dc.contributorBranch Bedoya, John William
dc.contributorGIDIA - Grupo de Investigación en Inteligencia Artificial
dc.creatorPatiño Cortés, Diego Alberto
dc.date.accessioned2021-06-19T13:52:39Z
dc.date.accessioned2022-09-21T13:59:03Z
dc.date.available2021-06-19T13:52:39Z
dc.date.available2022-09-21T13:59:03Z
dc.date.created2021-06-19T13:52:39Z
dc.date.issued2019-06
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79654
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3356550
dc.description.abstractIn this dissertation, we explore the problem of how to describe the shape of an object in 2D and 3D with a set of features that are invariant to isometric transformations. We focus to based our approach on the well-known Medial Axis Transform and its topological properties. We aim to study two problems. The first is how to find a shape representation of a segmented object that exhibits rotation, translation, and reflection invariance. The second problem is how to build a machine learning pipeline that uses the isometric invariance of the shape representation to do both classification and retrieval. Our proposed solution demonstrates competitive results compared to state-of-the-art approaches. We based our shape representation on the medial axis transform (MAT), sometimes called the topological skeleton. Accepted and well-studied properties of the medial axis include: homotopy preservation, rotation invariance, mediality, one pixel thickness, and the ability to fully reconstruct the object. These properties make the MAT a suitable input to create shape features; however, several problems arise because not all skeletonization methods satisfy all the above-mentioned properties at the same time. In general, skeletons based on thinning approaches preserve topology but are noise sensitive and do not allow a proper reconstruction. They are also not invariant to rotations. Voronoi skeletons also preserve topology and are rotation invariant, but do not have information about the thickness of the object, making reconstruction impossible. The Voronoi skeleton is an approximation of the real skeleton. The denser the sampling of the boundary, the better the approximation; however, a denser sampling makes the Voronoi diagram more computationally expensive. In contrast, distance transform methods allow the reconstruction of the original object by providing the distance from every pixel in the skeleton to the boundary. Moreover, they exhibit an acceptable degree of the properties listed above, but noise sensitivity remains an issue. Therefore, we selected distance transform medial axis methods as our skeletonization strategy, and focused on creating a new noise-free approach to solve the contour noise problem. To effectively classify an object, or perform any other task with features based on its shape, the descriptor needs to be a normalized, compact form: $\Phi$ should map every shape $\Omega$ to the same vector space $\mathrm{R}^{n}$. This is not possible with skeletonization methods because the skeletons of different objects have different numbers of branches and different numbers of points, even when they belong to the same category. Consequently, we developed a strategy to extract features from the skeleton through the map $\Phi$, which we used as an input to a machine learning approach. After developing our method for robust skeletonization, the next step is to use such skeleton into the machine learning pipeline to classify object into previously defined categories. We developed a set of skeletal features that were used as input data to the machine learning architectures. We ran experiments on MPEG7 and ModelNet40 dataset to test our approach in both 2D and 3D. Our experiments show results comparable with the state-of-the-art in shape classification and retrieval. Our experiments also show that our pipeline and our skeletal features exhibit some degree of invariance to isometric transformations. In this study, we sought to design an isometric invariant shape descriptor through robust skeletonization enforced by a feature extraction pipeline that exploits such invariance through a machine learning methodology. We conducted a set of classification and retrieval experiments over well-known benchmarks to validate our proposed method. (Tomado de la fuente)
dc.description.abstractEn esta disertación se explora el problema de cómo describir la forma de un objeto en 2D y 3D con un conjunto de características que sean invariantes a transformaciones isométricas. La metodología propuesta en este documento se enfoca en la Transformada del Eje Medio (Medial Axis Transform) y sus propiedades topológicas. Nuestro objetivo es estudiar dos problemas. El primero es encontrar una representación matemática de la forma de un objeto que exhiba invarianza a las operaciones de rotación, translación y reflexión. El segundo problema es como construir un modelo de machine learning que use esas invarianzas para las tareas de clasificación y consulta de objetos a través de su forma. El método propuesto en esta tesis muestra resultados competitivos en comparación con otros métodos del estado del arte. En este trabajo basamos nuestra representación de forma en la transformada del eje medio, a veces llamada esqueleto topológico. Algunas propiedades conocidas y bien estudiadas de la transformada del eje medio son: conservación de la homotopía, invarianza a la rotación, su grosor consiste en un solo pixel (1D), y la habilidad para reconstruir el objeto original a través de ella. Estas propiedades hacen de la transformada del eje medio un punto de partida adecuado para crear características de forma. Sin embargo, en este punto surgen varios problemas dado que no todos los métodos de esqueletización satisfacen, al mismo tiempo, todas las propiedades mencionadas anteriormente. En general, los esqueletos basados en enfoques de erosión morfológica conservan la topología del objeto, pero son sensibles al ruido y no permiten una reconstrucción adecuada. Además, no son invariantes a las rotaciones. Otro método de esqueletización son los esqueletos de Voronoi. Los esqueletos de Voronoi también conservan la topología y son invariantes a la rotación, pero no tienen información sobre el grosor del objeto, lo que hace imposible su reconstrucción. Cuanto más denso sea el muestreo del contorno del objeto, mejor será la aproximación. Sin embargo, un muestreo más denso hace que el diagrama de Voronoi sea más costoso computacionalmente. Por el contrario, los métodos basados en la transformada de la distancia permiten la reconstrucción del objeto original, ya que proporcionan la distancia desde cada píxel del esqueleto hasta su punto más cercano en el contorno. Además, exhiben un grado aceptable de las propiedades enumeradas anteriormente, aunque la sensibilidad al ruido sigue siendo un problema. Por lo tanto, en este documento seleccionamos los métodos basados en la transformada de la distancia como nuestra estrategia de esqueletización, y nos enfocamos en crear un nuevo enfoque que resuelva el problema del ruido en el contorno. Para clasificar eficazmente un objeto o realizar cualquier otra tarea con características basadas en su forma, el descriptor debe ser compacto y estar normalizado: $\Phi$ debe relacionar cada forma $\Omega$ al mismo espacio vectorial $\mathrm{R}^{n}$. Esto no es posible con los métodos de esqueletización en el estado del arte, porque los esqueletos de diferentes objetos tienen diferentes números de ramas y diferentes números de puntos incluso cuando pertenecen a la misma categoría. Consecuentemente, en nuestra propuesta desarrollamos una estrategia para extraer características del esqueleto a través de la función $\Phi$, que usamos como entrada para un enfoque de aprendizaje automático. % TODO completar con resultados. Después de desarrollar nuestro método de esqueletización robusta, el siguiente paso es usar dicho esqueleto en un modelo de aprendizaje de máquina para clasificar el objeto en categorías previamente definidas. Para ello se desarrolló un conjunto de características basadas en el eje medio que se utilizaron como datos de entrada para la arquitectura de aprendizaje automático. Realizamos experimentos en los conjuntos de datos: MPEG7 y ModelNet40 para probar nuestro enfoque tanto en 2D como en 3D. Nuestros experimentos muestran resultados comparables con el estado del arte en clasificación y consulta de formas (retrieval). Nuestros experimentos también muestran que el modelo desarrollado junto con nuestras características basadas en el eje medio son invariantes a las transformaciones isométricas. (Tomado de la fuente)
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Doctorado en Ingeniería - Sistemas
dc.publisherDepartamento de la Computación y la Decisión
dc.publisherFacultad de Minas
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbbasi, S., Mokhtarian, F., and Kittler, J. (1999). Curvature scale space image in shape similarity retrieval. Multimedia Systems, 7(6):467–476.
dc.relationAdamek, T. and O’Connor, N. (2004). A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Transactions on Circuits and Systems for Video Technology, 14(5):742–753.
dc.relationAlajlan, N., Kamel, M., and Freeman, G. (2008). Geometry-based image retrieval in binary image databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6):1003–1013.
dc.relationAtabay, H. A. (2017). Binary shape classification using convolutional neural networks. IIOAB Journal, 7(October 2016):332–336. Atienza, R. (2019). Pyramid u-network for skeleton extraction from shape points. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
dc.relationAtienza, R. (2019). Pyramid u-network for skeleton extraction from shape points. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
dc.relationAttalla, E. and Siy, P. (2005). Robust shape similarity retrieval based on contour segmentation polygonal multiresolution and elastic matching. Pattern Recognition, 38(12):2229–2241.
dc.relationAu, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y. (2008). Skeleton extraction by mesh contraction. ACM Trans. Graph., 27(3):44:1–44:10.
dc.relationAubert, G. and Aujol, J. F. (2014). Poisson skeleton revisited: A new mathematical perspective. Journal of Mathematical Imaging and Vision, 48(1):149–159.
dc.relationAubry, M., Schlickewei, U., and Cremers, D. (2011). The wave kernel signature: A quantum mechanical approach to shape analysis. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE.
dc.relationBai, X., Liu, W., Tu, Z., and Angeles, L. (2009). Integrating Contour and Skeleton for Shape Classification. In Workshop on NORDIA (in conjunction with ICCV09).
dc.relationBai, X., Yang, X., Latecki, L., Liu, W., and Tu, Z. (2010). Learning context-sensitive shape similarity by graph transduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):861–874.
dc.relationBelkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399–2434.
dc.relationBelongie, S., Malik, J., and Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4):509–522.
dc.relationBeristain, A. and Grana, M. (2010). Pruning algorithm for voronoi skeletons. Electronics Letters, 46(1):39– 41.
dc.relationBernard, T. M. and Manzanera, A. (1999). Improved low complexity fully parallel thinning algorithm. In Proceedings 10th International Conference on Image Analysis and Processing, pages 215–220.
dc.relationBhuptani, N. and Talati, B. (2014). Variations in shape context descriptor: A survey. International Journal of Computer Applications, 90(12):29–33.
dc.relationBiasotti, S., Falcidieno, B., Giorgi, D., and Spagnuolo, M. (2014). Mathematical Tools for Shape Analysis and Description. Synthesis Lectures on Computer Graphics and Animation. Morgan & Claypool Publishers.
dc.relationBlum, H. (1967). A Transformation for Extracting New Descriptors of Shape. In Wathen-Dunn, W., editor, Models for the Perception of Speech and Visual Form, pages 362–380. MIT Press, Cambridge.
dc.relationButt, M. A. and Maragos, P. (1998). Optimum design of chamfer distance transforms. IEEE Transactions on Image Processing, 7(10):1477–1484.
dc.relationChang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., and Yu, F. (2015). ShapeNet: An Information-Rich 3D Model Reposi- tory. Technical Report arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toyota Technological Institute at Chicago.
dc.relationChaudhari, A. J., Leahy, R. M., Wise, B. L., Lane, N. E., Badawi, R. D., and Joshi, A. A. (2014). Global point signature for shape analysis of carpal bones. Physics in Medicine and Biology, 59(4):961–973.
dc.relationChaudhry, R., Ofli, F., Kurillo, G., Bajcsy, R., and Vidal, R. (2013). Bio-inspired dynamic 3d discriminative skeletal features for human action recognition. In 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE.
dc.relationChaussard, J., Couprie, M., and Talbot, H. (2011). Robust skeletonization using the discrete λ-medial axis. Pattern Recognition Letters, 32(9):1384–1394.
dc.relationChui, C. K., Lin, S.-B., and Zhou, D.-X. (2019). Deep neural networks for rotation-invariance approximation and learning. ArXiv, abs/1904.01814.
dc.relationCohen, T. S., Geiger, M., K¨ohler, J., and Welling, M. (2018). Spherical CNNs. In International Conference on Learning Representations.
dc.relationCouprie, M., Coeurjolly, D., and Zrour, R. (2007). Discrete bisector function and Euclidean skeleton in 2D and 3D. Image and Vision Computing, 25(10):1543–1556.
dc.relationdo Carmo, M. (1992). Riemannian Geometry. Mathematics (Boston, Mass.). Birkh¨auser.
dc.relationDrew, M. S., Lee, T. K., and Rova, A. (2009). Shape retrieval with eigen-CSS search. Image and Vision Computing, 27(6):748–755.
dc.relationDubuisson, M.-P. and Jain, A. (2002). A modified Hausdorff distance for object matching. In Proceedings of 12th International Conference on Pattern Recognition, volume 1, pages 566–568. IEEE Comput. Soc. Press.
dc.relationEsteves, C., Allen-Blanchette, C., Makadia, A., and Daniilidis, K. (2018a). Learning so(3) equivariant representations with spherical cnns. In Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y., editors, Computer Vision – ECCV 2018, pages 54–70, Cham. Springer International Publishing.
dc.relationEsteves, C., Allen-Blanchette, C., Zhou, X., and Daniilidis, K. (2018b). Polar transformer networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
dc.relationFelzenszwalb, P. F. and Schwartz, J. D. (2007). Hierarchical matching of deformable shapes. In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.
dc.relationFeng, Y., Zhang, Z., Zhao, X., Ji, R., and Gao, Y. (2018). Gvcnn: Group-view convolutional neural networks for 3d shape recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
dc.relationFigueiredo, M. A. T., Leitao, J. M. N., and Jain, A. K. (2000). Unsupervised contour representation and estimation using b-splines and a minimum description length criterion. IEEE Transactions on Image Processing, 9(6):1075–1087.
dc.relationFreifeld, O. and Black, M. J. (2012). Lie Bodies: A Manifold Representation of 3D Human Shape. In Leibe, B., Matas, J., Sebe, N., and Welling, M., editors, European Conference on Computer Vision, number October 2012 in Lecture Notes in Computer Science, pages 1–14. Springer International Publishing, Cham.
dc.relationGao, F., Wei, G., Xin, S., Gao, S., and Zhou, Y. (2018). 2D skeleton extraction based on heat equation. Computers and Graphics (Pergamon), 74:99–108.
dc.relationGao, Z., Yu, Z., and Pang, X. (2014). A compact shape descriptor for triangular surface meshes. Computer- Aided Design, 53:62–69.
dc.relationGiesen, J., Miklos, B., Pauly, M., and Wormser, C. (2009). The scale axis transform. In Proceedings of the 25th annual symposium on Computational geometry - SCG ’09, page 106, New York, New York, USA. ACM Press.
dc.relationGorelick, L., Galun, M., and Sharon, E. (2006). Shape Representation and Classification Using the Poisson Equation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12):1991–2005.
dc.relationGrigorescu, C. and Petkov, N. (2003). Distance sets for shape filters and shape recognition. IEEE Transac- tions on Image Processing, 12(10):1274–1286.
dc.relationHesselink, W. H. and Roerdink, J. B. (2008). Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(12):2204–2217.
dc.relationHuang, J. and You, S. (2016). Point cloud labeling using 3d convolutional neural network. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE.
dc.relationKanezaki, A. (2016). Rotationnet: Learning object classification using unsupervised viewpoint estimation. CoRR, abs/1603.06208.
dc.relationKendall, D. G. (1977). The diffusion of shape. Advances in Applied Probability, 9(3):428–430.
dc.relationKendall, D. G. (1984a). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16(2):81–121.
dc.relationKendall, D. G. (1984b). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16(2):81–121.
dc.relationKhotanzad, A. and Hong, Y. H. (1990). Invariant image recognition by zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5):489–497.
dc.relationKim, H.-K. and Kim, J.-D. (2000). Region-based shape descriptor invariant to rotation, scale and translation. Signal Processing: Image Communication, 16(1-2):87–93.
dc.relationKING, D. B., WERTHEIMER, M., KELLER, H., and CROCHETIE`RE, K. (1994). The legacy of max wertheimer and gestalt psychology. Social Research, 61(4):907–935.
dc.relationKoffka, K. (1999). Principles of Gestalt Psychology. Cognitive psychology]. Routledge.
dc.relationKokkinos, I., Bronstein, M. M., Litman, R., and Bronstein, A. M. (2012). Intrinsic shape context descriptors for deformable shapes. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 159–166.
dc.relationKondor, R. and Trivedi, S. (2018). On the generalization of equivariance and convolution in neural networks to the action of compact groups. arXiv preprint arXiv:1802.03690.
dc.relationKrizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.
dc.relationKulon, D., Wang, H., Gu¨ler, R. A., Bronstein, M., and Zafeiriou, S. P. (2019). Single image 3d hand reconstruction with mesh convolutions. ArXiv, abs/1905.01326.
dc.relationLaga, H. (2018). A survey on nonrigid 3d shape analysis. In Academic Press Library in Signal Processing, Volume 6, pages 261–304. Elsevier.
dc.relationLatecki, L. J. and Lakamper, R. (2000). Shape similarity measure based on correspondence of visual parts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1185–1190.
dc.relationLecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.
dc.relationLee, R. N. (1984). Two-dimensional critical point configuration graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(4):442–450.
dc.relationLi, C. and Ben Hamza, A. (2013). A multiresolution descriptor for deformable 3d shape retrieval. Vis. Comput., 29(6-8):513–524.
dc.relationLi, H., Sun, L., Wu, X., and Cai, Q. (2018). Scale-invariant wave kernel signature for non-rigid 3d shape retrieval. In 2018 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE.
dc.relationLi, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., and Tian, Q. (2019). Actional-structural graph convolu- tional networks for skeleton-based action recognition. ArXiv, abs/1904.12659.
dc.relationLi, R., Bu, G., and Wang, P. (2017). An automatic tree skeleton extracting method based on point cloud of terrestrial laser scanner. International Journal of Optics, 2017:1–11.
dc.relationLimberger, F. A. and Wilson, R. C. (2015). Feature encoding of spectral signatures for 3d non-rigid shape retrieval. In Procedings of the British Machine Vision Conference 2015. British Machine Vision Associa- tion.
dc.relationLing, H., Member, S., and Jacobs, D. W. (2007). Shape Classification Using the Inner-Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2):286–299.
dc.relationLitany, O., Bronstein, A. M., Bronstein, M. M., and Makadia, A. (2018). Deformable shape completion with graph convolutional autoencoders. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1886–1895.
dc.relationLitman, R. and Bronstein, A. M. (2014). Learning spectral descriptors for deformable shape correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(1):171–180.
dc.relationLiu, Y. K. and Zˇalik, B. (2005). An efficient chain code with huffman coding. Pattern Recognition, 38(4):553– 557.
dc.relationLowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91–110.
dc.relationMarie, R., Labbani-Igbida, O., and Mouaddib, E. M. (2016). The Delta Medial Axis: A fast and robust algorithm for filtered skeleton extraction. Pattern Recognition, 56:26–39.
dc.relationMasoumi, M., Li, C., and Hamza, A. B. (2016). A spectral graph wavelet approach for nonrigid 3d shape retrieval. Pattern Recognition Letters, 83:339–348.
dc.relationMaturana, D. and Scherer, S. (2015). Voxnet: A 3d convolutional neural network for real-time object recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 922–928.
dc.relationMcNeill, G. and Vijayakumar, S. (2005). 2d shape classification and retrieval. In Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI’05, pages 1483–1488, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
dc.relationMcNeill, G. and Vijayakumar, S. (2006). Hierarchical procrustes matching for shape retrieval. In Computer Society Conference on Computer Vision and Pattern Recognition - Volume 1 (CVPR’06). IEEE.
dc.relationMiklos, B., Giesen, J., and Pauly, M. (2010). Discrete scale axis representations for 3d geometry. ACM Trans. Graph., 29(4):101:1–101:10.
dc.relationMokhtarian, F., Abbasi, S., and Kittler, J. (1998). Efficient and robust retrieval by shape content through cur- vature scale space. In Series on Software Engineering and Knowledge Engineering, pages 51–58. WORLD SCIENTIFIC.
dc.relationMokhtarian, F. and Bober, M. (2003). Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization. Springer Netherlands.
dc.relationMokhtarian, F. and Mackworth, A. (1992). A theory of multiscale, curvature-based shape representation for planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(8):789–805. cited By 722.
dc.relationMori, G., Belongie, S., and Malik, J. (2005). Efficient shape matching using shape contexts. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 27(11):1832–1837.
dc.relationNava-Yazdani, E., Hege, H.-C., Sullivan, T., and von Tycowicz, C. (2019). Geodesic analysis in kendall’s shape space with epidemiological applications. arXiv preprint arXiv:1906.11950.
dc.relationOgniewicz, R. and Ilg, M. (1992). Voronoi skeletons: theory and applications. In Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 63–69.
dc.relationPeter, A., Rangarajan, A., and Ho, J. (2008). Shape l’anerouge: Sliding wavelets for indexing and retrieval. In 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.
dc.relationPeters, R. and Ledoux, H. (2016). Robust approximation of the medial axis transform of LiDAR point clouds as a tool for visualisation. Computers & Geosciences, 90:123–133.
dc.relationPickup, D., Sun, X., Rosin, P. L., and Martin, R. R. (2016a). Skeleton-based canonical forms for non-rigid 3d shape retrieval. Computational Visual Media, 2(3):231–243.
dc.relationPickup, D., Sun, X., Rosin, P. L., Martin, R. R., Cheng, Z., Lian, Z., Aono, M., Hamza, A. B., Bronstein, A., Bronstein, M., Bu, S., Castellani, U., Cheng, S., Garro, V., Giachetti, A., Godil, A., Isaia, L., Han, J., Johan, H., Lai, L., Li, B., Li, C., Li, H., Litman, R., Liu, X., Liu, Z., Lu, Y., Sun, L., Tam, G., Tatsuma, A., and Ye, J. (2016b). Shape retrieval of non-rigid 3d human models. International Journal of Computer Vision, 120(2):169–193.
dc.relationPostolski, M., Couprie, M., and Janaszewski, M. (2014). Scale filtered Euclidean medial axis and its hierarchy. Computer Vision and Image Understanding, 129:89–102.
dc.relationPumarola, A., Agudo, A., Porzi, L., Sanfeliu, A., Lepetit, V., and Moreno-Noguer, F. (2018). Geometry- aware network for non-rigid shape prediction from a single view. 2018 IEEE/CVF Conference on Com- puter Vision and Pattern Recognition, pages 4681–4690.
dc.relationPunam K. Saha, G. B. and de Baja (Eds.), G. S. (2017). Skeletonization. Theory, Methods and Applications. Elsevier Science, 1st edition edition.
dc.relationQi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Pointnet: Deep learning on point sets for 3d classification and segmentation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 77–85.
dc.relationQi, C. R., Su, H., Niessner, M., Dai, A., Yan, M., and Guibas, L. J. (2016). Volumetric and multi-view cnns for object classification on 3d data. arXiv preprint arXiv:1604.03265.
dc.relationQi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413.
dc.relationQiu, T., Yan, Y., and Lu, G. (2011). A medial axis extraction algorithm for the processing of combustion flame images. In 2011 Sixth International Conference on Image and Graphics, pages 182–186.
dc.relationReuter, M., Wolter, F.-E., and Peinecke, N. (2006). Laplace–beltrami spectra as ‘shape-DNA’ of surfaces and solids. Computer-Aided Design, 38(4):342–366.
dc.relationRumpf, M. and Preusser, T. (2002). A level set method for anisotropic geometric diffusion in 3d image processing. SIAM Journal on Applied Mathematics, 62(5):1772–1793.
dc.relationRustamov, R. M. (2007). Laplace-beltrami eigenfunctions for deformation invariant shape representation. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pages 225–233, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
dc.relationSafar, M. H. and Shahabi, C. (2003). Shape Analysis and Retrieval of Multimedia Objects. Springer US.
dc.relationSaha, P. K., Borgefors, G., and Sanniti di Baja, G. (2016). A survey on skeletonization algorithms and their applications. Pattern Recognition Letters, 76:3–12.
dc.relationSato, M., Bitter, I., Bender, M. A., Kaufman, A. E., and Nakajima, M. (2000). Teasar: tree-structure extraction algorithm for accurate and robust skeletons. In Proceedings the Eighth Pacific Conference on Computer Graphics and Applications, pages 281–449.
dc.relationSebastian, T., Klein, P., and Kimia, B. (2003). On aligning curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1):116–125.
dc.relationSebastian, T. B., Klein, P. N., and Kimia, B. B. (2004). Recognition of shapes by editing shock graphs. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 00(528):755–762.
dc.relationShen, W., Wang, X., Yao, C., and Bai, X. (2014a). Shape recognition by combining contour and skeleton into a mid-level representation. In CCPR.
dc.relationShen, W., Wang, X., Yao, C., and Bai, X. (2014b). Shape recognition by combining contour and skeleton into a mid-level representation. In Communications in Computer and Information Science, pages 391–400. Springer Berlin Heidelberg.
dc.relationSiddiqi, K., Shokoufandeh, A., Dickinson, S. J., and Zucker, S. W. (1999). Shock graphs and shape matching. International Journal of Computer Vision, 35(1):13–32.
dc.relationSmeets, D., Fabry, T., Hermans, J., Vandermeulen, D., and Suetens, P. (2009). Isometric deformation modelling for object recognition. In Computer Analysis of Images and Patterns, pages 757–765. Springer Berlin Heidelberg.
dc.relationSobiecki, A., Jalba, A., and Telea, A. (2014). Comparison of curve and surface skeletonization methods for voxel shapes. Pattern Recognition Letters, 47:147–156.
dc.relationSobiecki, A., Yasan, H. C., Jalba, A. C., and Telea, A. C. (2013). Qualitative Comparison of Contraction- Based Curve Skeletonization Methods. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 7883 LNCS, pages 425–439. Springer.
dc.relationStiene, S., Lingemann, K., Nuchter, A., and Hertzberg, J. (2006). Contour-based object detection in range images. In Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), pages 168–175.
dc.relationStoyan, D. (1989). [a survey of the statistical theory of shape]: Comment. Statist. Sci., 4(2):115–116.
dc.relationSu, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3d shape recognition. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 945–953.
dc.relationSun, J., Ovsjanikov, M., and Guibas, L. (2009). A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. Computer Graphics Forum, 28(5):1383–1392.
dc.relationSuper, B. (2004). Learning chance probability functions for shape retrieval or classification. In Conference on Computer Vision and Pattern Recognition Workshop. IEEE.
dc.relationSuper, B. J. (2006). RETRIEVAL FROM SHAPE DATABASES USING CHANCE PROBABILITY FUNCTIONS AND FIXED CORRESPONDENCE. International Journal of Pattern Recognition and Artificial Intelligence, 20(08):1117–1137.
dc.relationTagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., and Telea, A. (2016). 3d skeletons: A state-of- the-art report. Computer Graphics Forum, 35(2):573–597.
dc.relationTal, A. (2014). 3D Shape Analysis for Archaeology, pages 50–63. Springer Berlin Heidelberg, Berlin, Heidel- berg.
dc.relationThompson, D. W. (1942). On growth and form / by D’Arcy Wentworth Thompson. Cambridge University Press Cambridge, Eng, 2nd ed. edition.
dc.relationToshev, A. (2011). Shape Representations For Object Recognition. PhD thesis, University of Pennsylvania.
dc.relationToshev, A., Taskar, B., and Daniilidis, K. (2012). Shape-based object detection via boundary structure segmentation. International Journal of Computer Vision, 99(2):123–146.
dc.relationTsogkas, S. and Dickinson, S. J. (2017). Amat: Medial axis transform for natural images. 2017 IEEE International Conference on Computer Vision (ICCV), pages 2727–2736.
dc.relationTu, Z. and Yuille, A. L. (2004). Shape matching and recognition – using generative models and informative features. In Lecture Notes in Computer Science, pages 195–209. Springer Berlin Heidelberg.
dc.relationvan der Maaten, L. J. P., Boon, P. J., Lange, G., Paijmans, H., and Postma, E. O. (2006). Computer vision and machine learning for archaeology. In Proceedings of the Computer Applications in Archaeology, CAA 2006, page in press. Dr. H. Kamermans, Faculty of Archeology, Leiden University.
dc.relationViswanathan, G. K., Murugesan, A., and Nallaperumal, K. (2013). A parallel thinning algorithm for contour extraction and medial axis transform. In 2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN), pages 606–610.
dc.relationWachinger, C., Salat, D. H., Weiner, M., and and, M. R. (2016). Whole-brain analysis reveals increased neuroanatomical asymmetries in dementia for hippocampus and amygdala. Brain, 139(12):3253–3266.
dc.relationWafi, N. M., Yaakob, S. N., Salim, N. S., Jusoh, M., Nazren, A. R. A., and Hisham, M. B. (2016). Im- age analysis using new descriptors average feature optimization based on fourier descriptors technique. In 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), pages 135–138.
dc.relationWang, C., Cheng, M., Sohel, F., Bennamoun, M., and Li, J. (2019a). NormalNet: A voxel-based CNN for 3d object classification and retrieval. Neurocomputing, 323:139–147.
dc.relationWang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M. (2019b). Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG).
dc.relationWang, Y., Xu, Y., Tsogkas, S., Bai, X., Dickinson, S. J., and Siddiqi, K. (2018). Deepflux for skeletons in the wild. ArXiv, abs/1811.12608.
dc.relationWorrall, D. E. and Brostow, G. J. (2018). Cubenet: Equivariance to 3d rotation and translation. CoRR, abs/1804.04458.
dc.relationWorrall, D. E., Garbin, S. J., Turmukhambetov, D., and Brostow, G. J. (2017). Harmonic networks: Deep translation and rotation equivariance. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.
dc.relationXie, J., Heng, P.-A., and Shah, M. (2008). Shape matching and modeling using skeletal context. Pattern Recognition, 41(5):1756 – 1767.
dc.relationYang, S. and Wang, Y. (2007). Rotation invariant shape contexts based on feature-space fourier transfor- mation. In Fourth International Conference on Image and Graphics (ICIG 2007), pages 575–579.
dc.relationYang, X., Koknar-Tezel, S., and Latecki, L. J. (2009). Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.
dc.relationYe, J. and Yu, Y. (2015). A fast modal space transform for robust nonrigid shape retrieval. The Visual Computer, 32(5):553–568.
dc.relationYe Mei and Androutsos, D. (2008). Affine invariant shape descriptors: The ica-fourier descriptor and the pca-fourier descriptor. In 2008 19th International Conference on Pattern Recognition, pages 1–4.
dc.relationZeng, A., Song, S., Nießner, M., Fisher, M., and Xiao, J. (2016). 3dmatch: Learning the matching of local 3d geometry in range scans. CoRR, abs/1603.08182.
dc.relationZhang, T. Y. and Suen, C. Y. (1984). A fast parallel algorithm for thinning digital patterns. Commun. ACM, 27(3):236–239.
dc.relationZhao, Y. and Belkasim, S. (2012). Multiresolution fourier descriptors for multiresolution shape analysis. IEEE Signal Processing Letters, 19(10):692–695.
dc.relationZhihu Huang and Jinsong Leng (2010). Analysis of hu’s moment invariants on image scaling and rotation. In 2010 2nd International Conference on Computer Engineering and Technology, volume 7, pages V7– 476–V7–480.
dc.relationZhirong Wu, Song, S., Khosla, A., Fisher Yu, Linguang Zhang, Xiaoou Tang, and Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1912–1920.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDescripción y análisis de forma basado en la invarianza a isometrías de los esqueletos topológicos
dc.typeTesis


Este ítem pertenece a la siguiente institución