dc.contributorCatellanos Marquez, Nelson Jair
dc.contributorEstado Sólido y Catálisis Ambiental
dc.creatorMartinez Ruiz, Diana Camila
dc.date.accessioned2022-03-24T17:04:45Z
dc.date.available2022-03-24T17:04:45Z
dc.date.created2022-03-24T17:04:45Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81364
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLos aceites vegetales representan una de las fuentes renovables más prometedoras para la industria química debido a su disponibilidad mundial, bajo costo y funcionalidad incorporada en su estructura química para obtener compuestos de interés comercial como los epóxidos. En esta tesis de maestría, se evaluó una estructura organometálica de galio funcionalizada con centros activos de dioxo-molibdeno(VI) como catalizador en la epoxidación de aceite de soja empleando ter-butil-hidroperoxido como agente oxidante. Se estudió la influencia del tiempo de reacción, la temperatura y la concentración del agente oxidante y se demostró que la mayor selectividad de epóxido se obtuvo a 110 °C después de 4 horas de reacción (29% de conversión y 91% de selectividad) empleando una relación molar 200:100:1 (ter-butil-hidroperoxido: dobles enlaces: catalizador). La estabilidad de la estructura del catalizador después del proceso catalítico fue confirmada por espectroscopía infrarroja, difracción de rayos X en polvo, termogravimetría, microscopía SEM y espectroscopía EDS. Asimismo, los test de estabilidad demostraron que la actividad de la estructura metal-orgánica MoO2Cl2@COMOC-4 es conservada durante dos ciclos de uso en el proceso de valorización de aceites vegetales, con una disminución de su actividad en un tercer ciclo catalítico. (Texto tomado de la fuente)
dc.description.abstractVegetable oils represent one of the most promising renewable sources for the chemical industry due to their worldwide availability, low cost, and built-in functionality in their chemical structure to obtain commercially interesting compounds such as epoxides. In this work, a functionalized gallium metal-organic framework with active dioxo-molybdenum(VI) centers was evaluated as a catalyst in the epoxidation of soybean oil using ter-butyl-hydroperoxide as an oxidizing agent. The influence of the reaction time, temperature, and concentration of the oxidizing agent was studied and demonstrated that the highest epoxide selectivity was obtained at 110 °C after 4 hours of reaction (29% conversion and 91% selectivity) using a molar ratio 200:100:1 (ter-butyl-hydroperoxide: double bonds:catalyst). The stability of the metal-organic framework was confirmed by infrared spectroscopy, X-ray powder diffraction analysis, thermogravimetric analysis, SEM microscopy, and EDS spectroscopy analysis. The stability tests demonstrated that the catalyst could be reused for at least two cycles in the catalytic process for the recovery of vegetable oils with decreasing its activity in a third catalytic cycle.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationM.A.R. Meier, J.O. Metzger, U.S. Schubert, Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev. 36 (2007) 1788–1802. https://doi.org/10.1039/b703294c.
dc.relationU. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schäfer, Oils and fats as renewable raw materials in chemistry, Angew. Chemie - Int. Ed. 50 (2011) 3854–3871. https://doi.org/10.1002/anie.201002767.
dc.relationS.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective, Catal. Sci. Technol. 7 (2017) 3659–3675. https://doi.org/10.1039/c7cy00988g.
dc.relationP. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev. 41 (2012) 1538–1558. https://doi.org/10.1039/c1cs15147a.
dc.relationL. Faba, E. Díaz, S. Ordóñez, Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey, Renew. Sustain. Energy Rev. 51 (2015) 273–287. https://doi.org/10.1016/j.rser.2015.06.020.
dc.relationA. Corma, S. Iborra, A. Velty, Chemical Routes for the Transformation of Biomass into Chemicals, (2007). https://doi.org/10.1021/cr050989d.
dc.relationG. Knothe, Vegetable oils, Handb. Bioenergy Crop Plants. (2012) 793–810. https://doi.org/10.32741/fihb.19.vegetableoil.
dc.relationC. Bueno Ferrer, Bio-compuestos termoplásticos basados en aceites vegetales: estudio de su aplicabilidad al envasado de alimentos, (2012) 1.
dc.relationS.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective, Catal. Sci. Technol. 7 (2017) 3659–3675. https://doi.org/10.1039/C7CY00988G.
dc.relationS.Z. Erhan, S. Asadauskas, Lubricant basestocks from vegetable oils, Ind. Crops Prod. 11 (2000) 277–282. https://doi.org/10.1016/S0926-6690(99)00061-8.
dc.relationH. Wagner, R. Luther, T. Mang, Lubricant base fluids based on renewable raw materials: Their catalytic manufacture and modification, Appl. Catal. A Gen. 221 (2001) 429–442. https://doi.org/10.1016/S0926-860X(01)00891-2.
dc.relationH. Hosney, B. Nadiem, I. Ashour, I. Mustafa, A. El-Shibiny, Epoxidized vegetable oil and bio-based materials as PVC plasticizer, J. Appl. Polym. Sci. 135 (2018) 1–12. https://doi.org/10.1002/app.46270.
dc.relationP. Karmalm, T. Hjertberg, A. Jansson, R. Dahl, Thermal stability of poly(vinyl chloride) with epoxidised soybean oil as primary plasticizer, Polym. Degrad. Stab. 94 (2009) 2275–2281. https://doi.org/10.1016/j.polymdegradstab.2009.07.019.
dc.relationP.G. Nihul, S.T. Mhaske, V. V. Shertukde, Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC), Iran. Polym. J. (English Ed. 23 (2014) 599–608. https://doi.org/10.1007/s13726-014-0254-7.
dc.relationW. He, G. Zhu, Y. Gao, H. Wu, Z. Fang, K. Guo, Green plasticizers derived from epoxidized soybean oil for poly (vinyl chloride): Continuous synthesis and evaluation in PVC films, Chem. Eng. J. 380 (2020) 122532. https://doi.org/10.1016/j.cej.2019.122532.
dc.relationA. Guo, W. Zhang, Z.S. Petrovic, Structure-property relationships in polyurethanes derived from soybean oil, J. Mater. Sci. 41 (2006) 4914–4920. https://doi.org/10.1007/s10853-006-0310-6.
dc.relationC. Zhang, T.F. Garrison, S.A. Madbouly, M.R. Kessler, Recent advances in vegetable oil-based polymers and their composites, Elsevier B.V., 2017. https://doi.org/10.1016/j.progpolymsci.2016.12.009.
dc.relationI. Javni, Z.S. Petrović, A. Guo, R. Fuller, Thermal stability of polyurethanes based on vegetable oils, J. Appl. Polym. Sci. 77 (2000) 1723–1734. https://doi.org/10.1002/1097-4628(20000822)77:8<1723::AID-APP9>3.0.CO;2-K.
dc.relationM.A. Sawpan, Polyurethanes from vegetable oils and applications: a review, J. Polym. Res. 25 (2018). https://doi.org/10.1007/s10965-018-1578-3.
dc.relationA. Köckritz, A. Martin, Oxidation of unsaturated fatty acid derivatives and vegetable oils, Eur. J. Lipid Sci. Technol. 110 (2008) 812–824. https://doi.org/10.1002/ejlt.200800042.
dc.relationT.W. Findley, D. Swern, J.T. Scanlan, Epoxidation of Unsaturated Fatty Materials with Peracetic Acid in Glacial Acetic Acid Solution, J. Am. Chem. Soc. 67 (1945) 412–414. https://doi.org/10.1021/ja01219a018.
dc.relationR. Mungroo, N.C. Pradhan, V. V. Goud, A.K. Dalai, Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin, JAOCS, J. Am. Oil Chem. Soc. 85 (2008) 887–896. https://doi.org/10.1007/s11746-008-1277-z.
dc.relationA. Campanella, M.A. Baltanás, M.C. Capel-Sánchez, J.M. Campos-Martín, J.L.G. Fierro, Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO2 catalyst, Green Chem. 6 (2004) 330–334. https://doi.org/10.1039/B404975F.
dc.relationX. Zhang, J. Burchell, N.S. Mosier, Enzymatic Epoxidation of High Oleic Soybean Oil, (2018). https://doi.org/10.1021/acssuschemeng.8b00884.
dc.relationA.E. Gerbase, J.R. Gregório, M. Martinelli, M.C. Brasil, A.N.F. Mendes, Epoxidation of soybean oil by the methyltrioxorhenium-CH2Cl2 / H2O2 catalytic biphasic system, J. Am. Oil Chem. Soc. 79 (2002) 179–181. https://doi.org/10.1007/s11746-002- 0455-0.
dc.relationZ. Chen, G. Yin, The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations, Chem. Soc. Rev. 44 (2015) 1083–1100. https://doi.org/10.1039/C4CS00244J.
dc.relationK.A. Joergensen, K.A. Jørgensen, K.A. Joergensen, Transition-Metal-Catalyzed Epoxidations, Chem. Rev. 89 (1989) 431–458. https://doi.org/10.1021/cr00093a001.
dc.relationJ.M. Brégeault, Transition-metal complexes for liquid-phase catalytic oxidation: Some aspects of industrial reactions and of emerging technologies, J. Chem. Soc. Dalt. Trans. 3 (2003) 3289–3302. https://doi.org/10.1039/b303073n.
dc.relationT. Punniyamurthy, S. Velusamy, J. Iqbal, Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen, (2005). https://doi.org/10.1021/cr050523v.
dc.relationA. Ali, W. Akram, H.Y. Liu, Reactive cobalt-oxo complexes of tetrapyrrolic macrocycles and N-based ligand in oxidative transformation reactions, Molecules. 24 (2019). https://doi.org/10.3390/molecules24010078.
dc.relationR.A. Sheldon, I. Arends, U. Hanefeld, Wiley InterScience (Online service), Green chemistry and catalysis, Wiley-VCH, 2007.
dc.relationK.B. Sharpless, T.R. Verhoeven, Metal-catalyzed, highly selective oxygenations of olefins and acetylenes with tert-butyl hydroperoxide. Practical considerations and mechanisms, Aldrichim. Acta. 12 (1979) 63–74.
dc.relationJ. Sobczak, J.J. Ziółkowski, The catalytic epoxidation of olefins with organic hydroperoxides, J. Mol. Catal. 13 (1981) 11–42. https://doi.org/10.1016/0304-5102(81)85028-6.
dc.relationA.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater. 1 (2016) 1–15. https://doi.org/10.1038/natrevmats.2015.18.
dc.relationJ.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks: A new class of porous materials, Microporous Mesoporous Mater. 73 (2004) 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034.
dc.relationX.L. Ni, J. Liu, Y.Y. Liu, K. Leus, H. Depauw, A.J. Wang, P. Van Der Voort, J. Zhang, Y.K. Hu, Synthesis, characterization and catalytic performance of Mo based metalorganic frameworks in the epoxidation of propylene by cumene hydroperoxide, Chinese Chem. Lett. 28 (2017) 1057–1061. https://doi.org/10.1016/j.cclet.2017.01.020.
dc.relationY.Y. Liu, K. Leus, T. Bogaerts, K. Hemelsoet, E. Bruneel, V. Van Speybroeck, P. Van Der Voort, Bimetallic-organic framework as a zero-leaching catalyst in the aerobic oxidation of cyclohexene, ChemCatChem. 5 (2013) 3657–3664. https://doi.org/10.1002/cctc.201300529.
dc.relationK. Leus, Y.Y. Liu, M. Meledina, S. Turner, G. Van Tendeloo, P. Van Der Voort, A MoVI grafted Metal Organic Framework: Synthesis, characterization and catalytic investigations, J. Catal. 316 (2014) 201–209. https://doi.org/10.1016/j.jcat.2014.05.019.
dc.relationM. El-Hamidi, F.A. Zaher, Production of vegetable oils in the world and in Egypt: an overview, Bull. Natl. Res. Cent. 42 (2018). https://doi.org/10.1186/s42269-018-0019-0.
dc.relationP. Quosai, A. Anstey, A.K. Mohanty, M. Misra, Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and coffee chaff: For polymer composite applications, R. Soc. Open Sci. 5 (2018). https://doi.org/10.1098/rsos.171970.
dc.relationEuropean Commission, Oilseeds and Protein Crops market situation, (2021). https://circabc.europa.eu/sd/a/215a681a-5f50-4a4b-a953-e8fc6336819c/oilseedsmarketsituation. pdf.
dc.relationA. Demirbas, S. Karslioglu, Biodiesel production facilities from vegetable oils and animal fats, Energy Sources, Part A Recover. Util. Environ. Eff. 29 (2007) 133–141. https://doi.org/10.1080/009083190951320.
dc.relationT. Issariyakul, A.K. Dalai, Biodiesel from vegetable oils, Renew. Sustain. Energy Rev. 31 (2014) 446–471. https://doi.org/10.1016/j.rser.2013.11.001.
dc.relationB.K. Barnwal, M.P. Sharma, Prospects of biodiesel production from vegetable oils in India, Renew. Sustain. Energy Rev. 9 (2005) 363–378. https://doi.org/10.1016/j.rser.2004.05.007.
dc.relationFrank Gunstone, Vegetable Oils in Food Technology: Composition, Properties and Uses, Second edi, 2011. https://books.google.es/books?hl=es&lr=&id=lnk2tdo8_P4C&oi=fnd&pg=PR11&dq=vegetable+oils+food&ots=2_Ghve8LXI&sig=_l7fNkow-tZrLTxaZMg-jsDCos#v=onepage&q=vegetable oils food&f=false.
dc.relationR.A. Pineda Beltran, Uso de la oxidación catalítica del acetaldehído en la epoxidación de aceites vegetales, 2018.
dc.relationA. Enferadi Kerenkan, F. Béland, T.O. Do, Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: A review and perspective, Catal. Sci. Technol. 6 (2016) 971–987. https://doi.org/10.1039/c5cy01118c.
dc.relationL.L. Monteavaro, E.O. da Silva, A.P.O. Costa, D. Samios, A.E. Gerbase, C.L. Petzhold, Polyurethane networks from formiated soy polyols: synthesis and mechanical characterization, J. Am. Oil Chem. Soc. 82 (2005) 365–371.
dc.relationP.S. Zade, M.B. Mandake, S. Walke, N. Mumbai, Review: Epoxidation of Vegetable oils, 5 (2018).
dc.relationM. chao Kuo, T. chuan Chou, Kinetics and Mechanism of the Catalyzed Epoxidation of Oleic Acid with Oxygen in the Presence of Benzaldehyde, Ind. Eng. Chem. Res. 26 (1987) 277–284. https://doi.org/10.1021/ie00062a016.
dc.relationT. Saurabh, M. Patnaik, S.L. Bhagt, V.C. Renge, Epoxidation of vegetable oils: a review, Int. J. Adv. Eng. Technol. 2 (2011) 491–501.
dc.relationL. Alejandro, Á. Aurora, L.A. Boyacá, Á.A. Beltrán, Soybean epoxide production with in situ peracetic acid using homogeneous catalysis, Ing. e Investig. 30 (2010) 136–140.
dc.relationK. Cruz, J. Montañez, C. Aguilar, A. Sáenz, I. Gámez, E. Flores, Obtención De Aceite Epoxidado De Semilla De Algodón Utilizando Un Ácido Débil, Av. En Ciencias e Ing. 6 (2015) 11–18. http://www.redalyc.org/articulo.oa?id=323643356002.
dc.relationT. Vlček, Z.S. Petrović, Optimization of the chemoenzymatic epoxidation of soybean oil, JAOCS, J. Am. Oil Chem. Soc. 83 (2006) 247–252. https://doi.org/10.1007/s11746-006-1200-4.
dc.relationS. Sun, X. Ke, L. Cui, G. Yang, Y. Bi, F. Song, X. Xu, Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology, Ind. Crops Prod. 33 (2011) 676–682. https://doi.org/10.1016/j.indcrop.2011.01.002.
dc.relationK. Konakom, P. Kittisupakorn, I.M. Mujtaba, Chemoenzymatic epoxidation of karanja oil: an alternative to chemical epoxidation, 2011 Int. Symp. Adv. Control Ind. Process. (2011) 361–377. https://doi.org/10.1002/apj.
dc.relationJ. Wu, P. Jiang, X. Qin, Y. Ye, Y. Leng, Peroxopolyoxotungsten-based ionic hybrid as a highly efficient recyclable catalyst for epoxidation of vegetable oil with H2O2, Bull. Korean Chem. Soc. 35 (2014) 1675–1680. https://doi.org/10.5012/bkcs.2014.35.6.1675.
dc.relationW. Cheng, G. Liu, X. Wang, X. Liu, L. Jing, Kinetics of the epoxidation of soybean oil with H2O2 catalyzed by phosphotungstic heteropoly acid in the presence of polyethylene glycol, Eur. J. Lipid Sci. Technol. 117 (2015) 1185–1191. https://doi.org/10.1002/ejlt.201400614.
dc.relationJ. Jiang, Y. Zhang, L. Yan, P. Jiang, Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes, Appl. Surf. Sci. 258 (2012) 6637–6642. https://doi.org/10.1016/j.apsusc.2012.03.095.
dc.relationM. Farias, M. Martinelli, D.P. Bottega, Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex, Appl. Catal. A Gen. 384 (2010) 213–219. https://doi.org/10.1016/j.apcata.2010.06.038.
dc.relationM.R. Janković, S. V. Sinadinović-Fišer, O.M. Govedarica, Kinetics of the epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion-exchange resin, Ind. Eng. Chem. Res. 53 (2014) 9357–9364. https://doi.org/10.1021/ie500876a.
dc.relationR. Turco, C. Pischetola, R. Tesser, S. Andini, M. Di Serio, New findings on soybean nd methylester epoxidation with alumina as the catalyst, RSC Adv. 6 (2016) 31647–31652. https://doi.org/10.1039/c6ra01780k.
dc.relationS. Sankaranarayanan, A. Sharma, K. Srinivasan, CoCuAl layered double hydroxides-Efficient solid catalysts for the preparation of industrially important fatty epoxides, Catal. Sci. Technol. 5 (2015) 1187–1197. https://doi.org/10.1039/c4cy01138d.
dc.relationX. Ye, P. Jiang, P. Zhang, Y. Dong, C. Jia, X. Zhang, H. Xu, Novel Ti and Mn mesoporous molecular sieves: Synthesis, characterization and catalytic activity in the epoxidation of vegetable oil, Catal. Letters. 137 (2010) 88–93. https://doi.org/10.1007/s10562-010-0334-z.
dc.relationM. Farias, M. Martinelli, G.K. Rolim, Immobilized molybdenum acetylacetonate complex on montmorillonite K-10 as catalyst for epoxidation of vegetable oils, Appl. Catal. A Gen. 403 (2011) 119–127. https://doi.org/https://doi.org/10.1016/j.apcata.2011.06.021.
dc.relationJ. Manjanna, T. Kozaki, N. Kozai, S. Sato, A new method for Fe(II)-montmorillonite preparation using Fe(II)-nitrilotriacetate complex, J. Nucl. Sci. Technol. 44 (2007) 929–932. https://doi.org/10.1080/18811248.2007.9711331.
dc.relationR.A. Sheldon, Aspects of homogeneous catalysis, Vol. 4 (1981) 3–64.
dc.relationO. S.Ted, Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, (n.d.). https://books.google.com.co/books?hl=es&lr=&id=xJpkegngTqAC&oi=fnd&pg=PP1 &dq=S.T.+Oyama,+Mechanisms+in+Homogeneous+and+Heterogeneous+Epoxida tion+Catalysis,+Elsevier,+Burlington,+MA,+2008.+p.+xix.&ots=sgEbCYYU_Y&sig=j VINSnYsWlBG_xCUJIWdrTUQu8k&redir_esc=y# (accessed October 8, 2019).
dc.relationY. Shen, P. Jiang, P.T. Wai, Q. Gu, W. Zhang, Recent progress in application of molybdenum-based catalysts for epoxidation of alkenes, Catalysts. 9 (2019). https://doi.org/10.3390/catal9010031.
dc.relationW. Fan, D. Shi, B. Feng, Immobilizing of oxo-molybdenum complex on cross-linked copolymer and its catalytic activity for epoxidation reactions, Catal. Commun. 74 (2016) 1–4. https://doi.org/10.1016/j.catcom.2015.10.022.
dc.relationY. Shen, P. Jiang, J. Zhang, G. Bian, P. Zhang, Y. Dong, W. Zhang, Highly dispersed molybdenum incorporated hollow mesoporous silica spheres as an efficient catalyst on epoxidation of olefins, Mol. Catal. 433 (2017) 212–223. https://doi.org/10.1016/j.mcat.2016.12.011.
dc.relationM. Masteri-Farahani, S. Mirshekar, Covalent functionalization of graphene oxide with molybdenum-carboxylate complexes: New reusable catalysts for the epoxidation of olefins, Colloids Surfaces A Physicochem. Eng. Asp. 538 (2018) 387–392. https://doi.org/10.1016/j.colsurfa.2017.11.025.
dc.relationG. Bian, P. Jiang, K. Jiang, Y. Shen, L. Kong, L. Hu, Y. Dong, W. Zhang, MoO2 Formed on Mesoporous Graphene Oxide: Efficient and Stable Catalyst for Epoxidation of Olefins, Aust. J. Chem. 70 (2017) 1039–1047. https://doi.org/10.1071/CH17089.
dc.relationH. Martínez, M.F. Cáceres, F. Martínez, E.A. Páez-Mozo, S. Valange, N.J. Castellanos, D. Molina, J. Barrault, H. Arzoumanian, Photo-epoxidation of cyclohexene, cyclooctene and 1-octene with molecular oxygen catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′-bipyridine) molybdenum(VI) grafted on mesoporous TiO2, J. Mol. Catal. A Chem. 423 (2016) 248–255. https://doi.org/10.1016/J.MOLCATA.2016.07.006.
dc.relationG. Bian, P. Jiang, F. Wang, Y. Shen, K. Jiang, L. Liu, W. Zhang, Light driven epoxidation of olefins using a graphene oxide/g-C3N4 supported Mo (salen) complex, New J. Chem. 42 (2018) 85–90. https://doi.org/10.1039/c7nj02894f.
dc.relationM. Mirzaee, B. Bahramian, J. Gholizadeh, A. Feizi, R. Gholami, Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes, Chem. Eng. J. 308 (2017) 160–168. https://doi.org/10.1016/j.cej.2016.09.055.
dc.relationM. Mirzaee, B. Bahramian, M. Shahraki, H. Moghadam, A. Mirzaee, Molybdenum Containing Catalysts Grafted on Functionalized Hydrous Zirconia Nano-particles for Epoxidation of Alkenes, Catal. Letters. 148 (2018) 3003–3017. https://doi.org/10.1007/s10562-018-2521-2.
dc.relationW.F. Brill, N. Indictor, Reactions of t-Butyl Hydroperoxide with Olefins, J. Org. Chem. 29 (1964) 710–713. https://doi.org/10.1021/jo01026a045.
dc.relationK. John, Epoxidation process, (1967).
dc.relationA.O. Chong, K.B. Sharpless, On the Mechanism of the Molybdenum and Vanadium Catalyzed Epoxidation of Olefins by Alkyl Hydroperoxides, J. Org. Chem. 42 (1977) 1587–1590. https://doi.org/10.1021/jo00429a024.
dc.relationP. Chaumette, H. Mimoun, L. Saussine, J. Fischer, A. Mitschler, Peroxo and alkylperoxidic molybdenum(VI) complexes as intermediates in the epoxidation of olefins by alkyl hydroperoxides, J. Organomet. Chem. 250 (1983) 291–310. https://doi.org/10.1016/0022-328X(83)85059-1.
dc.relationR. Hille, Molybdenum and tungsten in biology, Trends Biochem. Sci. 27 (2002) 360–367. https://doi.org/10.1016/S0968-0004(02)02107-2.
dc.relationR. Hille, The Mononuclear Molybdenum Enzymes.pdf, Chem. Rev. 96 (1996) 2757–2816.
dc.relationK. Heinze, Bioinspired functional analogs of the active site of molybdenum enzymes: Intermediates and mechanisms, Coord. Chem. Rev. 300 (2015) 121–141. https://doi.org/10.1016/j.ccr.2015.04.010.
dc.relationY. He, B. Chen, Metal-Organic Frameworks: Frameworks Containing Open Sites, Encycl. Inorg. Bioinorg. Chem. (2014) 1–23. https://doi.org/10.1002/9781119951438.eibc2213.
dc.relationF. Gándara, Metal-organic frameworks: nuevos materiales con espacios llenos de posibilidades, An. La Real Soc. Española Química. 108 (2012) 190–196.
dc.relationT. Rios Carvajal, Síntesis y caracterización de redes metal---orgánicas (MOF) a partir de ligantes orgánicos tipo fenilenvinileno modificados con grupos electrodonores, 2014.
dc.relationK. Leus, I. Muylaert, V. Van Speybroeck, G.B. Marin, P. Van Der Voort, A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity, Elsevier B.V., 2010. https://doi.org/10.1016/S0167- 2991(10)75053-9.
dc.relationM. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, A new photoactive crystalline highly porous titanium(IV) dicarboxylate, J. Am. Chem. Soc. 131 (2009) 10857–10859. https://doi.org/10.1021/ja903726m.
dc.relationJ. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev. 43 (2014) 6011–6061. https://doi.org/10.1039/c4cs00094c.
dc.relationJ. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450–1459. https://doi.org/10.1039/b807080f.
dc.relationZ.M. Rojas, Estructuras metal orgánicas de titanio (MIL-125 y MIL-125-NH 2 ): síntesis, caracterización y evaluación de la actividad en procesos fotocatalíticos, 2017.
dc.relationK. Leus, I. Muylaert, M. Vandichel, G.B. Marin, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, The remarkable catalytic activity of the saturated metal organic framework V-MIL-47 in the cyclohexene oxidation, Chem. Commun. 46 (2010) 5085–5087. https://doi.org/10.1039/c0cc01506g.
dc.relationT.U. Yoon, S. Ahn, A.R. Kim, J.M. Notestein, O.K. Farha, Y.S. Bae, Cyclohexene epoxidation with H2O2 in the vapor and liquid phases over a vanadium-based metalorganic framework, Catal. Sci. Technol. 10 (2020) 4580–4585. https://doi.org/10.1039/d0cy00833h.
dc.relationI.D. Ivanchikova, J.S. Lee, N. V. Maksimchuk, A.N. Shmakov, Y.A. Chesalov, A.B. Ayupov, Y.K. Hwang, C.H. Jun, J.S. Chang, O.A. Kholdeeva, Highly selective H2O2-based oxidation of alkylphenols to p-benzoquinones over MIL-125 metal-organic frameworks, Eur. J. Inorg. Chem. 373 (2014) 132–139. https://doi.org/10.1002/ejic.201301098.
dc.relationH.G.T. Nguyen, L. Mao, A.W. Peters, C.O. Audu, Z.J. Brown, O.K. Farha, J.T. Hupp, S.T. Nguyen, Comparative study of titanium-functionalized UiO-66: Support effect on the oxidation of cyclohexene using hydrogen peroxide, Catal. Sci. Technol. 5 (2015) 4444–4451. https://doi.org/10.1039/c5cy00825e.
dc.relationS. Abednatanzi, A. Abbasi, M. Masteri-Farahani, Post-synthetic modification of nanoporous Cu3(BTC)2 metal-organic framework via immobilization of a molybdenum complex for selective epoxidation, J. Mol. Catal. A Chem. 399 (2015) 10–17. https://doi.org/10.1016/j.molcata.2015.01.014.
dc.relationASTM E200-16, Standard Practice for Preparation, Standardization, and Storage of Standard and Reagent Solutions for Chemical Analysis, (2016). www.astm.org.
dc.relationPanReac AppliChem, Panreac Catálogo General. Reactivos para Análisis y Productos para Química Fina, (n.d.) 594. http://www.ictsl.net/downloads/catpanreac2012.pdf.
dc.relationG.G. Shimamoto, J.A. Aricetti, M. Tubino, A Simple, Fast, and Green Titrimetric Method for the Determination of the Iodine Value of Vegetable Oils Without Wijs Solution (ICl), Food Anal. Methods. 9 (2016) 2479–2483. https://doi.org/10.1007/s12161-016-0401-1.
dc.relationA. Of, C. Fats, Oxirane Oxygen, AOCS Off. Method CD 9-57. (1997) 8–9.
dc.relationY.Y. Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A.M. Kaczmarek, D. Poelman, M. Waroquier, V. Van Speybroeck, R. Van Deun, P. Van Der Voort, Bipyridine-based nanosized metal-organic framework with tunable luminescence by a postmodification with Eu(III): An experimental and theoretical study, J. Phys. Chem. C. 117 (2013) 11302–11310. https://doi.org/10.1021/jp402154q.
dc.relationM. Tubino, J.A. Aricetti, A green potentiometric method for the determination of the iodine number of biodiesel, Fuel. 103 (2013) 1158–1163. https://doi.org/10.1016/j.fuel.2012.10.011.
dc.relationW. Xia, S.M. Budge, M.D. Lumsden, New 1H NMR-Based Technique to Determine Epoxide Concentrations in Oxidized Oil, J. Agric. Food Chem. 63 (2015) 5780–5786. https://doi.org/10.1021/acs.jafc.5b01719.
dc.relationY. Miyake, K. Yokomizo, N. Matsuzaki, Rapid Determination of Iodine Value by 1H Nuclear Magnetic Resonance Spectroscopy, (n.d.) 15–19.
dc.relationH.A.J. Aerts, P.A. Jacobs, Epoxide Yield Determination of Oils and Fatty Acid Methyl Esters Using 1 H NMR, (2004).
dc.relationM. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.
dc.relationK.S.W. Sing, F. Rouquerol, J. Rouquerol, P. Llewellyn, Assessment of Mesoporosity, 2013. https://doi.org/10.1016/B978-0-08-097035-6.00008-5.
dc.relationI. Union, O.F. Pure, A. Chemistry, Recommendations for the characterization of porous solids (Technical Report), Pure Appl. Chem. 66 (1994) 1739–1758. https://doi.org/10.1351/pac199466081739.
dc.relationF. Carson, S. Agrawal, M. Gustafsson, A. Bartoszewicz, F. Moraga, X. Zou, B. Martín-Matute, Ruthenium Complexation in an Aluminium Metal–Organic Framework and Its Application in Alcohol Oxidation Catalysis, Chem. – A Eur. J. 18 (2012) 15337–15344. https://doi.org/10.1002/CHEM.201200885.
dc.relationM.L. D’Amico, K. Rasmussen, D. Sisneros, C. Magnussen, H. Wade, J.G. Russell, L.L. Borer, Epoxidation of cyclic olefins using dimeric molybdenum(VI) catalysts, Inorganica Chim. Acta. 191 (1992) 167–170. https://doi.org/10.1016/S0020- 1693(00)93456-X.
dc.relationH. Arzoumanian, Molybdenum-oxo chemistry in various aspects of oxygen atom transfer processes, Coord. Chem. Rev. 178–180 (1998) 191–202. https://doi.org/10.1016/s0010-8545(98)00056-3.
dc.relationA. Prazeres, A.M. Santos, M.J. Calhorda, C.C. Roma, I.S. Gonáalves, Octahedral Bipyridine and Bipyrimidine Dioxomolybdenum (VI) Complexes: Characterization, Application in Catalytic Epoxidation, and Density Functional Mechanistic Study, (2002) 2370–2383.
dc.relationM. Salavati-niasari, M. Bazarganipour, Effect of single-wall carbon nanotubes on direct epoxidation of cyclohexene catalyzed by new derivatives of cis-dioxomolybdenum (VI) complexes with bis-bidentate Schiff-base containing aromatic nitrogen – nitrogen linkers, 278 (2007) 173–180. https://doi.org/10.1016/j.molcata.2007.09.009.
dc.relationG. Wang, G. Chen, R.L. Luck, Z. Wang, D.G. Evans, X. Duan, New molybdenum (VI) catalysts for the epoxidation of cyclohexene : synthesis , reactivity and crystal structures, 357 (2004) 3223–3229. https://doi.org/10.1016/j.ica.2004.03.030.
dc.relationM.G. Lindley, The impact of food processing on antioxidants in vegetable oils , fruits and vegetables, 9 (1998) 336–340.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleReacciones de epoxidación de aceite de soja catalizadas por un sólido de dioxomolibdeno (VI) tipo MOF
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución