dc.contributor | Rosas Pérez, Jaiver Eduardo | |
dc.contributor | Sistemas para liberación controlada de moléculas biológicamente activas (SILICOMOBA) | |
dc.creator | Velandia Paris, María Angélica | |
dc.date.accessioned | 2022-02-03T15:42:48Z | |
dc.date.available | 2022-02-03T15:42:48Z | |
dc.date.created | 2022-02-03T15:42:48Z | |
dc.date.issued | 2021 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80864 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | En los últimos años se ha despertado un gran interés por los sistemas para la entrega de fármacos (SEF) mediante liberación controlada, debido a que permiten superar ciertas limitaciones de algunos ingredientes farmacéuticos activos (IFAs). Entre estos IFAs, se destacan los péptidos que, a pesar de ser degradados rápidamente, son moléculas
esenciales en la vida debido a la posibilidad que tienen de cumplir múltiples funciones en el organismo, lo que ha permitido que sean considerados como IFA de elección para tratar numerosas enfermedades.
Se ha reportado que los SEF particulados son capaces de proteger a moléculas lábiles como los péptidos de agentes externos como las enzimas, haciendo que se prolongue su tiempo de vida media y por tanto mejorando su actividad. Teniendo en cuenta esto se han diseñado diferentes SEF, entre ellos los liposomas, las partículas poliméricas y las
partículas sólidas lipídicas, siendo estos sistemas los que han mostrado de manera general los mejores resultados como transportadores de IFAs. Producto de estas investigaciones, se ha mostrado un gran interés en desarrollar un SEF que permita reunir las ventajas de las partículas poliméricas y las partículas sólidas lipídicas, planteándose
de esta forma el diseño y desarrollo de los sistemas híbridos lipopoliméricos.
Con el propósito de contribuir en el campo de la investigación de SEF, en el marco de este trabajo se planteó el desarrollo una metodología para la obtención de tres sistemas particulados: micropartículas poliméricas, partículas sólidas lipídicas y micropartículas lipopoliméricas, empleando como material polimérico PLGA 50:50 (Viscosidad inherente: 0,8dL/g) y como material lipídico una mezcla de mono, di y triglicéridos C12-C18. Todos los
sistemas se obtuvieron vacíos y cargados con un péptido sintético modelo de naturaleza hidrofílica, mediante la metodología de doble emulsión – evaporación del solvente Todos los sistemas fueron caracterizados en cuanto a morfología, tamaño, potencial Z, eficiencia de encapsulación y perfil de liberación del péptido. Como resultado, se logró obtener partículas en su mayoría esféricas de tamaño micrométrico para los sistemas poliméricos (3,08-5,60 µm) y lipopoliméricos (3,22-3,93 µm), de tamaño nanométrico para el sistema sólido lipídico (135,8-162,9 nm) y con un potencial Z entre -18,5mV y -24,5mV para las micropartículas poliméricas, -15,5mV y -29,9mV para las partículas sólidas lipídicas, -20,0mV y -26,1mV para las micropartículas lipopoliméricas. En cuanto a la eficiencia de encapsulación se determinó que el mejor sistema fue el de las micropartículas poliméricas con una E.E. promedio del 57,42% seguido de las micropartículas lipopoliméricas cuya E.E. promedio fue de 43,15% y las partículas sólidas lipídicas con una E.E. promedio del 40,40%. En referencia al perfil de liberación, se observó que las micropartículas lipopoliméricas tienden a mostrar un comportamiento intermedio entre los observados en las micropartículas poliméricas y en las partículas lipídicas. En conclusión, en este trabajo se desarrolló una metodología para la obtención y caracterización de un sistema micropartícular lipopolimérico que permite la encapsulación
de un péptido sintético modelo de naturaleza hidrofílica con características tanto de micropartículas poliméricas (Tamaño y morfología) como de partículas sólidas lipídicas (E.E. y perfil de liberación). (texto tomado de la fuente) | |
dc.description.abstract | In recent years, controlled release drug delivery systems (DDS) have had great interest due they make possible to overcome certain limitations of some active pharmaceutical ingredients (APIs), between these APIs stand out peptides that despite of fast degradation, are essential molecules in life due to the possibility to accomplish multiple functions in the body, this has allowed to be considerate as choice API to treat numerous diseases. Particulate DDS have been shown to be able to protect labile molecules such as peptides from external agents such as enzymes, prolonging their half-life and therefore improving their activity. Bearing this in mind, different DDS have been designed, including liposomes, polymeric particles, and solid lipid particles, these being the ones that in general have shown better results as APIs carriers. As product of these research a great interest has been shown in developing a DDS that allows to have advantages of polymeric particles and solid lipid particles, proposing in this way the design and development of hybrid lipopolymeric systems.
With the purpose of contribute to research field of DDS, within the framework of this work, the development of a methodology for the obtention of three particulate systems: Polymeric microparticles, solid lipid particles and lipopolymeric particles was proposed, using as polymeric material PLGA 50:50 (Inherent Viscosity 0,8 dL/g) and as lipidic material a mixture of mono, di and triglycerides C12-C18. All systems were obtained empty and loaded with a model synthetic peptide of hydrophilic nature using a methodology of double emulsion – solvent evaporation.
All systems obtained were characterized in terms of morphology, size, Z potential, encapsulation efficiency and release profile. As result, was achieved particles mostly spherical, of micrometrical size for polymeric systems (3,08-5,60 µm) and lipopolymeric (3,22-3,93 µm), nanometrical size for the solid lipid system (135,8-162,9 nm), with a Z potential between -18,5mV -and -24,5mV for the polymeric particles, -15,5mV and -29,9mV for the solid lipid particles and -20,0mV and -26,1mV for the lipopolymeric particles. Regarding encapsulation efficiency, it was observed that lipopolymeric particles tend to show an intermediate behavior between the behavior observed in polymeric particles and in lipid particles.
In conclusion, in this work a method was developed to obtain and characterize a lipopolymeric microparticle system that allows the encapsulation of a model synthetic peptide of a hydrophilic nature with characteristics of both polymeric particles (size and morphology) and solid lipid particles (E.E. and release profile). | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas | |
dc.publisher | Departamento de Farmacia | |
dc.publisher | Facultad de Administración | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | LaReferencia | |
dc.relation | 1. Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current
development trends, and future directions. Bioorganic Med Chem [Internet].
2018;26(10):2700–7. Available from: https://doi.org/10.1016/j.bmc.2017.06.052 | |
dc.relation | 2. Sachdeva S. Peptides as ‘ Drugs ’: The Journey so Far. Int J Pept Res Ther.
2016;(May). | |
dc.relation | 3. Peptides C. Derek N. Woolfson 1,2 1 2. 2009;94(1):118–27. | |
dc.relation | 4. Grant GA. Synthetic peptides : a user’s guide. 2nd ed. Grant GA, editor. New York:
Oxford Univesity Press; 2002. | |
dc.relation | 5. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides :
science and market. 2010;15(January). | |
dc.relation | 6. Zhang J, Desale SS, Bronich TK. Polymer-based vehicles for therapeutic peptide
delivery. Ther Deliv. 2015;6(11):1279–96. | |
dc.relation | 7. Couvreur P, Puisieux F. Nano- and microparticles for the delivery of polypeptides
and proteins. Adv Drug Deliv Rev. 1993;10(2–3):141–62. | |
dc.relation | 8. Bruschi M. Modification of drug release. Strateg to Modify Drug Release from Pharm
Syst. 2015;15–28. | |
dc.relation | 9. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in
Medicine : Therapeutic Applications and Developments. 2008;83(5):761–9. | |
dc.relation | 10. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics : an emerging treatment
modality for cancer. 2008;7(SEPTEMbER):771–82 | |
dc.relation | 11. Devrim B, Kara A, Vural İ, Bozkır A. Lysozyme-loaded lipid-polymer hybrid
nanoparticles: preparation, characterization and colloidal stability evaluation. Drug
Dev Ind Pharm. 2016;42(11):1865–76. | |
dc.relation | 12. Zhang L, Granick S. How to Stabilize Phospholipid Liposomes ( Using Nanoparticles
). 2006;0–4. | |
dc.relation | 13. Zhang L, Zhang LF. Lipid–Polymer Hybrid Nanoparticles: Synthesis,Characterization and Applications. Nano Life. 2010;01(01n02):163–73. | |
dc.relation | 14. Garud A, Singh D, Garud N. Solid Lipid Nanoparticles (SLN): Method,
Characterization and Applications. Int Curr Pharm J. 2012;1(11):384–93. | |
dc.relation | 15. Ansari MJ, Anwer MK, Jamil S, Al-Shdefat R, Ali BE, Ahmad MM, et al. Enhanced
oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic
bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Deliv
[Internet]. 2016;23(6):1972–9. Available from:
http://dx.doi.org/10.3109/10717544.2015.1039666 | |
dc.relation | 16. Chan JM, Zhang L, Yuet KP, Liao G, Rhee J, Langer R, et al. Biomaterials PLGA –
lecithin – PEG core – shell nanoparticles for controlled drug delivery. Biomaterials
[Internet]. 2009;30(8):1627–34. Available from:
http://dx.doi.org/10.1016/j.biomaterials.2008.12.013 | |
dc.relation | 17. Thevenot J, Troutier A, David L, Delair T, Pascal B. Steric Stabilization of Lipid /
Polymer Particle Assemblies by Poly ( ethylene glycol ) -Lipids. 2007;3651–60. | |
dc.relation | 18. Grigoras AG. Polymer-lipid hybrid systems used as carriers for insulin delivery.
Nanomedicine Nanotechnology, Biol Med [Internet]. 2017;13(8):2425–37. Available
from: https://doi.org/10.1016/j.nano.2017.08.005 | |
dc.relation | 19. Walton HF. General considerations. Ligand Exch Chromatogr. 2018;7–30. | |
dc.relation | 20. Ito Y. Drug delivery systems. Photochemistry for Biomedical Applications: From
Device Fabrication to Diagnosis and Therapy. 2018. 231–275 p | |
dc.relation | 21. Nastruzzi C. Lipospheres in drug targets and delivery. 2005. | |
dc.relation | 22. Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery
systems. Methods Find Exp Clin Pharmacol [Internet]. 2005;27(2):127. Available
from:
http://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_summary_pr?p_J
ournalId=6&p_RefId=876286&p_IsPs=N | |
dc.relation | 23. Matougui N, Boge L, Groo AC, Umerska A, Ringstad L, Bysell H, et al. Lipid-based
nanoformulations for peptide delivery. Int J Pharm [Internet]. 2016;502(1–2):80–97.
Available from: http://dx.doi.org/10.1016/j.ijpharm.2016.02.019 | |
dc.relation | 24. Shukla T, Upmanyu N, Pandey SP, Gosh D. Chapter 1. Lipid nanocarriers [Internet].
Lipid Nanocarriers for Drug Targeting. Elsevier Inc.; 2018. 1–48 p. Available from:
http://dx.doi.org/10.1016/B978-0-12-813687-4.00001-3 | |
dc.relation | 25. Rawal SU, Patel MM. Chapter 2. Lipid nanoparticulate systems: Modern versatile
drug carriers [Internet]. Lipid Nanocarriers for Drug Targeting. Elsevier Inc.; 2018.
49–138 p. Available from: http://dx.doi.org/10.1016/B978-0-12-813687-4.00002-5 | |
dc.relation | 26. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al.
Dendrimers: Synthesis, applications, and properties. Vol. 9, Nanoscale Research
Letters. Springer New York LLC; 2014. p. 1–10. | |
dc.relation | 27. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY.
Microencapsulation techniques, factors influencing encapsulation efficiency. J
Microencapsul. 2010;27(3):187–97 | |
dc.relation | 28. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm.
2004;282(1–2):1–18. | |
dc.relation | 29. Zhang F, Fan J bing, Wang S. Interfacial Polymerization: From Chemistry to
Functional Materials. Angew Chemie - Int Ed. 2020;59(49):21840–56. | |
dc.relation | 30. Kwak H-S. Nano- and Microencapsulation. 2014. | |
dc.relation | 31. JONG; H. G. BDHRK. Coacervation (Partial miscibility in colloid systems).
(Preliminary Communication). 1929; Available from:
https://www.dwc.knaw.nl/DL/publications/PU00015781.pdf | |
dc.relation | 32. Ghosh SK. Functional Coatings and Microencapsulation: A General Perspective.
Funct Coatings By Polym Microencapsul. 2006;1–28 | |
dc.relation | 33. Zuidam NJ, Nedović VA. Encapsulation technologies for active food ingredients and
food processing. Encapsulation Technol Act Food Ingredients Food Process.
2010;1–400. | |
dc.relation | 34. Freitas S, Merkle HP, Gander B. Microencapsulation by solvent
extraction/evaporation: reviewing the state of the art of microsphere preparation
process technology. J Control Release [Internet]. 2005 Feb;102(2):313–32.
Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365904004845 | |
dc.relation | 35. Hallan SS, Kaur P, Kaur V, Mishra N, Vaidya B. Lipid polymer hybrid as emerging
tool in nanocarriers for oral drug delivery. Artif Cells, Nanomedicine Biotechnol.
2016;44(1):334–49. | |
dc.relation | 36. Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new
generation therapeutic delivery platform: A review. Eur J Pharm Biopharm [Internet].
2013;85(3 PART A):427–43. Available from:
http://dx.doi.org/10.1016/j.ejpb.2013.07.002 | |
dc.relation | 37. Dong W, Wang X, Liu C, Zhang X, Zhang X, Chen X, et al. Chitosan based polymerlipid hybrid nanoparticles for oral delivery of enoxaparin. Int J Pharm [Internet].
2018;547(1–2):499–505. Available from:
https://doi.org/10.1016/j.ijpharm.2018.05.076 | |
dc.relation | 38. Sengel-Turk CT, Gumustas M, Uslu B, Ozkan SA. A novel approach for drug
targeting: Core-shell type lipid-polymer hybrid nanocarriers. Core-shell type lipidpolymer hybrid nanocarriers. [Internet]. Design of Nanostructures for Theranostics
Applications. Elsevier Inc.; 2018. 69–107 p. Available from:
http://dx.doi.org/10.1016/B978-0-12-813669-0.00003-8 | |
dc.relation | 39. Jain A, Jain A, Gulbake A, Shilpi S, Hurkat P, Jain SK. Peptide and Protein Delivery
Using New Drug Delivery Systems. Crit Rev Ther Drug Carrier Syst.
2013;30(4):293–329. | |
dc.relation | 40. McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and
peptides using nanoparticle and microparticle systems: A review. Adv Colloid
Interface Sci [Internet]. 2018;253(2017):1–22. Available from:
https://doi.org/10.1016/j.cis.2018.02.002 | |
dc.relation | 41. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Biomedical
applications and current status of peptide and protein nanoparticulate delivery
systems. Nanomedicine Nanotechnology, Biol Med. 2006;2(2):53–65. | |
dc.relation | 42. Kovalainen M, Mönkäre J, Riikonen J, Pesonen U, Vlasova M, Salonen J. Novel
Delivery Systems for Improving the Clinical Use of Peptides. 2015;(July):541–61. | |
dc.relation | 43. Patarroyo ME, Romero P, Torres ML, Clavijo P, Moreno A, Martínez A, et al.
Induction of protective immunity against experimental infection with malaria using
synthetic peptides. Nature. 1988;328(6131):629–32. | |
dc.relation | 44. Lozano JM, Patarroyo ME. A rational strategy for a malarial vaccine development.
Microbes Infect. 2007;9(6):751–60. | |
dc.relation | 45. McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and
peptides using nanoparticle and microparticle systems: A review. Adv Colloid
Interface Sci [Internet]. 2018 Mar 1 [cited 2020 Mar 20];253:1–22. Available from:
https://www.sciencedirect.com/science/article/pii/S0001868617305171 | |
dc.relation | 46. Bolhassani A. Improvements in chemical carriers of proteins and peptides.
2019;43:437–52 | |
dc.relation | 47. Gasco AR. Biodegradable PLGA microspheres as a delivery system for malaria
synthetic peptide SPf66. 2001;19:4445–51. | |
dc.relation | 48. Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V. Lipid-polymer hybrid nanoparticles :
Synthesis strategies and biomedical applications. J Microbiol Methods [Internet].
2019;160(March):130–42. Available from:
https://doi.org/10.1016/j.mimet.2019.03.017 | |
dc.relation | 49. Samad A, Tariq M, Alam MI, Akhter MS. Microsphere: A novel drug delivery system. Colloids Drug Deliv. 2016;11(4):455–78 | |
dc.relation | 50. Acar H, Ting JM, Srivastava S, LaBelle JL, Tirrell M V. Molecular engineering
solutions for therapeutic peptide delivery. Chem Soc Rev [Internet].
2017;46(21):6553–69. Available from: http://dx.doi.org/10.1039/C7CS00536A | |
dc.relation | 51. Blasi P. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an
overview. J Pharm Investig [Internet]. 2019;49(4):337–46. Available from:
https://doi.org/10.1007/s40005-019-00453-z | |
dc.relation | 52. Hajavi J, Ebrahimian M, Sankian M, Khakzad MR, Hashemi M. Optimization of PLGA
formulation containing protein or peptide-based antigen: Recent advances. J Biomed
Mater Res - Part A. 2018;106(9):2540–51. | |
dc.relation | 53. Qi F, Wu J, Li H, Ma G. Recent research and development of PLGA/PLA
microspheres/nanoparticles: A review in scientific and industrial aspects. Front
Chem Sci Eng. 2019;13(1):14–27. | |
dc.relation | 54. Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: from traditional to cuttingedge techniques for poly lactide and poly lactide-co-glycolide microparticle
manufacturing. J Pharm Investig [Internet]. 2019;49(4):381–404. Available from:
https://doi.org/10.1007/s40005-019-00446-y | |
dc.relation | 55. Zhong H, Chan G, Hu Y, Hu H, Ouyang D. A comprehensive map of FDA-approved
pharmaceutical products. Pharmaceutics. 2018;10(4):1–19. | |
dc.relation | 56. Jain A, Kunduru KR, Basu A, Mizrahi B, Domb AJ, Khan W. Injectable formulations
of poly(lactic acid) and its copolymers in clinical use. Adv Drug Deliv Rev [Internet].
2016;107:213–27. Available from: http://dx.doi.org/10.1016/j.addr.2016.07.002 | |
dc.relation | 57. Igartua M, Hernández RM, Rosas JE, Patarroyo ME, Pedraz JL. γ-Irradiation effects
on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic
vaccine. Eur J Pharm Biopharm [Internet]. 2008 Jun 1 [cited 2020 Jan 23];69(2):519–
26. Available from:
https://www.sciencedirect.com/science/article/pii/S0939641107004201?via%3Dihu
b | |
dc.relation | 58. Carcaboso A., Hernández R., Igartua M, Rosas J., Patarroyo M., Pedraz J. Potent,
long lasting systemic antibody levels and mixed Th1/Th2 immune response after
nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine
[Internet]. 2004 Mar 29 [cited 2020 Jan 23];22(11–12):1423–32. Available from:
https://www.sciencedirect.com/science/article/pii/S0264410X03007679?via%3Dihu
b | |
dc.relation | 59. Yang YY, Chung TS, Ping Ng N. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by
double-emulsion solvent extraction/evaporation method. Biomaterials.
2001;22(3):231–41. | |
dc.relation | 60. D’Souza SS, Faraj JA, DeLuca PP. A Model-dependent Approach to Correlate
Accelerated With Real-Time Release From Biodegradable Microspheres. AAPS
PharmSciTech. 2005;6(4):553–64. | |
dc.relation | 61. Martinez NY, Andrade PF, Durán N, Cavalitto S. Development of double emulsion
nanoparticles for the encapsulation of bovine serum albumin. Colloids Surfaces B
Biointerfaces [Internet]. 2017;158:190–6. Available from:
http://dx.doi.org/10.1016/j.colsurfb.2017.06.033 | |
dc.relation | 62. Agrawal A, Rellegadla S, Jain S. Biomedical applications of PLGA particles
[Internet]. Materials for Biomedical Engineering: Nanomaterials-based Drug
Delivery. Elsevier Inc.; 2019. 87–129 p. Available from:
http://dx.doi.org/10.1016/B978-0-12-816913-1.00004-0 | |
dc.relation | 63. Note T. Measuring Zeta Potential – Laser Doppler Electrophoresis. Malvern Guid.
2015;1–2. | |
dc.relation | 64. Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J
Control Release [Internet]. 2016 Aug 10 [cited 2020 Apr 7];235:337–51. Available
from:
https://www.sciencedirect.com/science/article/abs/pii/S0168365916303832?via%3
Dihub | |
dc.relation | 65. Agrawal A, Rellegadla S, Jain S. Biomedical applications of PLGA particles. Mater
Biomed Eng [Internet]. 2019 Jan 1 [cited 2020 Mar 20];87–129. Available from:
https://www.sciencedirect.com/science/article/pii/B9780128169131000040 | |
dc.relation | 66. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro
technologies for delivering macromolecular therapeutics using poly(d,l-lactide-coglycolide) and its derivatives. J Control Release. 2008;125(3):193–209. | |
dc.relation | 67. Saez, Vivian; Hernández, José R; Peniche C. Microspheres as delivery systems for
the controlled release of peptides and proteins. Biotecnol Apl. 2007;24(2):108–16. | |
dc.relation | 68. Busatto C, Pesoa J, Helbling I, Luna J, Estenoz D. Effect of particle size,
polydispersity and polymer degradation on progesterone release from PLGA
microparticles: Experimental and mathematical modeling. Int J Pharm [Internet].
2018;536(1):360–9. Available from: http://dx.doi.org/10.1016/j.ijpharm.2017.12.006 | |
dc.relation | 69. Giteau A, Venier-julienne MC, Benoit JP. How to achieve sustained and complete
protein release from PLGA-based microparticles ? 2008;350:14–26. | |
dc.relation | 70. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release
in poly ( lactic-co-glycolic acid ) -based drug delivery systems — A review. Int J
Pharm [Internet]. 2011;415(1–2):34–52. Available from:
http://dx.doi.org/10.1016/j.ijpharm.2011.05.049 | |
dc.relation | 71. Gohla S, Ma K, Mu RH. Solid lipid nanoparticles ( SLN ) for controlled drug delivery
± a review of the state of the art. 2000;50. | |
dc.relation | 72. Gallarate M, Battaglia L, Peira E, Trotta M. Peptide-loaded solid lipid nanoparticles
prepared through coacervation technique. Int J Chem Eng. 2011;2011. | |
dc.relation | 73. Battaglia L, Trotta M, Gallarate M, Carlotti ME, Zara GP, Bargoni A. Solid lipid
nanoparticles formed by solvent-in-water emulsion-diffusion technique:
Development and influence on insulin stability. J Microencapsul. 2007;24(7):672–84. | |
dc.relation | 74. Bakliwal A, Bedse S, Talele S, Chaudhari G. LIPOSPHERES: A NOVEL
APPROACH FOR DRUG DELIVERY. Int J Res Pharm Nano Sci. 2015;4(5):298–
306. | |
dc.relation | 75. Cortesi R, Esposito E, Luca G, Nastruzzi C. Production of lipospheres as carriers for
bioactive compounds. Biomaterials. 2002;23(11):2283–94. | |
dc.relation | 76. Patil P, Harak K, Saudagar R. Solid Lipid Nanoparticles : A Review. 2019;9(3):525–
30. | |
dc.relation | 77. Mishra H, Mishra D, Mishra PK, Nahar M, Dubey V, Jain NK. Evaluation of solid lipid
nanoparticles as carriers for delivery of hepatitis b surface antigen for vaccination
using subcutaneous route. J Pharm Pharm Sci. 2010;13(4):495–509. | |
dc.relation | 78. Reithmeier H, Herrmann J, Göpferich A. Development and characterization of lipid
microparticles as a drug carrier for somatostatin. Int J Pharm. 2001;218(1–2):133–
43. | |
dc.relation | 79. KH R, SA S, SN D. Solid lipid nanoparticles- A review. Int J Appl Pharm. 2013;5(2):8–
18. | |
dc.relation | 80. Patel MR, San Martin-Gonzalez MF. Characterization of ergocalciferol loaded solid
lipid nanoparticles. J Food Sci. 2012;77(1):8–13. | |
dc.relation | 81. Prombutara P, Kulwatthanasal Y, Supaka N, Sramala I, Chareonpornwattana S.
Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial
activity. Food Control [Internet]. 2012;24(1–2):184–90. Available from:
http://dx.doi.org/10.1016/j.foodcont.2011.09.025 | |
dc.relation | 82. Pinho S. Viability of the microencapsulation of a casein hydrolysate in lipid
microparticles of cupuacu butter and stearic acid. Int J Food Stud. 2013;2(1):48–59. | |
dc.relation | 83. Health N and. Novata® BD PH: Product data sheet [Internet]. [cited 2020 Apr 16].
Available from: https://e-applications.basf-ag.de/data/basf-pcan/pds2/pds2-
web.nsf/CA7971BA2D4E244AC12573B100597C04/$File/NOVATA_r__BD_PH_E.
pdf | |
dc.relation | 84. Reithmeier H, Herrmann J, Gopferich A. Lipid microparticles as a parenteral
controlled release device for peptides. 2001;73:339–50. | |
dc.relation | 85. Qi C, Chen Y, Huang J, Jin Q. Preparation and characterization of catalase-loaded
solid lipid nanoparticles based on soybean phosphatidylcholine. 2012;(February
2011):787–93. | |
dc.relation | 86. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides
and proteins. Adv Drug Deliv Rev. 2007;59(6):478–90. | |
dc.relation | 87. Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and
applications. Adv Drug Deliv Rev [Internet]. 2012;64(SUPPL.):83–101. Available
from: http://dx.doi.org/10.1016/j.addr.2012.09.021 | |
dc.relation | 88. Gordillo-Galeano A, Ponce A, Mora-Huertas CE. Surface structural characteristics
of some colloidal lipid systems used in pharmaceutics. J Drug Deliv Sci Technol
[Internet]. 2021;62(January):102345. Available from:
https://doi.org/10.1016/j.jddst.2021.102345 | |
dc.relation | 89. Alexandridis P, Holzwarth JF, Hatton TA. Micellization of Poly(ethylene oxide)-
Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous
Solutions: Thermodynamics of Copolymer Association. Macromolecules.
1994;27(9):2414–25. | |
dc.relation | 90. Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, et al. Core –
shell-type lipid – polymer hybrid nanoparticles as a drug delivery platform.
Nanomedicine Nanotechnology, Biol Med [Internet]. 2013;9(4):474–91. Available
from: http://dx.doi.org/10.1016/j.nano.2012.11.010 | |
dc.relation | 91. Garg NK, Singh B, Kushwah V, Tyagi RK, Sharma R, Jain S, et al. The ligand (s)
anchored lipobrid nanoconstruct mediated delivery of methotrexate: An effective
approach in breast cancer therapeutics. Nanomedicine Nanotechnology, Biol Med
[Internet]. 2016;12(7):2043–60. Available from:
http://dx.doi.org/10.1016/j.nano.2016.05.008 | |
dc.relation | 92. Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipidpolymer hybrid nanoparticles as a nextgeneration drug delivery platform: State of the
art, emerging technologies, and perspectives. Int J Nanomedicine. 2019;14:1937–
52. | |
dc.relation | 93. Chaudhary Z, Ahmed N, .ur.Rehman A, Khan GM. Lipid polymer hybrid carrier systems for cancer targeting: A review. Int J Polym Mater Polym Biomater [Internet].
2018;67(2):86–100. Available from:
https://doi.org/10.1080/00914037.2017.1300900 | |
dc.relation | 94. Garg NK, Tandel N, Jadon RS, Tyagi RK, Katare OP. Lipid–polymer hybrid
nanocarrier-mediated cancer therapeutics: current status and future directions. Drug
Discov Today [Internet]. 2018;23(9):1610–21. Available from:
https://doi.org/10.1016/j.drudis.2018.05.033 | |
dc.relation | 95. Beija M, Salvayre R, Viguerie NL, Marty J. Colloidal systems for drug delivery : from
design to therapy. Trends Biotechnol [Internet]. 2012;30(9):485–96. Available from:
http://dx.doi.org/10.1016/j.tibtech.2012.04.008 | |
dc.relation | 96. Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, et al. Research
Paper A New Polymer Y Lipid Hybrid Nanoparticle System Increases Cytotoxicity of
Doxorubicin Against Multidrug-Resistant Human Breast Cancer Cells.
2006;23(7):1574–85. | |
dc.relation | 97. Wong HL, Bendayan R, Mike A, Yu X. Simultaneous delivery of doxorubicin and
GG918 ( Elacridar ) by new Polymer-Lipid Hybrid Nanoparticles ( PLN ) for enhanced
treatment of multidrug-resistant breast cancer. 2006;116:275–84. | |
dc.relation | 98. Li Y, Lun H, Shuhendler AJ, Rauth AM, Yu X. Molecular interactions , internal
structure and drug release kinetics of rationally developed polymer – lipid hybrid
nanoparticles. 2008;128:60–70. | |
dc.relation | 99. Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro
evaluation of core-shell type lipid-polymer hybrid nanoparticles for the delivery of
erlotinib in non-small cell lung cancer. Eur J Pharm Sci [Internet]. 2016;81:162–71.
Available from: http://dx.doi.org/10.1016/j.ejps.2015.10.021 | |
dc.relation | 100. Devrim B, Kara A, Vural İ, Bozkır A. Lysozyme-loaded lipid-polymer hybrid
nanoparticles: preparation, characterization and colloidal stability evaluation. Drug
Dev Ind Pharm. 2016;42(11):1865–76. | |
dc.relation | 101. Wu C, Baldursdottir S, Yang M, Mu H. Lipid and PLGA hybrid microparticles as
carriers for protein delivery. J Drug Deliv Sci Technol [Internet]. 2018;43:65–72.
Available from: https://doi.org/10.1016/j.jddst.2017.09.006 | |
dc.relation | 102. Bose RJC, Lee SH, Park H. Lipid polymer hybrid nanospheres encapsulating
antiproliferative agents for stent applications. J Ind Eng Chem [Internet].
2016;36:284–92. Available from: http://dx.doi.org/10.1016/j.jiec.2016.02.015 | |
dc.relation | 103. Li H, Teng Y, Sun J, Liu J. Inhibition of hemangioma growth using polymer–lipid
hybrid nanoparticles for delivery of rapamycin. Biomed Pharmacother [Internet]. 2017;95:875–84. Available from: https://doi.org/10.1016/j.biopha.2017.08.035 | |
dc.relation | 104. K.S. J, Snigdha SS, Kalarikkal N, Pothen LA, Thomas S. Gelatin modified lipid
nanoparticles for anti- viral drug delivery. Chem Phys Lipids [Internet]. 2017;207:24–
37. Available from: http://dx.doi.org/10.1016/j.chemphyslip.2017.07.002 | |
dc.relation | 105. Rose F, Wern JE, Gavins F, Andersen P, Follmann F, Foged C. A strong adjuvant
based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates
mucosal immune responses against the recombinant Chlamydia trachomatis fusion
antigen CTH522. J Control Release [Internet]. 2018;271(December 2017):88–97.
Available from: https://doi.org/10.1016/j.jconrel.2017.12.003 | |
dc.relation | 106. Li J, Ma YJ, Wang Y, Chen BZ, Guo XD, Zhang CY. Dual redox/pH-responsive hybrid
polymer-lipid composites: Synthesis, preparation, characterization and application in
drug delivery with enhanced therapeutic efficacy. Chem Eng J [Internet].
2018;341(November 2017):450–61. Available from:
https://doi.org/10.1016/j.cej.2018.02.055 | |
dc.relation | 107. Toragall V, Jayapala N, Vallikannan B. Chitosan-oleic acid-sodium alginate a hybrid
nanocarrier as an efficient delivery system for enhancement of lutein stability and
bioavailability. Int J Biol Macromol [Internet]. 2020;150:578–94. Available from:
https://doi.org/10.1016/j.ijbiomac.2020.02.104 | |
dc.relation | 108. Patel G, Thakur NS, Kushwah V, Patil MD, Nile SH, Jain S, et al. Mycophenolate coadministration with quercetin via lipid-polymer hybrid nanoparticles for enhanced
breast cancer management. Nanomedicine Nanotechnology, Biol Med [Internet].
2020;24:102147. Available from: https://doi.org/10.1016/j.nano.2019.102147 | |
dc.relation | 109. Thanki K, van Eetvelde D, Geyer A, Fraire J, Hendrix R, Van Eygen H, et al.
Mechanistic profiling of the release kinetics of siRNA from lipidoid-polymer hybrid
nanoparticles in vitro and in vivo after pulmonary administration. J Control Release
[Internet]. 2019;310(August):82–93. Available from:
https://doi.org/10.1016/j.jconrel.2019.08.004 | |
dc.relation | 110. Leng D, Thanki K, Fattal E, Foged C, Yang M. Engineering of budesonide-loaded
lipid-polymer hybrid nanoparticles using a quality-by-design approach. Int J Pharm
[Internet]. 2018;548(2):740–6. Available from:
https://doi.org/10.1016/j.ijpharm.2017.08.094 | |
dc.relation | 111. Bachhav SS, Dighe VD, Kotak D, Devarajan P V. Rifampicin Lipid-Polymer hybrid
nanoparticles (LIPOMER) for enhanced Peyer’s patch uptake. Int J Pharm [Internet].
2017;532(1):612–22. Available from:
http://dx.doi.org/10.1016/j.ijpharm.2017.09.040 | |
dc.relation | 112. Tahir N, Madni A, Balasubramanian V, Rehman M, Correia A, Kashif PM, et al.
Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int J Pharm [Internet].
2017;533(1):156–68. Available from:
http://dx.doi.org/10.1016/j.ijpharm.2017.09.061 | |
dc.relation | 113. Belletti D, Grabrucker AM, Pederzoli F, Menerath I, Vandelli MA, Tosi G, et al. Hybrid
nanoparticles as a new technological approach to enhance the delivery of cholesterol
into the brain. Int J Pharm. 2018;543(1–2):300–10. | |
dc.relation | 114. Yalcin TE, Ilbasmis-Tamer S, Takka S. Development and characterization of
gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using
central composite design. Int J Pharm [Internet]. 2018;548(1):255–62. Available
from: https://doi.org/10.1016/j.ijpharm.2018.06.063 | |
dc.relation | 115. Li C, Ge X, Wang L. Construction and comparison of different nanocarriers for codelivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical
cancer. Biomed Pharmacother [Internet]. 2017;86(27):628–36. Available from:
http://dx.doi.org/10.1016/j.biopha.2016.12.042 | |
dc.relation | 116. Zhang Y, Zhang P, Zhu T. Ovarian carcinoma biological nanotherapy: Comparison
of the advantages and drawbacks of lipid, polymeric, and hybrid nanoparticles for
cisplatin delivery. Biomed Pharmacother [Internet]. 2019;109(1):475–83. Available
from: https://doi.org/10.1016/j.biopha.2018.10.158 | |
dc.relation | 117. Ma P, Li T, Xing H, Wang S, Sun Y, Sheng X, et al. Local anesthetic effects of
bupivacaine loaded lipid-polymer hybrid nanoparticles: In vitro and in vivo evaluation.
Biomed Pharmacother [Internet]. 2017;89(October 2011):689–95. Available from:
http://dx.doi.org/10.1016/j.biopha.2017.01.175 | |
dc.relation | 18. Qiu J, Cai G, Liu X, Ma D. αvβ3 integrin receptor specific peptide modified,
salvianolic acid B and panax notoginsenoside loaded nanomedicine for the
combination therapy of acute myocardial ischemia. Biomed Pharmacother [Internet].
2017;96(89):1418–26. Available from: https://doi.org/10.1016/j.biopha.2017.10.086 | |
dc.relation | 119. Song Z, Shi Y, Han Q, Dai G. Endothelial growth factor receptor-targeted and
reactive oxygen species-responsive lung cancer therapy by docetaxel and
resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed Pharmacother
[Internet]. 2018;105(28):18–26. Available from:
https://doi.org/10.1016/j.biopha.2018.05.095 | |
dc.relation | 120. Yugui F, Wang H, Sun D, Zhang X. Nasopharyngeal cancer combination
chemoradiation therapy based on folic acid modified, gefitinib and yttrium 90 coloaded, core-shell structured lipid-polymer hybrid nanoparticles. Biomed
Pharmacother. 2019;114(27):0–6. | |
dc.relation | 121. Wang J, Su G, Yin X, Luo J, Gu R, Wang S, et al. Non-small cell lung cancer-targeted, redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a
second-generation irreversible epidermal growth factor inhibitor—Afatinib: In vitro
and in vivo evaluation. Biomed Pharmacother [Internet].
2019;120(September):109493. Available from:
https://doi.org/10.1016/j.biopha.2019.109493 | |
dc.relation | 122. Pang J, Xing H, Sun Y, Feng S, Wang S. Non-small cell lung cancer combination
therapy: Hyaluronic acid modified, epidermal growth factor receptor targeted, pH
sensitive lipid-polymer hybrid nanoparticles for the delivery of erlotinib plus
bevacizumab. Biomed Pharmacother [Internet]. 2020;125(December 2019):109861.
Available from: https://doi.org/10.1016/j.biopha.2020.109861 | |
dc.relation | 123. Seedat N, Kalhapure RS, Mocktar C, Vepuri S, Jadhav M, Soliman M, et al. Coencapsulation of multi-lipids and polymers enhances the performance of vancomycin
in lipid-polymer hybrid nanoparticles: In vitro and in silico studies. Mater Sci Eng C
[Internet]. 2016;61:616–30. Available from:
http://dx.doi.org/10.1016/j.msec.2015.12.053 | |
dc.relation | 124. Xue HY, Tran N, Wong HL. A biodistribution study of solid lipid-polyethyleneimine
hybrid nanocarrier for cancer RNAi therapy. Eur J Pharm Biopharm [Internet].
2016;108:68–75. Available from: http://dx.doi.org/10.1016/j.ejpb.2016.08.014 | |
dc.relation | 125. Zhao J, Zhang X, Sun X, Zhao M, Yu C, Lee RJ, et al. Dual-functional lipid polymeric
hybrid pH-responsive nanoparticles decorated with cell penetrating peptide and
folate for therapy against rheumatoid arthritis. Eur J Pharm Biopharm [Internet].
2018;130(June):39–47. Available from: https://doi.org/10.1016/j.ejpb.2018.06.020 | |
dc.relation | 126. Jansen MAA, Klausen LH, Thanki K, Lyngsø J, Skov Pedersen J, Franzyk H, et al.
Lipidoid-polymer hybrid nanoparticles loaded with TNF siRNA suppress
inflammation after intra-articular administration in a murine experimental arthritis
model. Eur J Pharm Biopharm [Internet]. 2019;142(November 2018):38–48.
Available from: https://doi.org/10.1016/j.ejpb.2019.06.009 | |
dc.relation | 127. Wu C, Luo X, Baldursdottir SG, Yang M, Sun X, Mu H. In vivo evaluation of solid lipid
microparticles and hybrid polymer-lipid microparticles for sustained delivery of
leuprolide. Eur J Pharm Biopharm [Internet]. 2019;142(July):315–21. Available from:
https://doi.org/10.1016/j.ejpb.2019.07.010 | |
dc.relation | 128. Zhang J, Hu J, Chan HF, Skibba M, Liang G, Chen M. iRGD decorated lipid-polymer
hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance
anti-hepatocellular carcinoma efficacy. Nanomedicine Nanotechnology, Biol Med
[Internet]. 2016;12(5):1303–11. Available from:
http://dx.doi.org/10.1016/j.nano.2016.01.017 | |
dc.relation | 129. Liu Y, Jiang Z, Hou X, Xie X, Shi J, Shen J, et al. Functional lipid polymeric nanoparticles for oral drug delivery: Rapid mucus penetration and improved cell entry and cellular transport. Nanomedicine Nanotechnology, Biol Med [Internet].
2019;21:102075. Available from: https://doi.org/10.1016/j.nano.2019.102075 | |
dc.relation | 130. Boushra M, Tous S, Fetih G, Xue HY, Wong HL. Development of bi-polymer lipid hybrid nanocarrier (BLN) to improve the entrapment and stability of insulin for efficient oral delivery. J Drug Deliv Sci Technol [Internet]. 2019;49(July 2018):632–
41. Available from: https://doi.org/10.1016/j.jddst.2019.01.007 | |
dc.relation | 131. Meraj Anjum M, Kanoujia J, Parashar P, Arya M, K. Yadav A, A. Saraf S. Evaluation of a Polymer-Lipid-Polymer System Utilising Hybrid Nanoparticles of Dapsone as a Novel Antiacne Agent. Curr Drug ther. 2016;11(2):86–100 | |
dc.relation | 132. Arya RKK, Juyal V. Polymer -Lipid Hybrid Nanoparticles for Brain Targeting Through Intranasal Delivery. J Drug Deliv Ther. 2017;7(4):129–36. | |
dc.relation | 133. Tahir N, Madni A, Kashif PM, Rehman M, Raza A, Khan MI, et al. Formulation and compatibility assessment of PLGA/lecithin based lipid-polymer hybrid nanoparticles containing doxorubicin. Acta Pol Pharm - Drug Res. 2017;74(5):1563–72. | |
dc.relation | 134. Tahir N, Madni A, Correia A, Rehman M, Balasubramanian V, Khan MM, et al. Lipidpolymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomedicine. 2019;14:4961–74. | |
dc.relation | 135. Zhao W, Zhang C, Li B, Zhang X, Luo X, Zeng C, et al. Lipid Polymer Hybrid
Nanomaterials for mRNA Delivery. Cell Mol Bioeng. 2018;11(5):397–406. | |
dc.relation | 136. Gu J, Chen Y, Tong L, Wang X, Yu D, Wu H. Astaxanthin-loaded polymer-lipid hybrid
nanoparticles (ATX-LPN): Assessment of potential otoprotective effects. J
Nanobiotechnology [Internet]. 2020;18(1):1–17. Available from:
https://doi.org/10.1186/s12951-020-00600-x | |
dc.relation | 137. Wang Q, Alshaker H, Böhler T, Srivats S, Chao Y, Cooper C, et al. Core shell lipidpolymer hybrid nanoparticles with combined docetaxel and molecular targeted
therapy for the treatment of metastatic prostate cancer. Sci Rep. 2017;7(1):1–8. | |
dc.relation | 138. Abdou EM, Fayed MAA, Helal D, Ahmed KA. Assessment of the hepatoprotective
effect of developed lipid-polymer hybrid nanoparticles (LPHNPs) encapsulating
naturally extracted β-Sitosterol against CCl4 induced hepatotoxicity in rats. Sci Rep
[Internet]. 2019;9(1):1–14. Available from: http://dx.doi.org/10.1038/s41598-019-
56320-2 | |
dc.relation | 139. Cao S, Slack SD, Levy CN, Hughes SM, Jiang Y, Yogodzinski C, et al. Hybrid
nanocarriers incorporating mechanistically distinct drugs for lymphatic CD4 + T cell
activation and HIV-1 latency reversal. Sci Adv. 2019;5(3):1–13. | |
dc.relation | 140. Garg NK, Tyagi RK, Sharma G, Jain A, Singh B, Jain S, et al. Functionalized LipidPolymer Hybrid Nanoparticles Mediated Codelivery of Methotrexate and
Aceclofenac: A Synergistic Effect in Breast Cancer with Improved Pharmacokinetics
Attributes. Mol Pharm. 2017;14(6):1883–97. | |
dc.relation | 141. Wang J, Zhang L, Chi H, Wang S. An alternative choice of lidocaine-loaded
liposomes: lidocaine-loaded lipid–polymer hybrid nanoparticles for local anesthetic
therapy. Drug Deliv. 2016;23(4):1254–60. | |
dc.relation | 142. Chen W, Guo M, Wang S. Anti prostate cancer using PEGylated bombesin
containing, cabazitaxel loading nano-sized drug delivery system. Drug Dev Ind
Pharm. 2016;42(12):1968–76. | |
dc.relation | 143. Küçüktürkmen B, Devrim B, Saka OM, Yilmaz Ş, Arsoy T, Bozkir A. Co-delivery of
pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid
nanoparticles and effects on glioblastoma cells. Drug Dev Ind Pharm.
2017;43(1):12–21 | |
dc.relation | 144. Shao Y, Luo W, Guo Q, Li X, Zhang Q, Li J. In vitro and in vivo effect of hyaluronic
acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nanosystem for leukemia therapy. Drug Des Devel Ther. 2019;13:2043–55. | |
dc.relation | 145. Wang J. Combination treatment of cervical cancer using folate-decorated, phsensitive, carboplatin and paclitaxel co-loaded lipid-polymer hybrid nanoparticles.
Drug Des Devel Ther. 2020;14:823–32. | |
dc.relation | 146. Yu Z, Chen F, Qi X, Dong Y, Zhang Y, Ge Z, et al. Epidermal growth factor receptor
aptamer-conjugated polymer-lipid hybrid nanoparticles enhance salinomycin
delivery to osteosarcoma and cancer stem cells. Exp Ther Med. 2018;15(2):1247–
56. | |
dc.relation | 147. Gao F, Zhang J, Fu C, Xie X, Peng F, You J, et al. iRGD-modified lipid–polymer
hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect
and tumor-targeting ability. Int J Nanomedicine. 2017;12:4147–62. | |
dc.relation | 148. Khan MM, Madni A, Torchilin V, Filipczak N, Pan J, Tahir N, et al. Lipid-chitosan
hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv [Internet].
2019;26(1):765–72. Available from:
https://doi.org/10.1080/10717544.2019.1642420 | |
dc.relation | 149. Sun S, Liang N, Yamamoto H, Kawashima Y, Cui F, Yan P. pH-sensitive poly(lactideco-glycolide) nanoparticle Composite Microcapsules for Oral Delivery of Insulin. Int
J Nanomedicine. 2015;10:3489–98. | |
dc.relation | 150. Tng DJH, Song P, Lin G, Soehartono AM, Yang G, Yang C, et al. Synthesis and
characterization of multifunctional hybrid-polymeric nanoparticles for drug delivery and multimodal imaging of cancer. Int J Nanomedicine. 2015;10:5771–86. | |
dc.relation | 151. Wu B, Lu ST, Deng K, Yu H, Cui C, Zhang Y, et al. MRI-guided targeting delivery of
doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles. Int J
Nanomedicine. 2017;12:6871–82. | |
dc.relation | 152. Li J, Xu W, Yuan X, Chen H, Song H, Wang B, et al. Polymer-lipid hybrid anti-HER
2 nanoparticles for targeted salinomycin delivery to HER 2-positive breast cancer
stem cells and cancer cells. Int J Nanomedicine. 2017;12:6909–21. | |
dc.relation | 153. Wu B, Lu ST, Zhang LJ, Zhuo RX, Xu HB, Huang SW. Codelivery of doxorubicin and
triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and
in vivo synergistic cancer treatment. Int J Nanomedicine. 2017;12:1853–62. | |
dc.relation | 154. Men W, Zhu P, Dong S, Liu W, Zhou K, Bai Y, et al. Fabrication of dual pH/redoxresponsive lipid-polymer hybrid nanoparticles for anticancer drug delivery and
controlled release. Int J Nanomedicine. 2019;14:8001–11. | |
dc.relation | 155. Hu Y, Hoerle R, Ehrich M, Zhang C. Engineering the lipid layer of lipid–PLGA hybrid
nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta
Biomater [Internet]. 2015 Dec;28(1):149–59. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S1742706115301252 | |
dc.relation | 156. Hu Y, Zhao Z, Ehrich M, Fuhrman K, Zhang C. In vitro controlled release of antigen
in dendritic cells using pH-sensitive liposome-polymeric hybrid nanoparticles.
Polymer (Guildf). 2015;80:171–9. | |
dc.relation | 157. Dehaini D, Fang RH, Luk BT, Pang Z, Hu CMJ, Kroll A V., et al. Ultra-small lipidpolymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale.
2016;8(30):14411–9. | |
dc.relation | 158. Hu Y, Smith D, Frazier E, Hoerle R, Ehrich M, Zhang C. The next-generation nicotine
vaccine: a novel and potent hybrid nanoparticle-based nicotine vaccine. Biomaterials
[Internet]. 2016 Nov;106(12):228–39. Available from:
https://linkinghub.elsevier.com/retrieve/pii/S014296121630415X | |
dc.relation | 159. Golan‐Paz S, Frizzell H, Woodrow KA. Cross‐Platform Comparison of Therapeutic
Delivery from Multilamellar Lipid‐Coated Polymer Nanoparticles. Macromol Biosci
[Internet]. 2019 Apr 27;19(4):1800362. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.201800362 | |
dc.relation | 160. Wei J, Sun J, Liu Y. Enhanced targeting of prostate cancer-initiating cells by
salinomycin-encapsulated lipid-PLGA nanoparticles linked with CD44 antibodies.
Oncol Lett. 2019;17(4):4024–33. | |
dc.relation | 161. Bhardwaj A, Mehta S, Yadav S, Singh SK, Grobler A, Goyal AK, et al. Pulmonary delivery of antitubercular drugs using spray-dried lipid–polymer hybrid nanoparticles.
Artif Cells, Nanomedicine Biotechnol. 2016;44(6):1544–55. | |
dc.relation | 162. Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, et al. Chitosan-functionalized lipid-polymer
hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect
in NAFLD. J Nanobiotechnology [Internet]. 2018;16(1):1–12. Available from:
https://doi.org/10.1186/s12951-018-0391-9 | |
dc.relation | 163. Yasar H, Biehl A, De Rossi C, Koch M, Murgia X, Loretz B, et al. Kinetics of mRNA
delivery and protein translation in dendritic cells using lipid-coated PLGA
nanoparticles. J Nanobiotechnology [Internet]. 2018;16(1):1–19. Available from:
https://doi.org/10.1186/s12951-018-0401-y | |
dc.relation | 164. Jin Z, Lv Y, Cao H, Yao J, Zhou J, He W, et al. Core-shell nanocarriers with high
paclitaxel loading for passive and active targeting. Nat Publ Gr [Internet].
2016;(February):1–10. Available from: http://dx.doi.org/10.1038/srep27559 | |
dc.relation | 165. Ishak RAH, Mostafa NM, Kamel AO. Stealth lipid polymer hybrid nanoparticles
loaded with rutin for effective brain delivery – comparative study with the gold
standard (Tween 80): Optimization, characterization and biodistribution. Drug Deliv
[Internet]. 2017;24(1):1874–90. Available from:
https://doi.org/10.1080/10717544.2017.1410263 | |
dc.relation | 166. Yan J, Wang Y, Zhang X, Liu S, Tian C, Wang H. Targeted nanomedicine for prostate
cancer therapy: docetaxel and curcumin co-encapsulated lipid–polymer hybrid
nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv.
2016;23(5):1757–62. | |
dc.relation | 167. Tawfik MA, Tadros MI, Mohamed MI. Lipomers (Lipid-polymer Hybrid Particles) of
Vardenafil Hydrochloride: a Promising Dual Platform for Modifying the Drug Release
Rate and Enhancing Its Oral Bioavailability. AAPS PharmSciTech. 2018;19(8):3650–
60. | |
dc.relation | 168. Thakur K, Sharma G, Singh B, Chhibber S, Katare OP. Nano-engineered lipidpolymer hybrid nanoparticles of fusidic acid: an investigative study on
dermatokinetics profile and MRSA-infected burn wound model. Drug Deliv Transl
Res. 2019;9(4):748–63. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Diseño y desarrollo de un sistema microparticular lipopolimérico para la administración de un péptido sintético modelo de naturaleza hidrofílica | |
dc.type | Trabajo de grado - Maestría | |