dc.contributorRodríguez Pineda, Carlos Eduardo
dc.creatorGuerra Ospino, Julio César
dc.date.accessioned2020-12-03T15:47:49Z
dc.date.available2020-12-03T15:47:49Z
dc.date.created2020-12-03T15:47:49Z
dc.date.issued2020-11-30
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78666
dc.description.abstractSe presenta una metodología para la evaluación de la amenaza por movimientos en masa (tipo flujo y deslizamiento) inducidos por sismo, la cual busca compatibilizar el detonante sísmico como una cobertura temática, con un modelo de susceptibilidad generado a partir de la técnica de pesos de evidencia establecida en la Guía Metodológica para la Zonificación de la Amenaza por Movimientos en Masa a escala 1:25.000. Mediante el uso del paquete SPECFEM3D – Cartesian, el cual implementa el Método de Elementos Espectrales, se realiza la simulación de la propagación de una onda sísmica desde una fuente puntual, con un mecanismo de ruptura definido, considerando un modelo con topografía y otro con una superficie plana, para evaluar el efecto del relieve sobre la amplificación del movimiento sísmico. A través de un tendido regular de receptores, se almacenan los registros de aceleración calculados por el programa, de manera que estos puedan ser distribuidos equidistantemente entre las celdas o píxeles de análisis. La evaluación de la respuesta dinámica de la ladera se realiza por medio del método de desplazamientos permanentes, donde para cada píxel del área se le asocia un registro de aceleración y a partir de la aceleración crítica en ese punto se evalúa el desplazamiento acumulado luego del sismo. El mapa de desplazamientos generado puede ser combinado con la susceptibilidad para generar la zonificación de la amenaza, en función de la probabilidad (Modelo 1), o mediante una matriz de doble entrada (Modelo 2). Los resultados obtenidos muestran el notable efecto que tiene la topografía en la amplificación del movimiento sísmico, siendo necesario tener en cuenta este comportamiento dentro de los análisis de zonificación de amenaza y susceptibilidad por movimientos en masa inducidos por sismo.
dc.description.abstractA methodology is presented for the evaluation of the earthquake-induced mass movements hazard (flow and landslide), which seeks to make the seismic trigger compatible as a thematic coverage, with a susceptibility model generated from the technique of weights of evidence established in the Methodological Guide for Zoning the Mass Movements Hazard at a scale of 1: 25,000. Through the use of the SPECFEM3D - Cartesian package, which implements the Spectral Elements Method, the simulation of the propagation of a seismic wave from a point source is performed, with a defined rupture mechanism, considering a model with topography and another with a flat surface, to evaluate the effect of relief on the amplification of seismic movement. Through a regular array of receivers, the acceleration records calculated by the software are stored, so that they can be distributed equally between the cells or analysis pixels. The evaluation of the dynamic response of the slope is carried out through the method of permanent displacements, where for each cell or pixel in the area, an acceleration record is associated and from the critical acceleration at that point, the accumulated displacement is calculated. The generated displacement map can be combined with the susceptibility to generate the hazard zoning, as a function of probability (Model 1), or by means of a double-entry matrix (Model 2). The results obtained show the remarkable effect that topography has on the amplification of seismic movement, and it is necessary to take this behavior into account within the analysis of earthquake-induced mass movements hazard and susceptibility.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAnggraeni, D. (2010). Modeling the impact of topography on seismic amplification at regional scale. International Institute for Geo-information Science and Earth Observation.
dc.relationAsociación Colombiana de Ingeniería Sísmica. (2009). Estudio General de Amenaza Sísmic de Colombia 2009.
dc.relationAyalew, L., Kasahara, M., & Yamagishi, H. (2011). The spatial correlation between earthquakes and landslides in Hokkaido (Japan), a GIS-based analysis of the past and the future. Landslides, 8(4), 433-448. https://doi.org/10.1007/s10346-011-0262-z
dc.relationBommer, J. J., & Rodrı́guez, C. E. (2002). Earthquake-induced landslides in Central America. Engineering Geology, 63(3), 189-220. https://doi.org/10.1016/S0013-7952(01)00081-3
dc.relationBray, J. D., & Macedo, J. (2019). Procedure for Estimating Shear-Induced Seismic Slope Displacement for Shallow Crustal Earthquakes. Journal of Geotechnical and Geoenvironmental Engineering, 145(12), 04019106. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002143
dc.relationCatani, F., Segoni, S., & Falorni, G. (2010). An empirical geomorphology‐based approach to the spatial prediction of soil thickness at catchment scale. Water Resources Research. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008WR007450
dc.relationDas, H. O., Sonmez, H., Gokceoglu, C., & Nefeslioglu, H. A. (2013a). Influence of seismic acceleration on landslide susceptibility maps: A case study from NE Turkey (the Kelkit Valley). Landslides, 10(4), 433-454. https://doi.org/10.1007/s10346-012-0342-8
dc.relationDas, H. O., Sonmez, H., Gokceoglu, C., & Nefeslioglu, H. A. (2013b). Influence of seismic acceleration on landslide susceptibility maps: A case study from NE Turkey (the Kelkit Valley). Landslides, 10(4), 433-454. https://doi.org/10.1007/s10346-012-0342-8
dc.relationDel Gaudio, V., & Wasowski, J. (2011). Advances and problems in understanding the seismic response of potentially unstable slopes. Engineering Geology, 122(1), 73-83. https://doi.org/10.1016/j.enggeo.2010.09.007
dc.relationGeli, L., Bard, P.-Y., & Jullien, B. (1988). The effect of topography on earthquake ground motion: A review and new results. Bulletin of the Seismological Society of America, 78, 42-63.
dc.relationHess, D. M., Leshchinsky, B. A., Bunn, M., Benjamin Mason, H., & Olsen, M. J. (2017). A simplified three-dimensional shallow landslide susceptibility framework considering topography and seismicity. Landslides, 14(5), 1677-1697. https://doi.org/10.1007/s10346-017-0810-2
dc.relationHigaki, D., & Abe, S. (2013). Classification of the Geomorphology, Geology and Movement Types of Earthquake Landslides. En K. Ugai, H. Yagi, & A. Wakai (Eds.), Earthquake-Induced Landslides (pp. 37-44). Springer. https://doi.org/10.1007/978-3-642-32238-9_5
dc.relationIgel, H. (2017a). The Finite-Difference Method. En Computational Seismology. Oxford University Press. https://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198717409.001.0001/acprof-9780198717409-chapter-4
dc.relationIgel, H. (2017b). The Spectral-Element Method. En Computational Seismology. Oxford University Press. https://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198717409.001.0001/acprof-9780198717409-chapter-7
dc.relationINGEOMINAS. (1994). Geológia de la Plancha 189—La Palma, Escala 1:100.000.
dc.relationINGEOMINAS. (2010). Mapa Nacional de Amenaza Sísmica de Colombia.
dc.relationJafarzadeh, F., Shahrabi, M. M., & Farahi Jahromi, H. (2015). On the role of topographic amplification in seismic slope instabilities. Journal of Rock Mechanics and Geotechnical Engineering, 7(2), 163-170. https://doi.org/10.1016/j.jrmge.2015.02.009
dc.relationJibson, R. W. (1987). Summary of research on the effects of topographic amplification of earthquake shaking on slope stability. En Open-File Report (N.o 87-268). U.S. Geological Survey,. https://doi.org/10.3133/ofr87268
dc.relationJibson, Randall W. (2011). Methods for assessing the stability of slopes during earthquakes—A retrospective. Engineering Geology, 122(1), 43-50. https://doi.org/10.1016/j.enggeo.2010.09.017
dc.relationJibson, Randall W, Harp, E. L., & Michael, J. A. (2000). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58(3), 271-289. https://doi.org/10.1016/S0013-7952(00)00039-9
dc.relationJibson, R.W., & Keefer, D. K. (1993). Analysis of the seismic origin of landslides: Examples from the New Madrid seismic zone. En Geological Society of America Bulletin (Vol. 105, Número 4, p. 16).
dc.relationKeefer, D. K. (1984). Landslides caused by earthquakes. GSA Bulletin, 95(4), 406-421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
dc.relationKeefer, D. K. (2000). Statistical analysis of an earthquake-induced landslide distribution—The 1989 Loma Prieta, California event. Engineering Geology, 58(3), 231-249. https://doi.org/10.1016/S0013-7952(00)00037-5
dc.relationKomatitsch, D., Vilotte, J.-P., Tromp, J., Ampuero, J.-P., Bai, K., Basini, P., Blitz, C., Bozdag, E., Casarotti, E., Charles, J., Chen, M., Galvez, P., Goddeke, D., Hjorleifsdottir, V., Labarta, J., Le Goff, N., Le Loher, P., Lefebvre, M., Liu, Q., … Zhu, H. (2012). SPECFEM3D Cartesian [software] (3.0) [Computer software]. Computational Infrastructure for Geodynamics. https://geodynamics.org/cig/software/specfem3d/
dc.relationKomatitsch, Dimitri, Liu, Q., Tromp, J., Süss, P., Stidham, C., & Shaw, J. H. (2004). Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method. Bulletin of the Seismological Society of America, 94(1), 187-206. https://doi.org/10.1785/0120030077
dc.relationKomatitsch, Dimitri, & Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation—I. Validation. Geophysical Journal International, 149(2), 390-412. https://doi.org/10.1046/j.1365-246X.2002.01653.x
dc.relationKomatitsch, Dimitri, & Tromp, J. (2002b). Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1), 303-318. https://doi.org/10.1046/j.1365-246X.2002.01716.x
dc.relationKomatitsch, Dimitri, & Vilotte, J.-P. (1998). The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2), 368-392.
dc.relationKonovalov, A., Gensiorovskiy, Y., Lobkina, V., Muzychenko, A., Stepnova, Y., Muzychenko, L., Stepnov, A., & Mikhalyov, M. (2019). Earthquake-Induced Landslide Risk Assessment: An Example from Sakhalin Island, Russia. Geosciences, 9(7), 305. https://doi.org/10.3390/geosciences9070305
dc.relationKramer, S. (1996). Geotechnical Earthquake Engineering. Prentice Hall.
dc.relationLari, S., Frattini, P., & Crosta, G. B. (2014). A probabilistic approach for landslide hazard analysis. Engineering Geology, 182, 3-14. https://doi.org/10.1016/j.enggeo.2014.07.015
dc.relationLee, C.-T., Huang, C.-C., Lee, J.-F., Pan, K.-L., Lin, M.-L., & Dong, J.-J. (2008). Statistical approach to earthquake-induced landslide susceptibility. Engineering Geology, 100(1), 43-58. https://doi.org/10.1016/j.enggeo.2008.03.004
dc.relationLee, S. T., Yu, T. T., Peng, W. F., & Wang, C. L. (2010). Incorporating the effects of topographic amplification in the analysis of earthquake-induced landslide hazards using logistic regression. Natural Hazards and Earth System Sciences, 10(12), 2475-2488. https://doi.org/10.5194/nhess-10-2475-2010
dc.relationLee, S.-J., Chan, Y.-C., Komatitsch, D., Huang, B.-S., & Tromp, J. (2009). Effects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan Based Upon the Spectral-Element Method and LiDAR DTMEffects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan. Bulletin of the Seismological Society of America, 99(2A), 681-693. https://doi.org/10.1785/0120080264
dc.relationLin, J.-S., & Whitman, R. (1986). Earthquake Induced Displacements of Sliding Blocks. Journal of Geotechnical Engineering, 112. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:1(44)
dc.relationMarui, H. (2017). Earthquake-induced landslides—An overview and mitigation measures of disasters caused by them. ZBORNIK RADOVA GEO-EXPO 2017, 27-36. https://doi.org/10.35123/GEO-EXPO_2017_4
dc.relationMassey, C., Della Pasqua, F., Holden, C., Kaiser, A., Richards, L., Wartman, J., McSaveney, M. J., Archibald, G., Yetton, M., & Janku, L. (2017). Rock slope response to strong earthquake shaking. Landslides, 14(1), 249-268. https://doi.org/10.1007/s10346-016-0684-8
dc.relationMeunier, P., Hovius, N., & Haines, J. A. (2008a). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232. https://doi.org/10.1016/j.epsl.2008.07.020
dc.relationMurphy, W., & Mankelow, J. (2004). Obtaining Probabilistic Estimates of Displacement on a Landslide During Future Earthquakes. Journal of Earthquake Engineering, 8(1), 133-157. https://doi.org/10.1080/13632460409350484
dc.relationNowicki, M. A., Wald, D. J., Hamburger, M. W., Hearne, M., & Thompson, E. M. (2014). Development of a globally applicable model for near real-time prediction of seismically induced landslides. En Engineering Geology (Vol. 173, p. 5465). https://doi.org/10.1016/j.enggeo.2014.02.002
dc.relationOhminato, T., & Chouet, B. A. (1997). A free-surface boundary condition for including 3D topography in the finite-difference method. Bulletin of the Seismological Society of America, 87(2), 494-515.
dc.relationPaolucci, R. (2002). Amplification of earthquake ground motion by steep topographic irregularities. Earthquake Engineering & Structural Dynamics, 31(10), 1831-1853. https://doi.org/10.1002/eqe.192
dc.relationParker, R. N., Rosser, N. J., & Hales, T. C. (2017). Spatial prediction of earthquake-induced landslide probability [Preprint]. Earthquake Hazards. https://doi.org/10.5194/nhess-2017-193
dc.relationPeng, W.-F., Wang, C.-L., Chen, S.-T., & Lee, S.-T. (2009a). Incorporating the effects of topographic amplification and sliding areas in the modeling of earthquake-induced landslide hazards, using the cumulative displacement method. Computers & Geosciences, 35(5), 946-966. https://doi.org/10.1016/j.cageo.2008.09.007
dc.relationPeng, W.-F., Wang, C.-L., Chen, S.-T., & Lee, S.-T. (2009b). Incorporating the effects of topographic amplification and sliding areas in the modeling of earthquake-induced landslide hazards, using the cumulative displacement method. Computers & Geosciences, 35(5), 946-966. https://doi.org/10.1016/j.cageo.2008.09.007
dc.relationPradhan, B., Oh, H.-J., & Buchroithner, M. (2010). Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics, Natural Hazards and Risk, 1(3), 199-223. https://doi.org/10.1080/19475705.2010.498151
dc.relationRathje, E., & Saygili, G. (2009). Probabilistic assessment of earthquake-induced sliding displacements of natural slopes. Bulletin of the New Zealand Society for Earthquake Engineering, 42. https://doi.org/10.5459/bnzsee.42.1.18-27
dc.relationRefice, A., & Capolongo, D. (2002). Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Computers & Geosciences, 28(6), 735-749. https://doi.org/10.1016/S0098-3004(01)00104-2
dc.relationReichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001
dc.relationRodrı́guez, C. E., Bommer, J. J., & Chandler, R. J. (1999). Earthquake-induced landslides: 1980–1997. Soil Dynamics and Earthquake Engineering, 18(5), 325-346. https://doi.org/10.1016/S0267-7261(99)00012-3
dc.relationRomeo, R. W., Jibson, A. W., & Pugliese, A. (2007). A methodology for assessing earthquake-induced landslide risk. 23, 867-875.
dc.relationSassa, K., Fukuoka, H., Wang, F., & Wang, G. (2005). Dynamic properties of earthquake-induced large-scale rapid landslides within past landslide masses. Landslides, 2(2), 125-134. https://doi.org/10.1007/s10346-005-0055-3
dc.relationServicio Geológico Colombiano. (2017). Guía metodológica para la zonificación de amenaza por movimientos en masa. Servicio Geológico Colombiano, Dirección de Geoamenazas; Grupo de Evaluación de Amenaza por Movimientos en Masa.
dc.relationServicio Geológico Colombiano. (2018). Modelo Nacional de Amenaza Sísmica para Colombia.
dc.relationSrbulov, M. (2011). Practical soil dynamics. Springer Netherlands.
dc.relationTiwari, B., & Ajmera, B. (2017). Landslides Triggered by Earthquakes from 1920 to 2015. En M. Mikos, B. Tiwari, Y. Yin, & K. Sassa (Eds.), Advancing Culture of Living with Landslides (pp. 5-15). Springer International Publishing. https://doi.org/10.1007/978-3-319-53498-5_2
dc.relationTromp, J., & Komatitsch, D. (2015). SPECFEM 3D Cartesian—User Manual Version 3.0. Priceton University; CNRS; University of Marseille; Resultados de búsqueda Resultado web con enlaces de partes del sitio ETH Zürich.
dc.relationWang, G., Du, C., Huang, D., Jin, F., Koo, R. C. H., & Kwan, J. S. H. (2018). Parametric models for 3D topographic amplification of ground motions considering subsurface soils. Soil Dynamics and Earthquake Engineering, 115, 41-54. https://doi.org/10.1016/j.soildyn.2018.07.018
dc.relationWang, H., Wang, G., Wang, F., Sassa, K., & Chen, Y. (2008). Probabilistic modeling of seismically triggered landslides using Monte Carlo simulations. Landslides, 5(4), 387-395. https://doi.org/10.1007/s10346-008-0131-6
dc.relationWasowski, J., Keefer, D. K., & Lee, C.-T. (2011). Toward the next generation of research on earthquake-induced landslides: Current issues and future challenges. Engineering Geology, 122(1), 1-8. https://doi.org/10.1016/j.enggeo.2011.06.001
dc.relationZhang, J., Westen, C. J. van, Tanyas, H., Mavrouli, O., Ge, Y., Bajrachary, S., Gurung, D. R., Dhital, M. R., & Khanal, N. R. (2019). How size and trigger matter: Analyzing rainfall- and earthquake-triggered landslide inventories and their causal relation in the Koshi River basin, central Himalaya. Natural Hazards and Earth System Sciences, 19(8), 1789-1805. https://doi.org/10.5194/nhess-19-1789-2019
dc.relationZhang, S., Zhang, L., Lacasse, S., & Nadim, F. (2016). Evolution of Mass Movements near Epicentre of Wenchuan Earthquake, the First Eight Years. Scientific Reports, 6(1), 36154. https://doi.org/10.1038/srep36154
dc.relationZhang, Y. (2015). Stability and Run-out Analysis of Earthquake-induced Landslides. Earthquake Engineering - From Engineering Seismology to Optimal Seismic Design of Engineering Structures. https://doi.org/10.5772/59439
dc.relationZhang, Z., Fleurisson, J.-A., & Pellet, F. (2018a). The effects of slope topography on acceleration amplification and interaction between slope topography and seismic input motion. Soil Dynamics and Earthquake Engineering, 113, 420-431. https://doi.org/10.1016/j.soildyn.2018.06.019
dc.relationZhang, Z., Fleurisson, J.-A., & Pellet, F. (2018b). The effects of slope topography on acceleration amplification and interaction between slope topography and seismic input motion. Soil Dynamics and Earthquake Engineering, 113, 420-431. https://doi.org/10.1016/j.soildyn.2018.06.019
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titlePropuesta para la evaluación de amenaza por movimientos en masa inducidos por sismo
dc.typeOtro


Este ítem pertenece a la siguiente institución