dc.contributorBermudez Santana, Clara Isabel
dc.contributorGalindo Cruz, Johan Fabian
dc.contributorRNomica teórica y computacional
dc.creatorBotero Rodríguez, Luz Stefany
dc.date.accessioned2020-10-05T15:03:40Z
dc.date.available2020-10-05T15:03:40Z
dc.date.created2020-10-05T15:03:40Z
dc.date.issued2019-12-21
dc.identifierBotero-Rodríguez, Stefany. (2020). Modelo integrado para la caracterización in silico del efecto de la diversidad genética sobre regiones estructuradas codificantes y no codificantes del virus del Dengue. Universidad Nacional, Colombia-Bogotá.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78522
dc.description.abstractLa diversidad y evolución genética del virus Dengue (DENV) ha sido un tema de atención en virología abordado para comprender las interacciones que surgen entre él y sus hospederos lo cual involucra descifrar el desarrollo de sus mecanismos de evasión frente a los sistemas de defensa encargados para continuar el curso natural de su ciclo viral. No obstante, algunos de estos temas se han abordado por separado, por lo tanto es importante explorar con más detalle el rol que la diversidad codificada en el genoma viral deja como huellas acumuladas a lo largo del tiempo de circulación en diferente nichos geográficos, además de detallar si éstas podrían estar relacionadas con las estrategias de adaptación de DENV adquiridas frente a la presión de selección propuesta por cada factor involucrado durante su trayectoria entre hospederos. Hasta ahora, mucho de los estudios se han concentrado en comprender el posible impacto que dicha presión selectiva tiene sobre la composición del virus a nivel de su secuencia genómica, centrado prioritariamente hacia algunos genes por tipo de interés y a sus correspondientes productos traducidos en proteínas. Algunos de ellos han explorando individualmente la proporción de mutaciones por serotipos o genotipos, estableciendo posibles efectos sobre la estructura y consiguiente función de las proteínas virales implicadas en la progresión del ciclo viral. Sin embargo, poco se ha avanzado en el estudio de la estructura secundaria del genoma viral, ya que siendo el genoma una molécula de tipo RNA, adquiere características particulares al plegarse, para lo cual intervienen interacciones favorables entre pares de nucleótidos. En especial para diferentes especies del género Flavivirus, dentro del cual se ha clasificado a DENV, han sido previamente estudiadas las regiones RNA estructuradas, altamente conservadas ubicadas en los extremos 3’ y 5’ no traducibles (UTRs) del genoma viral. Estos extremos son cruciales para los ciclos replicativos, la eficiencia en la traducción del genoma viral y la formación de pequeños RNA no codificantes (ncRNAs) tipo fragmentos de RNA subgenómicos (sfRNA) típicos de flavivirus. Noempero, muy poco ha progresado el estudio de ese tipo de fragmentos, su diversidad funcional, estructural y nucleotídica teniendo en cuenta su origen derivado de las secuencias con potencial de plegarse provenientes desde la subregión genómica codificante o traducible del genoma, conocida como CDSs. Así mismo, menor es el alcance adelantado en relación a la existencia de huellas de procesos selectivos sobre estas subregiones estructurables, en comparación con el que se ha detallado desde la perspectiva funcional y codificante del genoma de DENV o asociado con la distribución geográfica de las cepas circulantes. Por otro lado, con el fin de contribuir a las investigaciones que analizan los efectos de selección natural a nivel de estas subregiones genómicas en el DENV, se desarrolla esta tesis. Para ello se seleccionaron los CDS y poliproteínas de genomas registrados principalmente en la base de datos ViPR hasta el año 2017, derivados de aislados humanos reportados de países hiperendémicos y con reportes para los cuatro serotipos de DENV, ubicados geográficamente sobre el trópico, región donde predomina la circulación de los vectores Aedes aegypti y Aedes albopictus, procurando una búsqueda exhaustiva hasta obtener una muestra equitativa no redundante de secuencias para cada serotipo por país. Para el análisis de partida, con el fin de detectar variabilidad inter e intra-serotipos se realizaron alineamientos múltiples de secuencias de los CDS, los cuales fueron ingresados como inputs para el cálculo de diversidad y estudios de selección codónica; también fueron empleados durante el proceso de computo dispuesto para calcular las regiones estructuradas conservadas y sobre ellas un análisis selectivo discriminado por subregiones genómicas. Posterior a la predicción estructural para secuencias de RNA, se identificaron y organizaron las regiones estructuradas ultra conservadas de RNA en ventanas clasificadas de acuerdo a los 12 bloques subgenómicos delimitados por cada gen(incluyendo la región 2K, sugerida como péptido señal putativo de NS4B para su traslocación en el retículo endoplásmico, removido por peptidasas celulares). A continuación, se realizaron dos tipos de análisis de selección. El primero de tipo codónico sobre los CDS completos de alineamientos por país, región y serotipo, discriminando por gen los tripletes de nucleótidos con mutaciones que como resultado conllevasen a mutaciones sinónimas (S) y no sinónimas (NS) a nivel de aminoácido. El segundo consistió en un análisis de selección dinucleotídica para los RNAs predichos con posible plegamiento sobrelapados por gen. A fin de detectar patrones de selección compartidos o no se clasificaron las mutaciones S y NS tanto para codones traducibles como para su contraparte estructurada en RNA. Con el propósito de establecer un caso de seguimiento transversal, se delimitó un seguimiento particular de las subestructuras de RNA mejor calificadas que compartían este tipo de características, localizadas dentro del bloque subgenómico codificante para la Envoltura del Serotipo 3 (DENV-3), a las cuales se les realizó una exploración adicional de epítopes como piloto del epitoviroma de DENV seguido por un estudio estructural del efecto mutacional sobre la estructura tridimensional de la proteína codificada. Para ello se prepararon los archivos con coordenadas 3D en formato PDB existentes en el Protein Data Bank, pre-procesadas para realizar la sustitución de rotámeros de las NS de mayor interés identificadas para ENV-D3 para terminar con un análisis de dinámica molecular mediado por el programa Amber. De los análisis llevados a cabo en este trabajo se determinó que en concordancia con la bien documentada selección purificadora que presenta el virus Dengue a nivel genómico, se identificaron alrededor de quince ventanas estructuradas ultra conservadas de RNA representativas dependiendo del gen, para los 4 serotipos y simultáneamente referidas con escasas sustituciones NS bajo selección diversificadora para aminoácidos en su componente codificado. En contraste, presentan predominantes sustituciones sinónimas que son compatibles para promover laconservación de estructura de estos plegamientos RNAs. Sin embargo la presencia de regiones estructuradas altamente conservadas identificadas dentro del ORF (Open Reading Frame) de algunos genes fue ocasional, potencialmente asociado al modelo de evolución por serotipo, en función del tipo de la estrategia de ventana utilizada, efecto compensatorio mostrado y homología por alineamiento. Lo dicho hasta aquí contempla la posibilidad de que el eventual mecanismo de diversificación de este flavivirus en sus cuatro serotipos, favorezca simultáneamente la posibilidad de formar estructuras ultra conservadas de RNAs y a su vez conservar las regiones codificantes de donde provienen; aunque se requerirá una definición y validación de su funcionalidad por anotación y expresión como potenciales ncRNA, ya que hasta el momento para DENV se desconoce la función de estas subregiones estructuradas. Del análisis usado como guía para el análisis exploratorio del epitoviroma y del efecto de las sustituciones de aminoácidos sobre la estructura tridimensional de ENV-D3, se observó que aunque se puedan calcular efectos estructurales, estos son mínimos y procuran conservar la estructura previamente establecida o nativa; sin embargo basados en su ubicación por dominios funcionales y su naturaleza química, algunos podrían estar dinamizando la presentación antigénica o de interacción de la superficie con la membrana. Esto podría sugerir que detrás de un cambio de residuo puede co-existir otro tipo de beneficio molecular que aumente la utilidad de su “limitado” recurso genético, que pudiese ser entendido como aleatorio si de selección natural episódica se habla; sin embargo, corroborar si le confiere una ventaja adaptativa particularmente a este serotipo queda fuera del alcance de este trabajo. Como resultado, para el presente trabajo se diseñó, complementó y empleó una estrategia computacional unificada que proporciona un modo de explorar de forma continua la diversidad de la información codificada en el genoma del DENV, desde perspectivas transversales de la bioinformática. Este estudio in silico permitió detectar ydescribir simultáneamente selección en tres niveles de representación del genoma, inicialmente nucleotídica en estructuras primarias de CDS y trinucleotídica atribuida a los codones codificantes para las poliproteínas virales. En segunda instancia de tipo dinucleotídica en estructuras 2D de RNA generadas de las subregiones codificantes del genoma y 3D indicado por el estudio del efecto de sustituciones NS sobre las coordenadas de una proteína cristalizada usada como plantilla. Finalmente, se oferta una contribución al estudio molecular del DENV gracias a la información aportada y la metodología aplicada, enriquecida por una selección rigurosa de recursos y métodos bioinformáticos que facilitan en un futuro, su reproducción para inspecciones transversales similares de otras moléculas y especies virales. Así mismo es posible considerar que estos resultados sean de apoyo a dilucidar mejor la compleja interacción DENV-hospedero y propositivamente en el posible uso de algunos de los elementos detectados aquí para el desarrollo de vehículos tradicionales o alternativos, que puedan contrarrestar los efectos en el deterioro de la salud que ocasiona el virus en la patología que desarrolla, particularmente basado en la continuación del epitorviroma modelo de este flavivirus de interés en salud pública mundial.
dc.description.abstractThe genetic diversity and evolution of the Dengue virus (DENV) has been a topic of attention in virology addressed to understand the interactions that arise between it and its hosts, which involves deciphering the development of its evasion mechanisms against the defense systems entrusted to continue the natural course of your viral cycle. However, some of these issues have been addressed separately, therefore it is important to explore in more detail the role that diversity encoded in the viral genome leaves as accumulated traces over time of circulation in different geographic niches, in addition to Detail if these could be related to the adaptation strategies of DENV acquired in the face of the selection pressure proposed by each factor involved during its trajectory between hosts. Until now, many of the studies have focused on understanding the possible impact that such selective pressure has on the composition of the virus at the level of its genomic sequence, focusing primarily on some genes by type of interest and their corresponding protein-translated products. Some of them have individually explored the proportion of mutations by serotypes or genotypes, establishing possible effects on the structure and consequent function of the viral proteins involved in the progression of the viral cycle. However, little progress has been made in the study of the secondary structure of the viral genome, since the genome being an RNA-like molecule, it acquires particular characteristics when folded, for which favorable interactions between nucleotide pairs are involved. Especially for different species of the Flavivirus genus, within which DENV has been classified, the highly conserved structured RNA regions located at the 3 'and 5' non-translatable ends (UTRs) of the viral genome have been previously studied. These extremes are crucial for the replicative cycles, the efficiency in the translation of the viral genome and the formation of small non-coding RNAs (ncRNAs) like fragments of subgenomic RNAs (sfRNAs) typical of flaviviruses. However, very little progress hasbeen made in the study of such fragments, their functional, structural and nucleotide diversity, taking into account their origin derived from the sequences with the potential to fold from the genome encoding or translatable genome, known as CDSs. Likewise, less is the scope advanced in relation to the existence of traces of selective processes on these structured subregions, compared to what has been detailed from the functional and coding perspective of the DENV genome or associated with the geographical distribution of the strains circulating. On the other hand, in order to contribute to the investigations that analyze the effects of natural selection at the level of these genomic subregions in the DENV, this thesis is developed. For this, the genome CDS and polyproteins registered mainly in the ViPR database until 2017 were selected, derived from human isolates reported from hyperendemic countries and with reports for the four DENV serotypes, located geographically over the tropics, the region where it predominates. the circulation of the vectors Aedes aegypti and Aedes albopictus, seeking an exhaustive search until obtaining a non-redundant equitable sample of sequences for each serotype by country. For the initial analysis, in order to detect inter and intra-serotype variability, multiple CDS sequence alignments were performed, which were entered as inputs for the calculation of diversity and codon selection studies; They were also used during the computation process arranged to calculate the conserved structured regions and on them a selective analysis discriminated by genomic subregions. After structural prediction for RNA sequences, ultra conserved RNA structured regions were identified and organized in windows classified according to the 12 subgenomic blocks delimited by each gene (including the 2K region, suggested as a putative NS4B signal peptide for its translocation in the endoplasmic reticulum, removed by cellular peptidases). Two types of selection analysis were then performed. The first codonic type on the complete CDS of alignments by country, region and serotype, discriminating nucleotide triplets by gene with mutations that as a result lead to synonymous (S) and non-synonymous (NS) mutations at the amino acid level. The second consisted of a dinucleotide selection analysis for the gene-overlapping predicted RNAs with possible folding. In order to detect shared or unselected selection patterns, S and NS mutations were classified for both translatable codons and their RNA structured counterpart. In order to establish a case of cross-sectional follow-up, a particular follow-up of the best-rated RNA substructures that shared this type of characteristics, located within the subgenomic coding block for Serotype 3 Envelope (DENV-3), was delimited to their underwent an additional exploration of epitopes as a pilot of the DENV epitoviroma followed by a structural study of the mutational effect on the three-dimensional structure of the encoded protein. For this, the files with 3D coordinates in PDB format existing in the Protein Data Bank were prepared, pre-processed to perform the replacement of rotamers of the NS of greatest interest identified for ENV-D3 to finish with an analysis of molecular dynamics mediated by the Amber program. From the analyzes carried out in this work, it was determined that in accordance with the well-documented purifying selection that Dengue virus presents at the genomic level, around fifteen ultra conserved structured windows of representative RNA were identified, depending on the gene, for the 4 serotypes and simultaneously referred to with few NS substitutions under diversifying selection for amino acids in their encoded component. In contrast, they have predominant synonymous substitutions that are compatible to promote the conservation of structure of these folding RNAs. However, the presence of highly conserved structured regions identified within the ORF (Open Reading Frame) of some genes was occasional, potentially associated with the evolution model by serotype, depending on the type of window strategy used, compensatory effect shown, and homology by alignment. What has been said so far contemplates the possibility that the possible diversification mechanism of this flavivirus in its four serotypes, simultaneously favors the possibility of forming ultra-conserved structures of RNAs and in turn conserving the coding regions from which they come; although a definition and validation of their functionality will be required by annotation and expression as potential ncRNAs, since the function of these structured subregions is unknown to date for DENV. From the analysis used as a guide for the exploratory analysis of the epitoviroma and the effect of amino acid substitutions on the three-dimensional structure of ENV-D3, it was observed that although structural effects can be calculated, they are minimal and try to preserve the previously established or native structure ; However, based on their location by functional domains and their chemical nature, some may be stimulating the antigenic presentation or interaction of the surface with the membrane. This could suggest that behind a change of residue, another type of molecular benefit may co-exist that increases the utility of its "limited" genetic resource, which could be understood as random if it is spoken of episodic natural selection; however, corroborating whether it confers an adaptive advantage particularly on this serotype is beyond the scope of this work. As a result, for the present work, a unified computational strategy was designed, complemented and used that provides a way to continuously explore the diversity of the information encoded in the DENV genome, from cross-sectional perspectives of bioinformatics. This in silico study allowed to simultaneously detect and describe selection at three levels of genome representation, initially nucleotide in primary CDS structures and trinucleotide attributed to codons coding for viral polyproteins. In the second instance of the dinucleotide type in 2D RNA structures generated from the genome coding subregions and 3D indicated by the study of the effect of NS substitutions on the coordinates of a crystallized protein used as a template. Finally, a contribution to the molecular study of DENV is offered thanks to the information provided and the applied methodology, enriched by a rigorous selection of bioinformatic resources and methods that will facilitate its reproduction in future for similar cross-sectional inspections of other viral molecules and species. Likewise, it is possible to consider that these results are in support of better elucidating the complex DENV-host interaction and purposely in the possible use of some of the elements detected here for the development of traditional or alternative vehicles, which may counteract the effects of deterioration. of the health caused by the virus in the pathology that it develops, particularly based on the continuation of the epitorviroma model of this flavivirus of interest in world public health.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Bioinformática
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbadi, S., Azouri, D., Pupko, T., & Mayrose, I. (2019). Model selection may not be a mandatory step for phylogeny reconstruction. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08822-w
dc.relationAhamed, S. F., Rosario, V., Britto, C., Dias, M., Nayak, K., Chandele, A., … Shet, A. (2019). Emergence of new genotypes and lineages of dengue viruses during the 2012–15 epidemics in southern India. International Journal of Infectious Diseases. https://doi.org/10.1016/j.ijid.2019.01.014
dc.relationAhmad, Z., & Poh, C. L. (2019). The conserved molecular determinants of virulence in dengue virus. International Journal of Medical Sciences, 16(3), 355-365. https://doi.org/10.7150/ijms.29938
dc.relationAlvarez, D. E., Filomatori, C. V., & Gamarnik, A. V. (2008). Functional analysis of dengue virus cyclization sequences located at the 5′ and 3′UTRs. Virology, 375(1), 223-235. https://doi.org/10.1016/j.virol.2008.01.014
dc.relationAmiroch, S., Pradana, M. S., Irawan, M. I., & Mukhlash, I. (2019). A Simple Genetic Algorithm for Optimizing Multiple Sequence Alignment on the Spread of the SARS Epidemic. The Open Bioinformatics Journal, 12(1), 30-39. https://doi.org/10.2174/1875036201912010030
dc.relationAñez, G., Heisey, D. A., Volkova, E., & Rios, M. (2016). Complete Genome Sequences of Dengue Virus Type 1 to 4 Strains Used for the Development of CBER / FDA RNA Reference Reagents. American Society for Microbiology, 4(1), 4-5. https://doi.org/10.1128/genomeA.01583-15
dc.relationArango Castiblanco, D. A. (2019). Reporte epidemiológico de Dengue semana 1-9. Recuperado de Instituto Nacional de Salud de Colombia website: www.ins.gov.co
dc.relationArenas, M. (2015). Trends in substitution models of molecular evolution. Frontiers in Genetics, 6(OCT). https://doi.org/10.3389/fgene.2015.00319
dc.relationArias-Murillo, Y. R., Castro-Jiménez, M. Á., Ríos-Espinosa, M. F., López-Rivera, J. J., Echeverry-Coral, S. J., & Martínez-Nieto, O. (2010). Analysis of HLA-A, HLA-B, HLA-DRB1 allelic, genotypic, and haplotypic frequencies in Colombian population. Colombia Medica, 41(4), 336-343. https://doi.org/10.2510/colomb.
dc.relationArsha, A., Shahwani, M. N., Yousufzai, A., Asif, M., & Ahmed, N. (2012). Comparative Genome / Proteome Analysis of Four Serotypes of Dengue Virus Using Bioinformatics Tools. (September 2014).
dc.relationAvino, M., & Poon, A. F. Y. (2019). Computational Methods in Protein Evolution. Computational Methods in Protein Evolution, Methods in Molecular Biology, 1851(Cap6), 105-121. https://doi.org/10.1007/978-1-4939-8736-8
dc.relationBarreto, F., Martı, R., Galv, M., Joint, G., & Sarti, E. (2017). Dengue in Latin America : Systematic Review of Molecular Epidemiological Trends. 1-24. https://doi.org/10.1371/journal.pntd.0005224
dc.relationBashford, D., & Karplus, M. (1990). pKa’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry, 29(44), 10219-10225. https://doi.org/10.1021/bi00496a010
dc.relationBavia, L., Mosimann, A. L. P., Aoki, M. N., & dos Santos, C. N. (2016). A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virology Journal, 13(1), 84. https://doi.org/10.1186/s12985-016-0541-3
dc.relationBawono, P., & Heringa, J. (2014). Phylogenetic Analyses. Comprehensive Biomedical Physics, 6, 93-110. https://doi.org/10.1016/B978-0-444-53632-7.01108-4
dc.relationBehura, S. K., & Severson, D. W. (2013). Nucleotide substitutions in dengue virus serotypes from Asian and American countries: insights into intracodon recombination and purifying selection. BMC Microbiology, 13(1), 1. https://doi.org/10.1186/1471-2180-13-37
dc.relationBloom, J. D. (2014). An experimentally determined evolutionary model dramatically improves phylogenetic fit. Molecular Biology and Evolution, 31(8), 1956-1978. https://doi.org/10.1093/molbev/msu173
dc.relationBock, G. (2006). NEW TREATMENT STRATEGIES FOR DENGUE AND OTHER FLAVIVIRAL DISEASES (Novartis F; J. Goode, Ed.). Chichester, UK: John Wiley & Sons Inc.
dc.relationBos, D. H., & Posada, D. (2005). Using models of nucleotide evolution to build phylogenetic trees. Developmental and Comparative Immunology, 29(3), 211-227. https://doi.org/10.1016/j.dci.2004.07.007
dc.relationBourne, P. E., & Weissig, H. (2003). Structural bioinformatics. METHODS OF BIOCHEMICAL ANALYSIS. Wiley-Liss, Inc. https://doi.org/10.1002/0471721204
dc.relationBull, J. J., Molineux, I. J., & Wilke, C. O. (2012). Slow fitness recovery in a codon-modified viral genome. Mol Biol Evol, 29. https://doi.org/10.1093/molbev/mss119
dc.relationChan, Y. K., & Gack, M. U. (2016). Viral evasion of intracellular DNA and RNA sensing. Nature Reviews Microbiology, 14(6), 360-373. https://doi.org/10.1038/nrmicro.2016.45
dc.relationCheung, N. J., & Yu, W. (2018). De novo protein structure prediction using ultra-fast molecular dynamics simulation. PLoS ONE, 13(11). https://doi.org/10.1371/journal.pone.0205819
dc.relationChilders, M. C., & Daggett, V. (2018). Validating Molecular Dynamics Simulations against Experimental Observables in Light of Underlying Conformational Ensembles [Research-article]. Journal of Physical Chemistry B, 122(26), 6673-6689. https://doi.org/10.1021/acs.jpcb.8b02144
dc.relationClarke, B. D., Roby, J. A., Slonchak, A., & Khromykh, A. A. (2015). Functional non-coding RNAs derived from the flavivirus 3’ untranslated region. Virus Research, 206, 53-61. https://doi.org/10.1016/j.virusres.2015.01.026
dc.relationCook, S., Moureau, G., Kitchen, A., Gould, E. A., de Lamballerie, X., Holmes, E. C., & Harbach, R. E. (2012). Molecular evolution of the insect-specific flaviviruses. Journal of General Virology, 93(2), 223-234. https://doi.org/10.1099/vir.0.036525-0
dc.relationCosta, R. L., Voloch, C. M., & Schrago, C. G. (2012). Comparative evolutionary epidemiology of dengue virus serotypes. Infection, Genetics and Evolution, 12(2), 309-314. https://doi.org/https://doi.org/10.1016/j.meegid.2011.12.011
dc.relationCriscuolo, A. (2019). A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. Research Ideas and Outcomes, 5. https://doi.org/10.3897/rio.5.e36178
dc.relationCuypers, L., Libin, P. J. K., Simmonds, P., Nowé, A., Muñoz-Jordán, J., Junior Alcantara, L. C., … Theys, K. (2018). Time to harmonize dengue nomenclature and classification. Viruses, 10(10). https://doi.org/10.3390/v10100569
dc.relationD.A. Case, R.M. Betz, D.S. Cerutti, T.E. Cheatham, III, T.A. Darden, R.E. Duke, T.J. Giese, H. G., A.W. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T.S. Lee, S. LeGrand, P. Li, C., Lin, T. Luchko, R. Luo, B. Madej, D. Mermelstein, K.M. Merz, G. Monard, H. Nguyen, H.T. Nguyen, I., Omelyan, A. Onufriev, D.R. Roe, A. Roitberg, C. Sagui, C.L. Simmerling, W.M. Botello-Smith, J. S., & R.C. Walker, J. Wang, R.M. Wolf, X. Wu, L. X. and P. A. K. (2016). AMBER 2016. University of California, San Francisco.
dc.relationDai, L., Song, J., Lu, X., Deng, Y. Q., Musyoki, A. M., Cheng, H., … Gao, G. F. (2016). Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody. Cell Host and Microbe, 19(5), 696-704. https://doi.org/10.1016/j.chom.2016.04.013
dc.relationDamas, N. D., Fossat, N., & Scheel, T. K. H. (2019). Functional Interplay between RNA Viruses and Non-Coding RNA in Mammals. Non-Coding RNA, 5(1), 7. https://doi.org/10.3390/ncrna5010007
dc.relationDarriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and high- performance computing. Nature Methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109
dc.relationDawson, W. K., & Bujnicki, J. M. (2016). Computational modeling of RNA 3D structures and interactions. Current Opinion in Structural Biology, 37, 22-28. https://doi.org/10.1016/j.sbi.2015.11.007
dc.relationde Borba, L., Villordo, S. M., Iglesias, N. G., Filomatori, C. V., Gebhard, L. G., & Gamarnik, A. V. (2015). Overlapping Local and Long-Range RNA-RNA Interactions Modulate Dengue Virus Genome Cyclization and Replication. Journal of Virology, 89(6), 3430-3437. https://doi.org/10.1128/JVI.02677-14
dc.relationde Borba, L., Villordo, S. M., Marsico, F. L., Carballeda, J. M., Filomatori, C. V., Gebhard, L. G., … Gamarnik, A. V. (2019). RNA Structure Duplication in the Dengue Virus 3′ UTR: Redundancy or Host Specificity? mBio, 10(1), 1-18. https://doi.org/10.1128/mbio.02506-18
dc.relationDe Oliveira Dos Santos Soares, R., Bortot, L. O., Van Der Spoel, D., & Caliri, A. (2017). Membrane vesiculation induced by proteins of the dengue virus envelope studied by molecular dynamics simulations. Journal of Physics Condensed Matter, 29(50). https://doi.org/10.1088/1361-648X/aa99c6
dc.relationDegrève, L., & Fuzo, C. a. (2013). Structure and dynamics of the monomer of protein E of dengue virus type 2 with unprotonated histidine residues. Genetics and molecular research : GMR, 12(1), 348-359. https://doi.org/10.4238/2013.February.7.5
dc.relationDiosa Toro, M. (2017). Host cell responses to dengue virus infection. University of Groningen, 33.
dc.relationdo Nascimento, V. A., de Souza, V. C., & Naveca, F. G. (2016). Complete genome of a dengue virus serotype 4 strain from amazonas, Brazil. Memorias do Instituto Oswaldo Cruz, 111(2), 141-143. https://doi.org/10.1590/0074-02760150416
dc.relationDolan, P. T., Whitfield, Z. J., & Andino, R. (2018). Mapping the Evolutionary Potential of RNA Viruses. Cell Host & Microbe, 23(4), 435-446. https://doi.org/10.1016/j.chom.2018.03.012
dc.relationDrury, R. E., O’Connor, D., & Pollard, A. J. (2017). The clinical application of MicroRNAs in infectious disease. Frontiers in Immunology, 8(SEP). https://doi.org/10.3389/fimmu.2017.01182
dc.relationDurut, N., & Scheid, O. M. (2019). The Role of Noncoding RNAs in Double-Strand Break Repair. 10(September), 1-13. https://doi.org/10.3389/fpls.2019.01155
dc.relationEastlack, S., & Alahari, S. (2015). MicroRNA and Breast Cancer: Understanding Pathogenesis, Improving Management. Non-Coding RNA, 1(1), 17-43. https://doi.org/10.3390/ncrna1010017
dc.relationEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. https://doi.org/10.1093/nar/gkh340
dc.relationFay, E., & Langlois, R. (2018). MicroRNA-Attenuated Virus Vaccines. Non-Coding RNA, 4(4), 25. https://doi.org/10.3390/ncrna4040025
dc.relationFernández-Sanlés, A., Ríos-Marco, P., Romero-López, C., & Berzal-Herranz, A. (2017). Functional Information Stored in the Conserved Structural RNA Domains of Flavivirus Genomes. Frontiers in Microbiology, 08(April), 1-16. https://doi.org/10.3389/fmicb.2017.00546
dc.relationFinol, E., & Ooi, E. E. (2018). Evolution of Subgenomic RNA Shapes Dengue Virus Adaptation and Epidemiological Fitness. SSRN Electronic Journal, 16, 94-105. https://doi.org/10.2139/ssrn.3295648
dc.relationFunk, A., Truong, K., Nagasaki, T., Torres, S., Floden, N., Balmori Melian, E., … Khromykh, A. A. (2010). RNA structures required for production of subgenomic flavivirus RNA. Journal of Virology, 84(21), 11407-11417. https://doi.org/10.1128/JVI.01159-10
dc.relationFuzo, C. A., & Degrève, L. (2013). The pH dependence of flavivirus envelope protein structure: Insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 32(10), 1563-1574. https://doi.org/10.1080/07391102.2013.827132
dc.relationGallichotte, E. N., Baric, T. J., Nivarthi, U., Delacruz, M. J., Graham, R., Widman, D. G., … Baric, R. S. (2018). Genetic Variation between Dengue Virus Type 4 Strains Impacts Human Antibody Binding and Neutralization. Cell Reports, 25(5), 1214-1224. https://doi.org/10.1016/j.celrep.2018.10.006
dc.relationGandhi, S., Ruehle, F., & Stoll, M. (2019). Evolutionary Patterns of Non-Coding RNA in Cardiovascular Biology. Non-Coding RNA, 5(1), 15. https://doi.org/10.3390/ncrna5010015
dc.relationGarba, M. K., Nye, T. M. W., & Boys, R. J. (2018). Probabilistic Distances between Trees. Systematic Biology, 67(2), 320-327. https://doi.org/10.1093/sysbio/syx080
dc.relationGebhard, L. G., Filomatori, C. V., & Gamarnik, A. V. (2011). Functional RNA elements in the dengue virus genome. Viruses, 3(9), 1739-1756. https://doi.org/10.3390/v3091739
dc.relationGöertz, G. P., Fros, J. J., Miesen, P., Vogels, C. B. F., van der Bent, M. L., Geertsema, C., … Pijlman, G. P. (2016). Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes. Journal of Virology, 90(22), 10145-10159. https://doi.org/10.1128/JVI.00930-16
dc.relationGorodkin, J., & Walker, J. M. (2014). RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods (Vol. 1097). https://doi.org/10.1007/978-1-62703-709-9
dc.relationGowri-shankar, V., & Jow, H. (2013). PHASE: a Software Package for Phylogenetics and Sequence Evolution. University of Manchester, 3(June), 1.70.
dc.relationGrant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695-2696. https://doi.org/10.1093/bioinformatics/btl461
dc.relationGruber, A. R., Findeiß, S., Washietl, S., Hofacker, I. L., & Stadler, P. F. (2010). RNAz 2.0: improved noncoding RNA detection. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 69-79.
dc.relationH.M.Berman, J.Westbrook, Z.Feng, G.Gilliland, T.N.Bhat, H.Weissig, I.N.Shindyalov, P. E. B. (2000). The Protein Data Bank. Recuperado de Nucleic Acids Research website: rcsb.org
dc.relationHaddox, H. K., Dingens, A. S., Hilton, S. K., Overbaugh, J., & Bloom, J. D. (2018). Mapping mutational effects along the evolutionary landscape of HIV envelope. eLife, 7, 1-29. https://doi.org/10.7554/elife.34420
dc.relationHahn, C. S., Hahn, Y. S., Rice, C. M., Lee, E., Dalgarno, L., Strauss, E. G., & Strauss, J. H. (1987). Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. Journal of Molecular Biology, 198(1), 33-41. https://doi.org/10.1016/0022-2836(87)90455-4
dc.relationHall, B. G. (2011). Phylogenetic Networks. En Phylogenetic Trees Made Easy: A How To Manual.
dc.relationHalligan, D. L., Kousathanas, A., Ness, R. W., Harr, B., Eöry, L., Keane, T. M., … Keightley, P. D. (2013). Contributions of Protein-Coding and Regulatory Change to Adaptive Molecular Evolution in Murid Rodents. PLoS Genetics, 9(12). https://doi.org/10.1371/journal.pgen.1003995
dc.relationHapuarachchi, H. C., Koo, C., Kek, R., Xu, H., Lai, Y. L., Liu, L., … Ng, L. C. (2016). Intra-epidemic evolutionary dynamics of a Dengue virus type 1 population reveal mutant spectra that correlate with disease transmission. Scientific Reports, 6(October 2015), 1-15. https://doi.org/10.1038/srep22592
dc.relationHe, F., Wei, R., Zhou, Z., Huang, L., Wang, Y., Tang, J., & Zou, Y. (2019). Integrative Analysis of Somatic Mutations in Non-coding Regions Altering RNA Secondary Structures in Cancer Genomes. Scientific Reports, (May), 1-12. https://doi.org/10.1038/s41598-019-44489-5
dc.relationHilton, S. K., & Bloom, J. D. (2018). Modeling site-specific amino-acid preferences deepens phylogenetic estimates of viral sequence divergence. Virus Evolution, 4(2). https://doi.org/10.1093/ve/vey033
dc.relationHornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function and Genetics, 65(3), 712-725. https://doi.org/10.1002/prot.21123
dc.relationHospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: advances and applications. Advances and Applications in Bioinformatics and Chemistry : AABC, 8, 37-47. https://doi.org/10.2147/AABC.S70333
dc.relationHu, D., Lv, L., Gu, J., Chen, T., Xiao, Y., & Liu, S. (2016). Genetic diversity and positive selection analysis of classical swine fever virus envelope protein gene E2 in East China under C-strain vaccination. Frontiers in Microbiology, 7(FEB), 1-10. https://doi.org/10.3389/fmicb.2016.00085
dc.relationHuson, D. H., Richter, D. C., Rausch, C., Dezulian, T., Franz, M., & Rupp, R. (2007). Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics, 8, 1-6. https://doi.org/10.1186/1471-2105-8-460
dc.relationHussain, M., & Asgari, S. (2014). MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proceedings of the National Academy of Sciences of the United States of America, 111(7), 2746-2751. https://doi.org/10.1073/pnas.1320123111
dc.relationIglesias, N. G., & Gamarnik, A. V. (2011). Dynamic RNA structures in the dengue virus genome. RNA Biology, 8(2), 37-41. https://doi.org/10.4161/hv.8.2.14992
dc.relationINVIMA. Resolución Número 2019040960. , (2019).
dc.relationJiang, L., Ma, D., Ye, C., Li, L., Li, X., Yang, J., … Sun, Q. (2018). Molecular Characterization of Dengue Virus Serotype 2 Cosmospolitan Genotype From 2015 Dengue Outbreak in Yunnan, China. Frontiers in Cellular and Infection Microbiology, 8(June), 1-11. https://doi.org/10.3389/fcimb.2018.00219
dc.relationJiang, Y., Wang, M., Zheng, H., Wang, W. R., Jin, L., & He, Y. (2013). Resolving ambiguity in the phylogenetic relationship of genotypes A, B, and C of hepatitis B virus. BMC Evolutionary Biology, 13(1), 1. https://doi.org/10.1186/1471-2148-13-120
dc.relationJordan, T. X., Aguado, L. C., Heard, J., tenOever, B. R., Vignuzzi, M., Panis, M., … Blanco-Melo, D. (2018). Homologous recombination is an intrinsic defense against antiviral RNA interference. Proceedings of the National Academy of Sciences, 115(39). https://doi.org/10.1073/pnas.1810229115
dc.relationKaehler, B. D., Yap, V. B., & Huttley, G. A. (2017). Standard codon substitution models overestimate purifying selection for nonstationary data. Genome Biology and Evolution, 9(1), 134-149. https://doi.org/10.1093/gbe/evw308
dc.relationKara, M., O’Grady, T., Feldman, E. R., Feswick, A., Wang, Y., Flemington, E. K., & Tibbetts, S. A. (2019). Gammaherpesvirus Readthrough Transcription Generates a Long Non-Coding RNA That Is Regulated by Antisense miRNAs and Correlates with Enhanced Lytic Replication In Vivo. Non-Coding RNA, 5(1), 6. https://doi.org/10.3390/ncrna5010006
dc.relationKaryanti, M. R., Perkasa, A., Putri, N. D., Ledermann, J. P., Mangunatmadja, I., Powers, A. M., … Fadhilah, A. (2018). Isolation and complete genome analysis of neurotropic dengue virus serotype 3 from the cerebrospinal fluid of an encephalitis patient. PLOS Neglected Tropical Diseases, 12(1), e0006198. https://doi.org/10.1371/journal.pntd.0006198
dc.relationKhromykh, A. A., Meka, H., Guyatt, K. J., & Westaway, E. G. (2002). Essential Role of Cyclization Sequences in Flavivirus RNA Replication. Journal of Virology, 75(14), 6719-6728. https://doi.org/10.1128/jvi.75.14.6719-6728.2001
dc.relationKieft, J. S., Rabe, J. L., & Chapman, E. G. (2015). RNA : Conservation , folding , and host adaptation. (November), 1169-1177.
dc.relationKimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120.
dc.relationKobayashi, Y., Horie, M., Tomonaga, K., & Suzuki, Y. (2011). No evidence for natural selection on endogenous borna-like nucleoprotein elements after the divergence of old world and new world monkeys. PLoS ONE, 6(9). https://doi.org/10.1371/journal.pone.0024403
dc.relationKodama, Y., Mashima, J., Kosuge, T., & Ogasawara, O. (2019). DDBJ update: The Genomic Expression Archive (GEA) for functional genomics data. Nucleic Acids Research, 47(D1), D69-D73. https://doi.org/10.1093/nar/gky1002
dc.relationKolekar, P., Kale, M., & Kulkarni-Kale, U. (2011). Subtyping of Dengue Viruses using Return Time Distribution based Appproach. Nature Precedings. https://doi.org/10.1038/npre.2011.5590
dc.relationKosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not so different after all: A comparison of methods for detecting amino acid sites under selection. Molecular Biology and Evolution, 22(5), 1208-1222. https://doi.org/10.1093/molbev/msi105
dc.relationKosakovsky Pond, S. L., Frost, S. D. W., & Muse, S. V. (2005). HyPhy: Hypothesis testing using phylogenies. Bioinformatics, 21(5), 676-679. https://doi.org/10.1093/bioinformatics/bti079
dc.relationLaiton Donato, K. D. (2015). Analisis de determinantes geneticos de virulencia en cepas del virus dengue tipo 2. Universidad Nacional de Colombia.
dc.relationLaiton-Donato, K., Alvarez, D. A., Peláez-Carvajal, D., Mercado, M., Ajami, N. J., Bosch, I., & Usme-Ciro, J. A. (2019). Molecular characterization of dengue virus reveals regional diversification of serotype 2 in Colombia. Virology Journal, 16(1), 62. https://doi.org/10.1186/s12985-019-1170-4
dc.relationLarkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mcgettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
dc.relationLarsson, D. (2012). Exploring the molecular dynamics of proteins and viruses (Universitet Uppsala). ISBN 978-91-554-8335-7
dc.relationLaughlin, C. A., Morens, D. M., Cassetti, M. C., Costero-Saint Denis, A., San Martin, J. L., Whitehead, S. S., & Fauci, A. S. (2012). Dengue research opportunities in the Americas. Journal of Infectious Diseases, 206(7), 1121-1127. https://doi.org/10.1093/infdis/jis351
dc.relationLeung, P., Eltahla, A. A., Lloyd, A. R., Bull, R. A., & Luciani, F. (2017). Understanding the complex evolution of rapidly mutating viruses with deep sequencing: Beyond the analysis of viral diversity. Virus Research, 239, 43-54. https://doi.org/https://doi.org/10.1016/j.virusres.2016.10.014
dc.relationLim, C. S., & Brown, C. M. (2018). Know your enemy: Successful bioinformatic approaches to predict functional RNA structures in viral RNAs. Frontiers in Microbiology, 8(JAN). https://doi.org/10.3389/fmicb.2017.02582
dc.relationLin, H. E., Tsai, W. Y., Liu, I. J., Li, P. C., Liao, M. Y., Tsai, J. J., … Wang, W. K. (2012). Analysis of epitopes on dengue virus envelope protein recognized by monoclonal antibodies and polyclonal human sera by a high throughput assay. PLoS Neglected Tropical Diseases, 6(1). https://doi.org/10.1371/journal.pntd.0001447
dc.relationLing, L., Li, Z., Jiao, Z., Zhang, X., Ma, W., Feng, J., … Lu, L. (2019). Identification of Novel Endophytic Yeast Strains from Tangerine Peel. Current Microbiology, (April). https://doi.org/10.1007/s00284-019-01721-9
dc.relationLiu, Z. Y., Shi, W. F., & Qin, C. F. (2019). The evolution of Zika virus from Asia to the Americas. Nature Reviews Microbiology, 17(3), 131-139. https://doi.org/10.1038/s41579-018-0134-9
dc.relationLorenz, R. (2014). {RNA} Secondary Structure Thermodynamics and Kinetics. Universitat wien.
dc.relationLow, J. G. H., Ooi, E. E., & Vasudevan, S. G. (2017). Current Status of Dengue Therapeutics Research and Development. The Journal of infectious diseases, 215(2), S96-S102. https://doi.org/10.1093/infdis/jiw423
dc.relationMartinez, G., Giorgino, T., & Fabritiis, G. (2017). PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 57. https://doi.org/10.1021/acs.jcim.7b00190
dc.relationMascarenhas, M., Garasia, S., Berthiaume, P., Corrin, T., Greig, J., Ng, V., … Waddell, L. (2018). A scoping review of published literature on chikungunya virus. En PLoS ONE (Vol. 13). https://doi.org/10.1371/journal.pone.0207554
dc.relationMathews, D. H., Moss, W. N., & Turner, D. H. (2010). Folding and finding RNA secondary structure. Cold Spring Harbor Perspectives in Biology, 2(12), a003665-a003665. https://doi.org/10.1101/cshperspect.a003665
dc.relationMedin, C. L., Fitzgerald, K. a, Alan, L., & Rothman, A. L. (2005). Dengue Virus Nonstructural Protein NS5 Induces Interleukin-8 Transcription and Secretion Dengue Virus Nonstructural Protein NS5 Induces Interleukin-8 Transcription and Secretion. The journal of virology, 79(17), 11053-11061. https://doi.org/10.1128/JVI.79.17.11053
dc.relationMendes, Y. S., Alves, N. S., Souza, T. L. F., Sousa, I. P., Bianconi, M. L., Bernardi, R. C., … Oliveira, A. C. (2012). The Structural Dynamics of the Flavivirus Fusion Peptide-Membrane Interaction. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0047596
dc.relationMesser, W. B., Gubler, D. J., Harris, E., Sivananthan, K., & De Silva, A. M. (2003). Emergence and global spread of a dengue serotype 3, subtype III virus. Emerging Infectious Diseases, 9(7), 800-809. https://doi.org/10.3201/eid0907.030038
dc.relationMessina, J. P., Brady, O. J., Scott, T. W., Zou, C., Pigott, D. M., Duda, K. A., … Hay, S. I. (2014). Global spread of dengue virus types : mapping the 70 year history. Trends in Microbiology, 22(3), 138-146. https://doi.org/10.1016/j.tim.2013.12.011
dc.relationMinisterio de Salud y protección social, Superintendencia Nacional de Salud, & Instituto Nacional de Salud. Circular conjunta externa 0000008 de 2019. , (2019).
dc.relationMinsalud, Supersalud, & INS. Circular 08 de 12 de febrero de 2019. , (2019).
dc.relationModis, Y., Ogata, S., Clements, D., & Harrison, S. C. (2005). Variable Surface Epitopes in the Crystal Structure of Dengue Virus Type 3 Envelope Glycoprotein. American Society for Microbiology, 79(2), 1223-123. https://doi.org/10.1128/JVI.79.2.1223
dc.relationMolero-Abraham, M., Glutting, J.-P., Flower, D. R., Lafuente, E. M., & Reche, P. A. (2015). EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses. Journal of Immunology Research, 2015, 1-11. https://doi.org/10.1155/2015/738020
dc.relationMoon, S. L., Dodd, B. J. T. T., Brackney, D. E., Wilusz, C. J., Ebel, G. D., & Wilusz, J. (2015). Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology, 485(August 2015), 322-329. https://doi.org/10.1016/j.virol.2015.08.009
dc.relationMoss, W. N., Priore, S. F., & Turner, D. H. (2011). Identification of potential conserved RNA secondary structure throughout influenza A coding regions. Rna, 17(6), 991-1011. https://doi.org/10.1261/rna.2619511
dc.relationMurrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S. L., & Scheffler, K. (2013). FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Molecular Biology and Evolution, 30(5), 1196-1205. https://doi.org/10.1093/molbev/mst030
dc.relationMurrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., & Kosakovsky Pond, S. L. (2012). Detecting Individual Sites Subject to Episodic Diversifying Selection. PLOS Genetics, 8(7), 1-10. https://doi.org/10.1371/journal.pgen.1002764
dc.relationNekrutenko, A., Makova, K. D., & Li, W. H. (2002). The KA/KS ratio test for assessing the protein-coding potential of genomic regions: An empirical and simulation study. Genome Research, 12(1), 198-202. https://doi.org/10.1101/gr.200901
dc.relationNg, W. C., Soto-Acosta, R., Bradrick, S. S., Garcia-Blanco, M. A., & Ooi, E. E. (2017). The 5ʹ and 3ʹ untranslated regions of the flaviviral genome. Viruses, Vol. 9. https://doi.org/10.3390/v9060137
dc.relationNHGRI. (2014). National Human Genome Research Institute. Recuperado de https://www.genome.gov
dc.relationNovella, I. S., Zárate, S., Metzgar, D., & Ebendick-Corpus, B. E. (2004). Positive selection of synonymous mutations in vesicular stomatitis virus. Journal of Molecular Biology, 342(5), 1415-1421. https://doi.org/10.1016/j.jmb.2004.08.003
dc.relationOrganization, P. A. H. (2019). Epidemiological Update Dengue.
dc.relationOspina-bedoya, M., Campillo-pedroza, N., Franco-salazar, J. P., & Gallego-gómez, J. C. (2014). Bioinformatics and Biology Insights their Cellular Targets. JT Efird, Associate Editor, 169-176. https://doi.org/10.4137/BBI.S13649.Received
dc.relationPadilla, J. cesar, Rojas, D. P., & Sánez-Gómez, R. (2012). Dengue en Colombia. Epidemiología de la reemergencia la hieperendemia. Guias de impresion LTDA.
dc.relationPan American Health Organization;, & World Health Organization. (2019). Epidemiological Update Dengue.
dc.relationPang, Y., Mao, C., & Liu, S. (2018). Encoding activities of non-coding RNAs. Theranostics, 8(9), 2496-2507. https://doi.org/10.7150/thno.24677
dc.relationParadis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289-290. https://doi.org/10.1093/bioinformatics/btg412
dc.relationParadis, E. (2008). Analysis of Phylogenetics and Evolution with R. En Gentleman, Robert; Hornik, Kurt; Parmigiani, Giovanni G. (Ed.), Springer (Second).
dc.relationPatil, J. ., Alagarasu, K., Kakade, M. ., More, A. ., Gadekar, K. ., Jadhav, S. ., … Shah, P. . (2018). Emergence of dengue virus type 1 and type 3 as dominant serotypes during 2017 in Pune and Nashik regions of Maharashtra , Western India. Infection, Genetics and Evolution j, 66(October), 272-283. https://doi.org/10.1016/j.meegid.2018.10.016
dc.relationPettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605-1612. https://doi.org/10.1002/jcc.20084
dc.relationPhadungsombat, J., Lin, M. Y. C., Srimark, N., Yamanaka, A., Nakayama, E. E., Moolasart, V., … Uttayamakul, S. (2018). Emergence of genotype Cosmopolitan of dengue virus type 2 and genotype III of dengue virus type 3 in Thailand. PloS one, 13(11), e0207220. https://doi.org/10.1371/journal.pone.0207220
dc.relationPickett, B. E., Sadat, E. L., Zhang, Y., Noronha, J. M., Squires, R. B., Hunt, V., … Scheuermann, R. H. (2012). ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Research, 40(Database issue), D593-D598. https://doi.org/10.1093/nar/gkr859
dc.relationPiorno, G. M. (s. f.). Distribución gamma. Ciencias Actuariales y Financieras, ESTADÍSTICA ACTUARIAL NO VIDA, 1-10.
dc.relationPoghosyan, A. H., Yeghiazaryan, G. A., Gharabekyan, H. H., & Shahinyan, A. A. (2006). The GROMACS and NAMD software packages comparison. Commun. Comput. Phys., 1(4), 736-743.
dc.relationPompon, J., Manuel, M., Ng, G. K., Wong, B., Shan, C., Manokaran, G., … Garcia-Blanco, M. A. (2017). Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathogens, 13(7). https://doi.org/10.1371/journal.ppat.1006535
dc.relationPond, S. L. K., Poon, A. F. Y., & Frost, S. D. W. (2012). Estimating selection pressures on alignments of coding sequences. The Phylogenetic Handbook, 419-490. https://doi.org/10.1017/cbo9780511819049.016
dc.relationProutski, V., Gritsun, T. S., Gould, E. A., & Holmes, E. C. (1999). Biological consequences of deletions within the 3’-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure. Virus Research, 64(2), 107-123. https://doi.org/10.1016/S0168-1702(99)00079-9
dc.relationPyke, A. T., Moore, P. R., Taylor, C. T., Hall-Mendelin, S., Cameron, J. N., Hewitson, G. R., … Van Den Hurk, A. F. (2016). Highly divergent dengue virus type 1 genotype sets a new distance record. Scientific Reports, 6(October 2015), 1-12. https://doi.org/10.1038/srep22356
dc.relationQiu, J., Shang, Y., Ji, Z., & Qiu, T. (2018). In-silico Antigenicity Determination and Clustering of Dengue Virus Serotypes. Frontiers in Genetics, 9(December), 1-8. https://doi.org/10.3389/fgene.2018.00621
dc.relationRogers, D. M., Kent, M. S., & Rempe, S. B. (2015). Molecular basis of endosomal-membrane association for the dengue virus envelope protein. Biochimica et Biophysica Acta - Biomembranes, 1848(4), 1041-1052. https://doi.org/10.1016/j.bbamem.2014.12.018
dc.relationRose, D., Hackermüller, J., Washietl, S., Reiche, K., Hertel, J., Findeiß, S., … Prohaska, S. J. (2007). Computational RNomics of drosophilids. BMC Genomics, 8(2005), 1383-1390. https://doi.org/10.1186/1471-2164-8-406
dc.relationSaitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
dc.relationSalvo, M. A., Aliota, M. T., Moncla, L. H., Velez, I. D., Trujillo, A. I., Friedrich, T. C., & Osorio, J. E. (2019). Tracking dengue virus type 1 genetic diversity during lineage replacement in an hyperendemic area in Colombia. PLOS ONE, 14(3), 1-22. https://doi.org/10.1371/journal.pone.0212947
dc.relationSánchez-Rojas, G., & Rojas-Martínez, A. (2007). Tópicos en sistemática , biogeografía , ecología y conservación de mamíferos (Primera). Hidalgo, México: Universidad Auntónoma del Estado de Hidalgo.
dc.relationSanford, T. J., Mears, H. V., Fajardo, T., Locker, N., & Sweeney, T. R. (2019). Circularization of flavivirus genomic RNA inhibits de novo translation initiation. Nucleic acids research, 47(18), 9789-9802. https://doi.org/10.1093/nar/gkz686
dc.relationSanjuán, R., & Bordería, A. V. (2011). Interplay between RNA structure and protein evolution in HIV-1. Molecular Biology and Evolution, 28(4), 1333-1338. https://doi.org/10.1093/molbev/msq329
dc.relationSchliep, K. (2010). Phylogenetics in R package phangorn.
dc.relationSemana., Cruz Roja Colombiana. (2016). Foro: Dengue en Colombia: ¿En qué estamos? (Noviembre).
dc.relationSessions, O. M., Wilm, A., Kamaraj, U. S., Choy, M. M., Chow, A., Chong, Y., … Ooi, E. E. (2015). Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints. PLoS Neglected Tropical Diseases, 9(9), 1-21. https://doi.org/10.1371/journal.pntd.0004044
dc.relationShah, P. S. (2018). Infection , Genetics and Evolution Emergence of dengue virus type 1 and type 3 as dominant serotypes during 2017 in Pune and Nashik regions of Maharashtra , Western India. 66(October), 272-283. https://doi.org/10.1016/j.meegid.2018.10.016
dc.relationShi, J., Sun, J., Wu, M., Hu, N., Li, J., Li, Y., … Hu, Y. (2015). Inferring protective CD8+ T-cell epitopes for NS5 protein of four serotypes of dengue virus Chinese isolates based on HLA-A,-B and-C allelic distribution: Implications for epitope-based universal vaccine design. PLoS ONE, 10(9), 1-15. https://doi.org/10.1371/journal.pone.0138729
dc.relationSikosek, T., & Chan, H. S. (2014). Biophysics of protein evolution and evolutionary protein biophysics. Journal of the Royal Society Interface, 11(100). https://doi.org/10.1098/rsif.2014.0419
dc.relationSlonchak, A., & Khromykh, A. A. (2018). Subgenomic flaviviral RNAs: What do we know after the first decade of research. Antiviral Research, 159, 13-25. https://doi.org/https://doi.org/10.1016/j.antiviral.2018.09.006
dc.relationSmith, M. A., Gesell, T., Stadler, P. F., & Mattick, J. S. (2013). Widespread purifying selection on RNA structure in mammals. Nucleic Acids Research, 41(17), 8220-8236. https://doi.org/10.1093/nar/gkt596
dc.relationSmith, P., & Thomas, S. (2016). Dengue Vaccine Clinical Trial Results CYD- ­ ‐ TDV “ Dengvaxia ® ”. (April).
dc.relationSo, C. (2002). The Ka / Ks ratio : diagnosing the form of sequence evolution. Trends in genetics, 18(9), 486-487. https://doi.org/10.1109/NSWCTC.2009.79
dc.relationSom, A. (2014). Causes, consequences and solutions of phylogenetic incongruence. Briefings in Bioinformatics, 16(3), 536-548. https://doi.org/10.1093/bib/bbu015
dc.relationSpielman, S. J. (2017). Understanding the content of HyPhy’s JSON output files. (July), 1-10.
dc.relationSpielman, S. J., & Kosakovsky Pond, S. L. (2018). Relative evolutionary rate inference in HyPhy with LEISR. PeerJ, 6(Table 1), e4339. https://doi.org/10.7717/peerj.4339
dc.relationSteckelberg, A.-L., Akiyama, B. M., Costantino, D. A., Sit, T. L., Nix, J. C., & Kieft, J. S. (2018). A folded viral noncoding RNA blocks host cell exoribonucleases through a conformationally dynamic RNA structure. Proceedings of the National Academy of Sciences, 115(25), 6404-6409. https://doi.org/10.1073/pnas.1802429115
dc.relationStrobel, E. J., Yu, A. M., & Lucks, J. B. (2018). High-throughput determination of RNA structures. Nature Reviews Genetics, 19(10), 615-634. https://doi.org/10.1038/s41576-018-0034-x
dc.relationTang, Y., Rodpradit, P., Chinnawirotpisan, P., Mammen, M. P., Li, T., Lynch, J. A., … Zhang, C. (2010). Comparative analysis of full-length genomic sequences of 10 dengue serotype 1 viruses associated with different genotypes, epidemics, and disease severity isolated in Thailand over 22 years. American Journal of Tropical Medicine and Hygiene, 83(5), 1156-1165. https://doi.org/10.4269/ajtmh.2010.10-0052
dc.relationTavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Providence, R.I. American Mathematical Society, 17(Lectures on Mathematics in the Life Sciences), 57-86.
dc.relationTenOever, B. R. (2013). RNA viruses and the host microRNA machinery. Nature Reviews Microbiology, 11(3), 169-180. https://doi.org/10.1038/nrmicro2971
dc.relationTheis, C., Zirbel, C. L., Zu Siederdissen, C. H., Anthon, C., Hofacker, I. L., Nielsen, H., & Gorodkin, J. (2015). RNA 3D modules in genome-wide predictions of RNA 2D structure. PLoS ONE, 10(10), 1-13. https://doi.org/10.1371/journal.pone.0139900
dc.relationThurner, C., Witwer, C., Hofacker, I. L., & Stadler, P. F. (2004). Conserved RNA secondary structures in Flaviviridae genomes. Journal of General Virology, 85(5), 1113-1124. https://doi.org/10.1099/vir.0.19462-0
dc.relationTwiddy, S. S., Holmes, E. C., & Rambaut, A. (2003). Inferring the rate and time-scale of dengue virus evolution. Molecular Biology and Evolution, 20(1), 122-129. https://doi.org/10.1093/molbev/msg010
dc.relationUngerleider, N. A., Tibbetts, S. A., Renne, R., & Flemington, E. K. (2019). Gammaherpesvirus RNAs Come Full Circle. mBio, 10(2), 1-8. https://doi.org/10.1128/mBio.00071-19
dc.relationUnterholzner, L., & Almine, J. F. (2019). Camouflage and interception: how pathogens evade detection by intracellular nucleic acid sensors. Immunology, 156(3), 217-227. https://doi.org/10.1111/imm.13030
dc.relationUsman Mirza, M., Rafique, S., Ali, A., Munir, M., Ikram, N., Manan, A., … Idrees, M. (2016). Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Scientific Reports, 6(July), 1-18. https://doi.org/10.1038/srep37313
dc.relationUsme-Ciro, J. A., Paredes, A., Walteros, D. M., Tolosa-Pérez, E. N., Laiton-Donato, K., del Carmen Pinzón, M., … Páez-Martínez, A. (2017). Detection and Molecular Characterization of Zoonotic Poxviruses Circulating in the Amazon Region of Colombia, 2014. Emerging Infectious Diseases, 23(4), 649-653. https://doi.org/10.3201/eid2304.161041
dc.relationVADDADI, K., GANDIKOTA, C., JAIN, P. K., PRASAD, V. S. V., & VENKATARAMANA, M. (2017). Co-circulation and co-infections of all dengue virus serotypes in Hyderabad, India 2014. Epidemiology and Infection, 145(12), 2563–2574. https://doi.org/10.1017/S0950268817001479
dc.relationVasilakis, N., Fokam, E. B., Hanson, C. T., Weinberg, E., Sall, A. A., Whitehead, S. S., … Weaver, S. C. (2008). Genetic and phenotypic characterization of sylvatic dengue virus type 2 strains. Virology, 377(2), 296-307. https://doi.org/10.1016/j.virol.2008.04.044
dc.relationVaughan, K., Greenbaum, J., Blythe, M., Peters, B., & Sette, A. (2010). Meta-analysis of All Immune Epitope Data in the Flavivirus Genus: Inventory of Current Immune Epitope Data Status in the Context of Virus Immunity and Immunopathology . Viral Immunology, 23(3), 259-284. https://doi.org/10.1089/vim.2010.0006
dc.relationVillordo, S. M., Carballeda, J. M., Filomatori, C. V., & Gamarnik, A. V. (2016). RNA Structure Duplications and Flavivirus Host Adaptation. Trends in Microbiology, 24(4), 270-283. https://doi.org/10.1016/j.tim.2016.01.002
dc.relationVinga, S. (2014). Information theory applications for biological sequence analysis. Briefings in Bioinformatics, 15(3), 376-389. https://doi.org/10.1093/bib/bbt068
dc.relationVita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., … Peters, B. (2019). The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339-D343. https://doi.org/10.1093/nar/gky1006
dc.relationVo, J. N., Cieslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., … Chinnaiyan, A. M. (2019). The Landscape of Circular RNA in Cancer. Cell, 176(4), 869-881.e13. https://doi.org/10.1016/j.cell.2018.12.021
dc.relationWagih, O. (2017). Ggseqlogo: A versatile R package for drawing sequence logos. Bioinformatics, 33(22), 3645-3647. https://doi.org/10.1093/bioinformatics/btx469
dc.relationWaman, V. P., Kolekar, P., Ramtirthkar, M. R., Kale, M. M., & Kulkarni-Kale, U. (2016). Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes. PeerJ, 4, e2326. https://doi.org/10.7717/peerj.2326
dc.relationWang, S. (2019). Peptides encoded by noncoding genes : challenges and perspectives. Signal Transduction and Targeted Therapy, (September), 1-12. https://doi.org/10.1038/s41392-019-0092-3
dc.relationWashietl, S. (2005). Fast and reliable prediction of noncoding RNAs. Proc. Natl Acad. Sci. USA, 102, 2454-2459.
dc.relationWashietl, S. (2011). RNAz 2.1. Predicting structural noncoding RNAs. Department for Theoretical Chemistry, University Vienna.
dc.relationWeaver, S. C., & Vasilakis, N. (2009). Molecular evolution of dengue viruses: Contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infection, Genetics and Evolution, 9(4), 523-540. https://doi.org/10.1016/j.meegid.2009.02.003
dc.relationWill, S., Joshi, T., Hofacker, I. L., Stadler, P. F., & Backofen, R. (2012). LocARNA-P: Accurate Boundary Prediction and Improved Detection of Structured RNAs for Genome-wide Screens. Rna, 18, 900-914. https://doi.org/10.1261/rna.029041.111.10
dc.relationWONG, J. W. H., & HOGG, P. J. (2010). Analysis of disulfide bonds in protein structures. Journal of Thrombosis and Haemostasis, 8(10), 2345-2345. https://doi.org/10.1111/j.1538-7836.2010.03894.x
dc.relationWoodhams, M. D., Fernández-Sánchez, J., & Sumner, J. G. (2015). A New Hierarchy of Phylogenetic Models Consistent with Heterogeneous Substitution Rates. Systematic Biology, 64(4), 638-650. https://doi.org/10.1093/sysbio/syv021
dc.relationWorld Health Organization. (2009). Dengue: guidelines for diagnosis, treatment, prevention, and control. Special Programme for Research and Training in Tropical Diseases, x, 147.
dc.relationWorld Health Organization. (2016). Weekly Epidemiological Report. World Health Organiszation, 30(91), 349–364.
dc.relationWorld Health Organization. (2017). Dengue Control | What is dengue?
dc.relationYamanaka, A., & Konishi, E. (2019). Key Amino Acid Substitution for Infection-Enhancing Activity-Free Designer Dengue Vaccines. iScience, 13, 125-137. https://doi.org/10.1016/j.isci.2019.02.012
dc.relationYang, Z. (1994). Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. Journal of Molecular Evolution, 39(3), 306-314. https://doi.org/10.1007/BF00160154
dc.relationYANG, Z. (2006). Computational Molecular Evolution. En R. M. M. Paul H. Harvey (Ed.), Oxford Series in Ecology and Evolution. Oxford Univ Press.
dc.relationYang, Z., & Rannala, B. (2012). Molecular phylogenetics: principles and practice. Nature reviews. Genetics, 13(5), 303-314. https://doi.org/10.1038/nrg3186
dc.relationYe, F., & Karn, J. (2016). Viruses, Mark Thy Message Well. Cell Host and Microbe, 19(5), 568-570. https://doi.org/10.1016/j.chom.2016.04.018
dc.relationYohan, B., Wardhani, P., Trimarsanto, H., Aryati, A., & Sasmono, R. T. (2018). Genomic analysis of dengue virus serotype 1 (DENV-1) genotypes from Surabaya, Indonesia. Virus Genes, 54(3), 461-465. https://doi.org/10.1007/s11262-018-1558-z
dc.relationZhang, H., Zhang, Y., Hamoudi, R., Yan, G., Chen, X., & Zhou, Y. (2014). Spatiotemporal characterizations of dengue virus in mainland China: Insights into the whole genome from 1978 to 2011. PLoS ONE, 9(2), 1-10. https://doi.org/10.1371/journal.pone.0087630
dc.relationZhang, Y., Huang, H., Zhang, D., Qiu, J., Yang, J., Wang, K., … Yang, J. (2017). A Review on Recent Computational Methods for Predicting Noncoding RNAs. BioMed Research International, 2017, 1-14. https://doi.org/10.1155/2017/9139504
dc.relationZhang, Y., Huang, H., Zhang, D., Qiu, J., Yang, J., Wang, K., … Yang, J. (2017). A Review on Recent Computational Methods for Predicting Noncoding RNAs. BioMed Research International, 2017, 1-14. https://doi.org/10.1155/2017/9139504
dc.relationZuo, Z., Liew, O. W., Chen, G., Chong, P. C. J., Lee, S. H., Chen, K., … Zhu, W. (2009). Mechanism of NS2B-Mediated Activation of NS3pro in Dengue Virus: Molecular Dynamics Simulations and Bioassays. Journal of Virology, 83(2), 1060-1070. https://doi.org/10.1128/JVI.01325-08
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleModelo integrado para la caracterización in silico del efecto de la diversidad genética sobre regiones estructuradas codificantes y no codificantes del virus del Dengue
dc.typeOtro


Este ítem pertenece a la siguiente institución