ubiquitous and Future Networks, Final Program, vol. 56, no. 11, pp. 520{525, 2012.
dc.relationH. Xiao and E. M. Yeh, \Cascading link failure in the power grid: A percolation-based analysis," IEEE International Conference on Communications, 2011.
dc.relationL. A. Machuca Moreno, \An alisis de estabilidad transitoria basado en teor a de redes complejas y el fen omeno de percolaci on," 2017.
dc.relationM. Mureddu, G. Caldarelli, A. Damiano, A. Scala, and H. Meyer-Ortmanns, \Islanding the power grid on the transmission level: less connections for more security," Scienti c Reports, vol. 6, p. 34797, Oct 2016.
dc.relationJ. Gao, X. Liu, D. Li, and S. Havlin, \Recent progress on the resilience of complex networks," Energies, vol. 8, no. 10, pp. 12187{12210, 2015.
dc.relationD. H. Kim, D. A. Eisenberg, Y. H. Chun, and J. Park, \Network topology and resilience analysis of south korean power grid," Physica A: Statistical Mechanics and its Applications, vol. 465, pp. 13 { 24, 2017.
dc.relationC. Fu, Y. Gao, S. Cai, H. Yang, and C. Yang, \Center of mass in complex networks," Scienti c Reports, vol. 7, no. December 2016, pp. 1{7, 2017.
dc.relationR. V. Sol e, M. Rosas-Casals, B. Corominas-Murtra, and S. Valverde, \Robustness of the european power grids under intentional attack," Phys. Rev. E, vol. 77, p. 026102, Feb 2008.
dc.relationD. Li, Q. Zhang, E. Zio, S. Havlin, and R. Kang, \Network reliability analysis based on percolation theory," Reliability Engineering and System Safety, vol. 142, pp. 556{562, 2015.
dc.relationL. Chen, P. Ji, D. Waxman, W. Lin, and J. Kurths, \E ects of dynamical and structural modi cations on synchronization," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 29, no. 8, p. 083131, 2019.
dc.relationZ. Huang, C.Wang, S. Ruj, M. Stojmenovic, and A. Nayak, \Modeling cascading failures in smart power grid using interdependent complex networks and percolation theory," Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications, ICIEA 2013, pp. 1023{1028, 2013.
dc.relationY. Yang and A. E. Motter, \Cascading failures as continuous phase-space transitions," Phys. Rev. Lett., vol. 119, p. 248302, Dec 2017.
dc.relationC. Caro-Ruiz, J. Ma, D. Hill, A. Pavas, and E. Mojica-Nava, \A minimum cut-set vulnerability analysis of power networks," Sustainable Energy, Grids and Networks, vol. 21, p. 100302, 2020.
dc.relationJ. Saram aki, M. Kivel a, J. P. Onnela, K. Kaski, and J. Kert esz, \Generalizations of the clustering coe cient to weighted complex networks," Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 75, no. 2, pp. 1{4, 2007.
dc.relationU. Brandes, \A faster algorithm for betweenness centrality," The Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163{177, 2001.
dc.relationP. M. Anderson and A. A. Fouad, Power system control and stability. 2002.
dc.relationK. Schmietendorf, J. Peinke, R. Friedrich, and O. Kamps, \Self-organized synchronization and voltage stability in networks of synchronous machines," European Physical Journal: Special Topics, vol. 223, no. 12, pp. 2577{2592, 2014.
dc.relationY. Kuramoto, Chemical oscillations, waves, and turbulence. 2003.
dc.relationS. H. Strogatz, \From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators," Physica D: Nonlinear Phenomena, vol. 143, no. 1-4, pp. 1{20, 2000.
dc.relationS. Strogatz, SYNC: The emerging science of spontaneous order. 2003.
dc.relationP. Ji, T. K. D. M. Peron, F. A. Rodrigues, and J. Kurths, \Low-dimensional behavior of Kuramoto model with inertia in complex networks," Scienti c Reports, vol. 4, pp. 1{6, 2014.
dc.relationB. Sonnenschein, T. K. Peron, F. A. Rodrigues, J. Kurths, and L. Schimansky-Geier, \Collective dynamics in two populations of noisy oscillators with asymmetric interactions," Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 91, no. 6, pp. 1{7, 2015.
dc.relationM. Rohden, D. Witthaut, M. Timme, and H. Meyer-Ortmanns, \Curing critical links in oscillator networks as power grid models," Submitted, no. December, pp. 0{10, 2015.
dc.relationH. Kim, S. H. Lee, and P. Holme, \Building blocks of the basin stability of power grids," Physical Review E, vol. 93, no. 6, pp. 1{8, 2016.
dc.relationL. Cao, C. Tian, Z. Wang, X. Zhang, and Z. Liu, \In uence of stochastic perturbations on the cluster explosive synchronization of second-order Kuramoto oscillators on networks," Physical Review E, vol. 022220, pp. 1{7, 2018
dc.relationJ. M. Grzybowski, E. E. Macau, and T. Yoneyama, \On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators," Chaos, vol. 26, 2016.
dc.relationA. B. Birch eld, E. Schweitzer, M. H. Athari, T. Xu, T. J. Overbye, A. Scaglione, and Z. Wang, \A metric-based validation process to assess the realism of synthetic power grids," Energies, vol. 10, no. 8, 2017.
dc.relationA. S. Eran Schweitzer and R. Thomas, \The validation of synthetic power system cases," IREP'2017 Symposium, 2017.
dc.relationZ. Liu, Y. Zhang, Y. Wang, N. Wei, and C. Gu, \Development of the interconnected power grid in europe and suggestions for the energy internet in china," Global Energy Interconnection, vol. 3, no. 2, pp. 111 { 119, 2020.
dc.relationS. H. Yook and H. Meyer-Ortmanns, \Synchronization of R ossler oscillators on scalefree topologies," Physica A: Statistical Mechanics and its Applications, vol. 371, no. 2, pp. 781{789, 2006.
dc.relationT. Nishikawa, A. E. Motter, Y. C. Lai, and F. C. Hoppensteadt, \Heterogeneity in Oscillator Networks: Are Smaller Worlds Easier to Synchronize?," Physical Review Letters, vol. 91, no. 1, pp. 2{5, 2003.
dc.relationA. G. H. (auth.), Percolation Theory For Flow In Porous Media. Lecture Notes in Physics 674, Springer Berlin Heidelberg, 1 ed., 2005.
dc.relationR. Carareto, M. S. Baptista, and C. Grebogi, \Natural synchronization in power-grids with anti-correlated units," Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 4, pp. 1035{1046, 2013.
dc.relationD. Witthaut and M. Timme, \Braess's paradox in oscillator networks, desynchronization and power outage," New Journal of Physics, vol. 14, pp. 1{17, 2012.
dc.relationE. B. T. Tchuisseu, D. Gomila, P. Colet, D. Witthaut, M. Timme, and B. Sch afer, \Curing braess' paradox by secondary control in power grids," New Journal of Physics, vol. 20, no. 8, pp. 1{11, 2018.
dc.relationJ. P. Pade and T. Pereira, \Improving Network Structure can lead to Functional Failures," Nature Publishing Group, pp. 1{6, 2015.
dc.relationR. S. Pinto and A. Saa, \Synchrony-optimized networks of Kuramoto oscillators with inertia," Physica A: Statistical Mechanics and its Applications, vol. 463, pp. 77{87, 2016.
dc.relationM. Fazlyab, F. D or er, and V. M. Preciado, \Optimal network design for synchronization of coupled oscillators," Automatica, vol. 84, pp. 181{189, 2017.
dc.relationH. Kim, S. H. Lee, J. Davidsen, and S.-w. Son, \Multistability and variations in basin of attraction in power-grid systems," 2018.
dc.relationWei Wu and Chikong Wong, \Facts applications in preventing loop ows in interconnected systems," in 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491), vol. 1, pp. 170{174 Vol. 1, 2003.
dc.relationP. Schultz, P. J. Menck, J. Heitzig, and J. Kurths, \Potentials and limits to basin stability estimation," New Journal of Physics, vol. 19, p. 023005, feb 2017.
dc.relationM. Khedkar, G. Dhole, and V. Neve, \Transient stability analysis by transient energy function method: Closest and controlling unstable equilibrium point approach," Journal of the Institution of Engineers (India): Electrical Engineering Division, vol. 85, pp. 83{ 88, 09 2004
dc.relationH.-D. Chang, C.-C. Chu, and G. Cauley, \Direct stability analysis of electric power systems using energy functions: Theory, applications, and perspective," Proceedings of the IEEE, vol. 83, pp. 1497 { 1529, 12 1995.
dc.relationF. Hellmann, P. Schultz, C. Grabow, J. Heitzig, and J. Kurths, \Survivability of Deterministic Dynamical Systems," Scienti c Reports, vol. 6, no. March, pp. 1{12, 2016.
dc.relationUPME, STN - Sistema de Transmisi on Nacional de Energ a El ectrica, Colombia, http://sig.simec.gov.co/GeoPortal/Mapas/Mapas, 2016.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleResilience and stability of power grids using the Kuramoto model
dc.typeOtro


Este ítem pertenece a la siguiente institución