dc.contributorPérez Flórez, Alejandro
dc.contributorRamírez Franco, José Herney
dc.contributorInvestigación en Tecnología Ambiental y de Materiales
dc.creatorMeneses Madroñero, Paula Stefania
dc.date.accessioned2022-08-30T16:51:49Z
dc.date.available2022-08-30T16:51:49Z
dc.date.created2022-08-30T16:51:49Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82198
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl desarrollo de nuevas tecnologías, permiten el control de sustancias químicas peligrosas presentes en los efluentes de diversas industrias o recintos educativos, cuya remoción no es factible por métodos convencionales. Asimismo, el aumento en el número de vehículos cada año es mayor y esto está generando residuos como el caucho de las llantas. En esta investigación se emplea el caucho de llanta como materia prima para producir carbón activado que se usa como soporte de óxidos metálicos de Fe, Cu, Mn y una mezcla de los dos mejores metales analizados (CuMn), estos catalizadores son preparados por medio del método de impregnación húmeda y caracterizados por XRD, SEM-EDX, TPR-H2, FTIR y propiedades texturales. Los sólidos se evaluaron mediante la oxidación húmeda catalítica con aire de un efluente contaminado con colorantes de tinción de Gram a condiciones ambientales de reacción: 25 °C, presión atmosférica. y flujo de aire de 2 mL/min. Los resultados experimentales indicaron porcentajes de remoción del 98%, eliminación de DQO del 33% en tan solo 3 horas de reacción y conversión del carbono orgánico total (COT) del 80% a las 24 horas de reacción. El catalizador de Cu con una relación másica del 5% demostró ser el catalizador con mayor actividad catalítica. (Texto tomado de la fuente)
dc.description.abstractThe development of new technologies allows the control of dangerous chemical substances present in the water currents of various industries or educational facilities, whose removal is not feasible by conventional methods. Similarly, the increase in the number of motor vehicles is greater each year and this is generating waste such as tire rubber. In this research, tire rubber is use as a raw material to produce activated carbon that is use as a support for metal oxides of Fe, Cu, Mn and a mixture of the two best metals analyzed (CuMn), these catalysts are prepared by means of the wet impregnation method and characterized by XRD, SEM-EDX, TPR-H2, FTIR and textural properties. Water contaminated with Gram stain dyes was treated with the synthesized solids by catalytic wet oxidation with air under ambient conditions: 25°C, atmospheric pressure and air flow of 2 mL/min. The experimental results indicated percentages of colorant removal of 98%, COD elimination of 33% in only 3 hours of reaction and conversion of total organic carbon (COT) of 80% at 24 hours of reaction. The Cu catalyst with a mass ratio of 5% proved to be the catalyst with the highest catalytic activity.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherDepartamento de Ingeniería Química y Ambiental
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationAbu Sharib, A. S. A. A., Bonilla-Petriciolet, A., Selim, A. Q., Mohamed, E. A., & Seliem, M. K. (2021). Utilizing modified weathered basalt as a novel approach in the preparation of Fe3O4 nanoparticles: Experimental and theoretical studies for crystal violet adsorption. Journal of Environmental Chemical Engineering, 9(6), 106220. https://doi.org/10.1016/J.JECE.2021.106220
dc.relationAhmad, A., Jini, D., Aravind, M., Parvathiraja, C., Ali, R., Kiyani, M. Z., & Alothman, A. (2020). A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. Arabian Journal of Chemistry, 13(12), 8717– 8722. https://doi.org/10.1016/j.arabjc.2020.10.002
dc.relationAhmed, S., Ahmad, Z., Kumar, A., Rafiq, M., Vashistha, V. K., Ashiq, M. N., & Kumar, A. (2021). Effective removal of methylene blue using nanoscale manganese oxide rods and spheres derived from different precursors of manganese. Journal of Physics and Chemistry of Solids, 155, 110121. https://doi.org/10.1016/J.JPCS.2021.110121
dc.relationAl-Rahbi, A. S., & Williams, P. T. (2016). Production of activated carbons from waste tyres for low temperature NOx control. Waste Management, 49, 188–195. https://doi.org/10.1016/J.WASMAN.2016.01.030
dc.relationBenhamed, I., Barthe, L., Kessas, R., Julcour, C., & Delmas, H. (2016). Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation. Applied Catalysis B: Environmental, 187, 228–237. https://doi.org/10.1016/j.apcatb.2016.01.016
dc.relationBerkün Olgun, Ö., Palas, B., Atalay, S., & Ersöz, G. (2021). Photocatalytic oxidation and catalytic wet air oxidation of real pharmaceutical wastewater in the presence of Fe and LaFeO3 doped activated carbon catalysts. Chemical Engineering Research and Design, 171, 421–432. https://doi.org/10.1016/J.CHERD.2021.05.017
dc.relationBes Monge, Sra. S., Silva, Dr. A. M. T., & Bengoa, Dr. C. (2016). Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriales. In (Tritón-316Rt0506) (Issues 978-84-09-08637–5). http://www.cyted.org/sites/default/files/manual_sobre_oxidaciones_avanzadas_0.pdf
dc.relationBessashia, W., Berredjem, Y., Hattab, Z., & Bououdina, M. (2020). Removal of Basic Fuchsin from water by using mussel powdered eggshell membrane as novel bioadsorbent: Equilibrium, kinetics, and thermodynamic studies. Environmental Research, 186, 109484. https://doi.org/10.1016/J.ENVRES.2020.109484
dc.relationCao, D. J., Wang, J. J., Zhang, Q., Wen, Y. Z., Dong, B., Liu, R. J., Yang, X., & Geng, G. (2019). Biodegradation of triphenylmethane dye crystal violet by Cedecea davisae. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 210, 9–13. https://doi.org/10.1016/j.saa.2018.11.004
dc.relationCastro Carreño, N., & Rojas Chitiva, W. J. (2018). Síntesis de óxidos mixtos de mn-fe mediante el método de autocombustión para la degradación de cristal violeta en aguas residuales [Fundación Universidad de América]. https://repository.uamerica.edu.co/handle/20.500.11839/6703
dc.relationCelis-Salazar, P., Zea, H., Luhrs, C., Phillips, J., & Ramirez, J. (2015). Iron on carbon catalaysts for the photocatalytic degradation orange II. Journal of Advanced Oxidation Technologies, 18(2), 295–302. https://doi.org/10.1515/JAOTS-2015- 0216/MACHINEREADABLECITATION/RIS
dc.relationChang, R., & Goldsby, K. (2017). Química (McGraw-Hill/Interamericana Editores, Ed.; 12th ed., Vol. 12). McGraw-Hill. http://www.ebooks7- 24.com.ezproxy.unal.edu.co/stage.aspx?il=&pg=&ed=
dc.relationChatwal, G. R. (2009). Synthetic Dyes (M. Arora, Ed.; 1st ed.). Himalaya Publishing House. https://ebookcentral.proquest.com/lib/unal/reader.action?docID=3011371&query=dy es
dc.relationCherono, F., Mburu, N., & Kakoi, B. (2021). Adsorption of lead, copper and zinc in a multimetal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon, 7(11), e08254. https://doi.org/10.1016/J.HELIYON.2021.E08254
dc.relationChong, S., Zhang, G., Zhang, N., Liu, Y., Zhu, J., Huang, T., & Fang, S. (2016). Preparation of FeCeOx by ultrasonic impregnation method for heterogeneous Fenton degradation of diclofenac. Ultrasonics Sonochemistry, 32, 231–240. https://doi.org/10.1016/j.ultsonch.2016.03.019
dc.relationCiżman, A., Rysiakiewicz-Pasek, E., Antropova, T., Krupiński, M., Pshenko, O. A., & Zarzycki, A. (2020). Effect of the iron content on the structure and electrical properties of sodium borosilicate glasses: XRD, TEM, Mössbauer, FTIR and DIS spectroscopy study. Journal of Non-Crystalline Solids, 531, 119847. https://doi.org/10.1016/J.JNONCRYSOL.2019.119847
dc.relationCoha, M., Farinelli, G., Tiraferri, A., Minella, M., & Vione, D. (2021). Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs. In Chemical Engineering Journal (Vol. 414, p. 128668). Elsevier B.V. https://doi.org/10.1016/j.cej.2021.128668
dc.relationConde-Rivera, L. R., Suarez-Escobar, A. F., Marin-Perez, J. J., Junco-Rodriguez, M. J., & Lopez-Suarez, F. E. (2021a). TiO2 supported on activated carbon from tire waste for ibuprofen removal. Materials Letters, 291, 129590. https://doi.org/10.1016/J.MATLET.2021.129590
dc.relationConde-Rivera, L. R., Suarez-Escobar, A. F., Marin-Perez, J. J., Junco-Rodriguez, M. J., & Lopez-Suarez, F. E. (2021b). TiO2 supported on activated carbon from tire waste for ibuprofen removal. Materials Letters, 291, 129590. https://doi.org/10.1016/J.MATLET.2021.129590
dc.relationDegano, I., Sabatini, F., Braccini, C., & Colombini, M. P. (2019). Triarylmethine dyes: Characterization of isomers using integrated mass spectrometry. Dyes and Pigments, 160, 587–596. https://doi.org/10.1016/J.DYEPIG.2018.08.046
dc.relationel Haddad, M. (2016). Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: Equilibrium, kinetics, and thermodynamics. Journal of Taibah University for Science, 10(5), 664–674. https://doi.org/10.1016/J.JTUSCI.2015.08.007
dc.relationErjavec, B., Kaplan, R., Djinović, P., & Pintar, A. (2013). Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Applied Catalysis B: Environmental, 132–133, 342–352. https://doi.org/10.1016/J.APCATB.2012.12.007
dc.relationErtl, G., Knözinger, H., Schüth, F., & Weitkamp, J. (2008). Handbook of Heterogeneus Catalysis (G. Ertl, H. Knözinger, F. Schüth, & J. Weitkamp, Eds.; 2° edición). Wiley- VCH Verlag.
dc.relationFogler, H. S. (2008). Elementos de ingeniería de las reacciones químicas. In H. S. Fogler (Ed.), Chemical Engineering Education (Cuarta, Issue 4). Pearson Prentice Hall. http://www.ebooks7-24.com.ezproxy.unal.edu.co/?il=3799
dc.relationFraume Restrepo, N. J. (2006). Diccionario ambiental (ECOE edici). ECOE. https://elibronet. ezproxy.unal.edu.co/es/ereader/unalecoe/69025?prev=bf
dc.relationGhosh, K., Bar, N., Biswas, A. B., & Das, S. K. (2021). Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application. Sustainable Chemistry and Pharmacy, 19, 100370. https://doi.org/10.1016/j.scp.2020.100370
dc.relationGordon M., H. (1973). Cinetica Quimica (H. Gordon M, Ed.; 2nd ed.). Editorial reverté S.A.
dc.relationGuclu, C., Alper, K., Erdem, M., Tekin, K., & Karagoz, S. (2021). Activated carbons from co-carbonization of waste truck tires and spent tea leaves. Sustainable Chemistry and Pharmacy, 21, 100410. https://doi.org/10.1016/j.scp.2021.100410
dc.relationGupta, P., & Verma, N. (2021). Evaluation of degradation and mineralization of glyphosate pollutant in wastewater using catalytic wet air oxidation over Fe-dispersed carbon nanofibrous beads. Chemical Engineering Journal, 417, 128029. https://doi.org/10.1016/J.CEJ.2020.128029
dc.relationGupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., & Nayak, A. (2011a). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113. Journal of Hazardous Materials, 186(1), 891–901. https://doi.org/10.1016/j.jhazmat.2010.11.091
dc.relationGupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., & Nayak, A. (2011b). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. Journal of Hazardous Materials, 186(1), 891–901. https://doi.org/10.1016/J.JHAZMAT.2010.11.091
dc.relationGupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A., Saleh, T. A., Al-Saadi, A. A., Gupta, V. K., Qin, H., Xiao, R., Chen, J., Riaño Hincapie, P. F., Herney-Ramirez, J., Vicente, M. A., Madeira, L. M., Saleh, T. A., Danmaliki, G. I., Wawrzkiewicz, M., Wiśniewska, M., … Alhooshani, K. (2018). Catalytic wet peroxide oxidation of benzoic acid over Fe/AC catalysts: Effect of nitrogen and sulfur co-doped activated carbon. Journal of the Taiwan Institute of Chemical Engineers, 60(1–2), 779–787. https://doi.org/10.1016/j.scitotenv.2018.01.206
dc.relationGürses, A., Açıkyıldız, M., Güneş, K., & Gürses, M. S. (2016). Dyes and Pigments (Sanjay K. Sharma, Ed.). Springer. http://www.springer.com/series/10045
dc.relationHao, Y. F., Yan, L. G., Yu, H. Q., Yang, K., Yu, S. J., Shan, R. R., & Du, B. (2014). Comparative study on adsorption of basic and acid dyes by hydroxy-aluminum pillared bentonite. Journal of Molecular Liquids, 199, 202–207. https://doi.org/10.1016/J.MOLLIQ.2014.09.005
dc.relationHasan, I., Walia, S., Alharbi, K. H., Khanjer, M. A., Alsalme, A., & Khan, R. A. (2020). Multiwalled carbon nanotube coupled β-Cyclodextrin/PANI hybrid photocatalyst for advance oxidative degradation of crystal violet. Journal of Molecular Liquids, 317, 114216. https://doi.org/10.1016/J.MOLLIQ.2020.114216
dc.relationHernández Archila, K. G. (2019). Catalizadores de Ni y Fe promovidos por Ce obtenidos a partir de hidroxidos de doble capa para la degradación de cristal violeta en solución.
dc.relationHernández-Oloño, J. T., Infantes-Molina, A., Vargas-Hernández, D., Domínguez- Talamantes, D. G., Rodríguez-Castellón, E., Herrera-Urbina, J. R., & Tánori-Córdova, J. C. (2021). A novel heterogeneous photo-Fenton Fe/Al2O3 catalyst for dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 421, 113529. https://doi.org/10.1016/J.JPHOTOCHEM.2021.113529
dc.relationHood, Z. D., Adhikari, S. P., Evans, S. F., Wang, H., Li, Y., Naskar, A. K., Chi, M., Lachgar, A., & Paranthaman, M. P. (2018). Tire-derived carbon for catalytic preparation of biofuels from feedstocks containing free fatty acids. Carbon Resources Conversion, 1(2), 165–173. https://doi.org/10.1016/j.crcon.2018.07.007
dc.relationHua, L., Ma, H., & Zhang, L. (2013). Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3. Chemosphere, 90(2), 143–149. https://doi.org/10.1016/J.CHEMOSPHERE.2012.06.018
dc.relationHuang, J., Zhang, Y., & Zhang, Y. (2021). Preparation and characterization of manganese oxides supported on functionalized halloysite nanotubes with enhanced catalytic oxidation for toluene. Applied Clay Science, 209, 106147. https://doi.org/10.1016/J.CLAY.2021.106147
dc.relationHuang, L., Kong, J., Wang, W., Zhang, C., Niu, S., & Gao, B. (2012). Study on Fe(III) and Mn(II) modified activated carbons derived from Zizania latifolia to removal basic fuchsin. Desalination, 286, 268–276. https://doi.org/10.1016/j.desal.2011.11.034
dc.relationHuang, Y. dong. (2019). Comments on using of “pseudo-first-order model” [Appl. Surf. Sci. 394 (2017) 378–385, 397 (2017) 133–143, 426 (2017) 545–553, 437 (2018) 294–303]. Applied Surface Science, 469, 564–565. https://doi.org/10.1016/J.APSUSC.2018.11.070
dc.relationHussain, T., & Wahab, A. (2018). A critical review of the current water conservation practices in textile wet processing. Journal of Cleaner Production, 198, 806–819. https://doi.org/10.1016/j.jclepro.2018.07.051
dc.relationJamil, H., Dildar, I. M., Ilyas, U., Hashmi, J. Z., Shaukat, S., Sarwar, M. N., & Khaleeq-ur- Rahman, M. (2021). Microstructural and Optical study of polycrystalline manganese oxide films using Kubelka-Munk function. Thin Solid Films, 732, 138796. https://doi.org/10.1016/J.TSF.2021.138796
dc.relationJin, X., Zhuang, Z., Yu, B., Chen, Z., & Chen, Z. (2016). Functional chitosan-stabilized nanoscale zero-valent iron used to remove acid fuchsine with the assistance of ultrasound. Carbohydrate Polymers, 136, 1085–1090. https://doi.org/10.1016/j.carbpol.2015.10.002
dc.relationKaraman, C., Karaman, O., Show, P. L., Karimi-Maleh, H., & Zare, N. (2022). Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere, 290, 133346. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133346
dc.relationKarmacharya, M. S., Gupta, V. K., Tyagi, I., Agarwal, S., & Jha, V. K. (2016a). Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. Journal of Molecular Liquids, 216, 836–844. https://doi.org/10.1016/J.MOLLIQ.2016.02.025
dc.relationKarmacharya, M. S., Gupta, V. K., Tyagi, I., Agarwal, S., & Jha, V. K. (2016b). Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. Journal of Molecular Liquids, 216, 836–844. https://doi.org/10.1016/J.MOLLIQ.2016.02.025
dc.relationKassem, K. O., Hussein, M. A. T., Motawea, M. M., Gomaa, H., Alrowaili, Z. A., & Ezzeldien, M. (2021). Design of mesoporous ZnO @ silica fume-derived SiO2 nanocomposite as photocatalyst for efficient crystal violet removal: Effective route to recycle industrial waste. Journal of Cleaner Production, 326, 129416. https://doi.org/10.1016/J.JCLEPRO.2021.129416
dc.relationKumar, A., & Verma, N. (2018). Wet air oxidation of aqueous dichlorvos pesticide over catalytic copper-carbon nanofiberous beads. Chemical Engineering Journal, 351, 428–440. https://doi.org/10.1016/J.CEJ.2018.06.058
dc.relationKumari, M., & Saroha, A. K. (2019). Synthesis and characterization of carbon xerogel based iron catalyst for use in wet air oxidation of aqueous solution containing 2, 4, 6– trichlorophenol. Journal of Environmental Chemical Engineering, 7(3), 103121. https://doi.org/10.1016/J.JECE.2019.103121
dc.relationLevec, J., & Pintar, A. (2007). Catalytic wet-air oxidation processes: A review. Catalysis Today, 124(3–4), 172–184. https://doi.org/10.1016/j.cattod.2007.03.035
dc.relationLima, S. B., Borges, S. M. S., do Carmo Rangel, M., & Marchetti, S. G. (2013). Effect of iron content on the catalytic properties of activated carbon-supported magnetite derived from biomass. Journal of the Brazilian Chemical Society, 24(2), 344–354. https://doi.org/10.5935/0103-5053.20130044
dc.relationLiu, B., Chen, B., Zhang, B. Y., Jing, L., Zhang, H., & Lee, K. (2016). Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbons in Offshore Produced Water: Effects of Water Matrix. Journal of Environmental Engineering, 142(11), 04016054. https://doi.org/10.1061/(asce)ee.1943-7870.0001135
dc.relationLiu, J., Yu, C., Zhao, P., & Chen, G. (2012a). Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of β-naphthol. Applied Surface Science, 258(22), 9096–9102. https://doi.org/10.1016/J.APSUSC.2012.06.022
dc.relationLiu, J., Yu, C., Zhao, P., & Chen, G. (2012b). Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of β-naphthol. Applied Surface Science, 258(22), 9096–9102. https://doi.org/10.1016/J.APSUSC.2012.06.022
dc.relationLiu, W.-M., Hu, Y.-Q., & Tu, S.-T. (2010). Active carbon–ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent. Journal of Hazardous Materials, 179(1–3), 545–551. https://doi.org/10.1016/j.jhazmat.2010.03.038
dc.relationMadigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2015). Brock. Biología de los microorganismos. In M. Martín-Romo (Ed.), Brock : biología de los microorganismos (14th ed.). Pearson Educación. https://books.google.cl/books?id=rIoZjgEACAAJ
dc.relationMahlambi, M. M., Ngila, C. J., & Mamba, B. B. (2015). Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles-A Review. In Journal of Nanomaterials (Vol. 2015). Hindawi Publishing Corporation. https://doi.org/10.1155/2015/790173
dc.relationManjunatha, M., Kumar, R., Anupama, A. v., Khopkar, V. B., Damle, R., Ramesh, K. P., & Sahoo, B. (2019). XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. Journal of Materials Research and Technology, 8(2), 2192–2200. https://doi.org/10.1016/J.JMRT.2019.01.022
dc.relationMaroufi, S., Mayyas, M., & Sahajwalla, V. (2017). Nano-carbons from waste tyre rubber: An insight into structure and morphology. Waste Management, 69, 110–116. https://doi.org/10.1016/J.WASMAN.2017.08.020
dc.relationMashile, P. P., Mpupa, A., & Nomngongo, P. N. (2018). Adsorptive removal of microcystin- LR from surface and wastewater using tyre-based powdered activated carbon: Kinetics and isotherms. Toxicon, 145, 25–31. https://doi.org/10.1016/J.TOXICON.2018.02.044
dc.relationMelissa Denchak. (2018). Water Pollution Facts, Types, Causes and Effects of Water Pollution | NRDC. In NRDC (p. 1). https://www.nrdc.org/stories/water-pollutioneverything- you-need-know
dc.relationMerck KGaA. (2017). MSDS Crystal Violet. In Merck S.A (Vol. 2, Issue 1907). https://www.merckmillipore.com/CO/es/product/msds/MDA_CHEM- 115940?Origin=SERP
dc.relationMerck KGaA. (2019). MSDS Fucsina (Issue 1907). https://www.merckmillipore.com/CO/es/product/msds/MDA_CHEM- 115937?Origin=PDP
dc.relationMeza, E. (2018, December 3). Crean artículos sustentables con llantas usadas | El Economista. EL ECONOMISTA. https://www.eleconomista.com.mx/empresas/Creanarticulos- sustentables-con-llantas-usadas-20181203-0056.html
dc.relationMicromeritics. (2021). 3Flex - Analizador de adsorción Micromeritics 3Flex. Micromeritics. https://www.micromeritics.com/3flex/
dc.relationMilone, C., Fazio, M., Pistone, A., & Galvagno, S. (2006). Catalytic wet air oxidation of pcoumaric acid on CeO2, platinum and gold supported on CeO2 catalysts. Applied Catalysis B: Environmental, 68(1–2), 28–37. https://doi.org/10.1016/j.apcatb.2006.07.016
dc.relationMinisterio de Ambiente y Desarrollo Sostenible. (n.d.). Legislación del agua | Ministerio de Ambiente y Desarrollo Sostenible. Retrieved May 4, 2021, from https://www.minambiente.gov.co/index.php/component/content/article?id=407:plantill a-gestion-integral-del-recurso-hidrico-14
dc.relationMishra, T. K., Kumar, A., Sinha, S. K., & Gupta, B. (2018). Wear behavior and XRD analysis of reinforced copper matrix composite reinforced with Cerium Oxide (CeO2). Materials Today: Proceedings, 5(14), 27786–27794. https://doi.org/10.1016/J.MATPR.2018.10.014
dc.relationMohammed Ali, M. J., Radhy, M. M., mashkoor, S. J., & Ali, E. M. (2021). Synthesis and characterization of copper oxide nanoparticles and their application for solar cell. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.10.250
dc.relationMohd Shaid, M. S. H., Zaini, M. A. A., & Nasri, N. S. (2019). Evaluation of methylene blue dye and phenol removal onto modified CO2-activated pyrolysis tyre powder. Journal of Cleaner Production, 223, 487–498. https://doi.org/10.1016/J.JCLEPRO.2019.03.097
dc.relationMoise, C. C., Enache, L. B., Anăstăsoaie, V., Lazăr, O. A., Mihai, G. V., Bercu, M., & Enăchescu, M. (2021). On the growth of copper oxide nanowires by thermal oxidation near the threshold temperature at atmospheric pressure. Journal of Alloys and Compounds, 886, 161130. https://doi.org/10.1016/J.JALLCOM.2021.161130
dc.relationMolino, A., Donatelli, A., Marino, T., Aloise, A., Rimauro, J., & Iovane, P. (2018). Waste tire recycling process for production of steam activated carbon in a pilot plant. Resources, Conservation and Recycling, 129(November 2017), 102–111. https://doi.org/10.1016/j.resconrec.2017.10.023
dc.relationMolla, A., Kim, A. Y., Woo, J. C., Cho, H. S., & Youk, J. H. (2022). Study on preparation methodology of zero-valent iron decorated on graphene oxide for highly efficient sonocatalytic dye degradation. Journal of Environmental Chemical Engineering, 10(2), 107214. https://doi.org/10.1016/J.JECE.2022.107214
dc.relationMui, E. L. K., Cheung, W. H., Valix, M., & McKay, G. (2010). Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. Journal of Colloid and Interface Science, 347(2), 290–300. https://doi.org/10.1016/J.JCIS.2010.03.061
dc.relationMurillo, R., Navarro, M. v., López, J. M., García, T., Callén, M. S., Aylón, E., & Mastral, A. M. (2006). Activation of pyrolytic lignite char with CO2. Kinetic study. Energy and Fuels, 20(1), 11–16. https://doi.org/10.1021/ef0501187
dc.relationMussa, Z. H., Al-Qaim, F. F., Othman, M. R., Abdullah, M. P., Latip, J., & Zakria, Z. (2017). Pseudo first order kinetics and proposed transformation products pathway for the degradation of diclofenac using graphite–PVC composite as anode. Journal of the Taiwan Institute of Chemical Engineers, 72, 37–44. https://doi.org/10.1016/J.JTICE.2016.12.031
dc.relationNagaraja, M., Prashanth, S., Pattar, J., Mahesh, H. M., & Rajanna, K. (2021). Polyaniline- CuO nanocomposite: Electrical, structural and sensor properties. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.08.154
dc.relationNawaz, M., Khan, A. A., Hussain, A., Jang, J., Jung, H. Y., & Lee, D. S. (2020). Reduced graphene oxide−TiO2/sodium alginate 3-dimensional structure aerogel for enhanced photocatalytic degradation of ibuprofen and sulfamethoxazole. Chemosphere, 261, 127702. https://doi.org/10.1016/j.chemosphere.2020.127702
dc.relationNoyola, Morgan-Sagastume, & Guereca. (2013). Selección de Tecnologías para el Tratamiento de Aguas Residuales Municipales: Guía de Apoyo para Ciudades Pequeñas y Medianas (UNAM). UNAM.
dc.relationOcade Ltda-Colombia, Siniplan-R.J-Brasil, & Ambiental S.A-Argentina. (2011). Diagnostico ambiental sobre el actual manejo de llantas y neumaticos usados generados por el parque automotor de Santa Fe de Bogotá. In Union Temporal Ocade Ltda(Colombia), Siniplan (R.J- Brasil), Ambiental S.a (Argentina). http://ambientebogota.gov.co/documents/10157/0/Llantas.pdf
dc.relationONU. (1972). Informe de la conferencia de las naciones unidas sobre el medio humano. In Conferencia de las Naciones Unidas sobre el Medio Humano.
dc.relationOseroff, A. R., Ohuoha, D., Ara, G., McAuliffe, D., Foley, J., & Cincotta, L. (1986). Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 83(24), 9729–9733. https://doi.org/10.1073/pnas.83.24.9729
dc.relationOvejero, G., Rodríguez, A., Vallet, A., & García, J. (2013). Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: Reaction intermediates determination. Chemosphere, 90(4), 1379–1386. https://doi.org/10.1016/j.chemosphere.2012.07.067
dc.relationOvejero, G., Rodríguez, A., Vallet, A., Willerich, S., & García, J. (2012). Application of Ni supported over mixed Mg-Al oxides to crystal violet wet air oxidation: The role of the reaction conditions and the catalyst. Applied Catalysis B: Environmental, 111–112, 586–594. https://doi.org/10.1016/j.apcatb.2011.11.011
dc.relationPenagos Vega, P. A., & Barrera Castro, A. M. (2019). Evaluación de borra de café como soporte en un catalizador de hierro para la remoción de fucsina básica mediante un proceso de oxidación catalítica por fase húmeda. http://repository.uamerica.edu.co/bitstream/20.500.11839/7598/1/6141276-2019-2- IQ.pdf
dc.relationPijović, M., Manić, N., Anićijević, D. V., Krstić, A., Mitrić, M., Matić, T., & Janković, B. (2022). Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study. Diamond and Related Materials, 121, 108768. https://doi.org/10.1016/J.DIAMOND.2021.108768
dc.relationPriyanka, Subbaramaiah, V., Srivastava, V. C., & Mall, I. D. (2014). Catalytic oxidation of nitrobenzene by copper loaded activated carbon. Separation and Purification Technology, 125, 284–290. https://doi.org/10.1016/J.SEPPUR.2014.01.045
dc.relationQu, Y. F., Guo, J. X., Chu, Y. H., Sun, M. C., & Yin, H. Q. (2013). The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts. Applied Surface Science, 282, 425–431. https://doi.org/10.1016/J.APSUSC.2013.05.146
dc.relationQuantachrome INSTRUMENTS. (2022). Quimisorción de cuantacromo - ChemBET 3000 TPR / TPD. Giangarloscientific.Com. http://giangarloscientific.com/analytical/quantachrome/chembet.html
dc.relationQuesada-Peñate, I., Julcour-Lebigue, C., Jáuregui-Haza, U. J., Wilhelm, A. M., & Delmas, H. (2012). Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons. Journal of Hazardous Materials, 221–222, 131–138. https://doi.org/10.1016/j.jhazmat.2012.04.021
dc.relationRamírez, J. H., Galeano, L. A., Pinchao, G., Bedoya, R. A., & Hidalgo, A. (2018). Optimized CWPO phenol oxidation in CSTR reactor catalyzed by Al/Fe-PILC from concentrated precursors at circumneutral pH. Journal of Environmental Chemical Engineering, 6(2), 2429–2441. https://doi.org/10.1016/J.JECE.2018.02.024
dc.relationRamírez-Franco, J. H., Galeano, L. A., & Vicente, M. A. (2019). Fly ash as photo-Fenton catalyst for the degradation of amoxicillin. Journal of Environmental Chemical Engineering, 7(5), 103274. https://doi.org/10.1016/J.JECE.2019.103274
dc.relationRana, A., Hasan, I., Koo, B. H., & Khan, R. A. (2022). Green synthesized CeO2 nanowires immobilized with alginate-ascorbic acid biopolymer for advance oxidative degradation of crystal violet. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 637, 128225. https://doi.org/10.1016/J.COLSURFA.2021.128225
dc.relationRevellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. https://doi.org/10.1016/J.CLET.2020.100032
dc.relationRevista Semana. (2020, December 3). 2020 ha sido el año más desinflado para la industria de las llantas. Publicaciones Semana. https://www.semana.com/economia/articulo/el- 2020-ha-sido-el-ano-mas-desinflado-para-la-industria-de-las-llantas/202044/
dc.relationRiaño Hincapie, P. F. (2018). Degradación del cristal violeta presente en aguas residuales mediante la oxidación catalítica humeda con peróxido de hidrógeno (CWPO) a partir de óxidos mixtos de Mn-Cu a condiciones moderadas. (Vol. 1, Issue 1).
dc.relationRocha, R. P., Pereira, M. F. R., & Figueiredo, J. L. (2020). Metal-free carbon materials as catalysts for wet air oxidation. Catalysis Today, 356, 189–196. https://doi.org/10.1016/J.CATTOD.2019.04.047
dc.relationRodríguez Fernández-Alba, A., Letón García, P., Rosal García, R., Dorado Valiño, M., Villar Fernández, S., & Sanz García, J. M. (2006). Tratamientos Avanzados De Aguas Residuales Industriales. Citme, 6,8. 13, 30, 34.
dc.relationRouquerol, J., Rouquerol, F., Maurin, G., & Sing, K. S. W. (2014). Adsorption by Powders and Porous Solids: Principles, Methodology and ... - Jean Rouquerol, Françoise Rouquerol, Philip Llewellyn, Guillaume Maurin, Kenneth S.W. Sing - Google Libros. Elsevier. https://books.google.com.co/books?hl=es&lr=&id=UOEZscCYncC& oi=fnd&pg=PP1&ots=0TX_GFumnv&sig=AShdJIW02gDm1EFcXUPfJ7A eGgg&redir_esc=y#v=onepage&q&f=false
dc.relationSabnis, R. W. (2010). Handbook of biological dyes and stains (Wiley, Ed.). John Wiley & Sons Inc. https://ebookcentral.proquest.com/lib/unal/reader.action?docID=514385&query=cryst al+violet
dc.relationSagar, M., Nibedita, K., Manohar, N., Kumar, K. R., Suchismita, S., Pradnyesh, A., Reddy, A. B., Sadiku, E. R., Gupta, U. N., Lachit, P., & Jayaramudu, J. (2018). A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber. Waste Management, 74, 110–122. https://doi.org/10.1016/J.WASMAN.2018.01.003
dc.relationSaini, B., & Dey, A. (2021). Synthesis and characterization of copolymer adsorbent for crystal violet dye removal from water. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.10.060
dc.relationSaleh, T. A., Al-Hammadi, S. A., Tanimu, A., & Alhooshani, K. (2018). Ultra-deep adsorptive desulfurization of fuels on cobalt and molybdenum nanoparticles loaded on activated carbon derived from waste rubber. Journal of Colloid and Interface Science, 513, 779– 787. https://doi.org/10.1016/j.jcis.2017.11.076
dc.relationSaleh, T. A., Gupta, V. K., & Al-Saadi, A. A. (2013). Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study. Journal of Colloid and Interface Science, 396, 264–269. https://doi.org/10.1016/J.JCIS.2013.01.037
dc.relationSamrot, A. v., Ali, H. H., Selvarani A, J., Faradjeva, E., P, R., P, P., & Kumar S, S. (2021). Adsorption efficiency of chemically synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on crystal violet dye. Current Research in Green and Sustainable Chemistry, 4, 100066. https://doi.org/10.1016/J.CRGSC.2021.100066
dc.relationSánchez, L. Enrique. (2010). Evaluación de impacto ambiental : conceptos y métodos (Oficina de). Ecoe Ediciones. elibronet. ezproxy.unal.edu.co/es/ereader/unalecoe/65934?prev=bf
dc.relationSantiago, M., Stüber, F., Fortuny, A., Fabregat, A., & Font, J. (2005). Modified activated carbons for catalytic wet air oxidation of phenol. Carbon, 43(10), 2134–2145. https://doi.org/10.1016/J.CARBON.2005.03.026
dc.relationSantos, A., Yustos, P., Quintanilla, A., Ruiz, G., & Garcia-Ochoa, F. (2005). Study of the copper leaching in the wet oxidation of phenol with CuO-based catalysts: Causes and effects. Applied Catalysis B: Environmental, 61(3–4), 323–333. https://doi.org/10.1016/j.apcatb.2005.06.006
dc.relationSaravan, R. S., Muthukumaran, M., Mubashera, S. M., Abinaya, M., Prasath, P. V., Parthiban, R., Mohammad, F., Oh, W. C., & Sagadevan, S. (2020). Evaluation of the photocatalytic efficiency of cobalt oxide nanoparticles towards the degradation of crystal violet and methylene violet dyes. Optik, 207, 164428. https://doi.org/10.1016/J.IJLEO.2020.164428
dc.relationSerra-Pérez, E., Álvarez-Torrellas, S., Ismael Águeda, V., Larriba, M., Ovejero, G., & García, J. (2021). Effective removal of naproxen from aqueous solutions by CWAO process using noble metals supported on carbon nanospheres catalysts. Separation and Purification Technology, 259, 118084. https://doi.org/10.1016/J.SEPPUR.2020.118084
dc.relationShah, I., Adnan, R., Wan Ngah, W. S., Mohamed, N., & Taufiq-Yap, Y. H. (2014). A new insight to the physical interpretation of activated carbon and iron doped carbon material: Sorption affinity towards organic dye. Bioresource Technology, 160, 52–56. https://doi.org/10.1016/J.BIORTECH.2014.02.047
dc.relationShahbazi, F., Noghani, M., & Ahmadi, R. (2021). Effect of synthesis conditions on the morphology, composition and magnetic properties of the iron oxide nanoparticles prepared via electric discharge method. Journal of Magnetism and Magnetic Materials, 536, 168090. https://doi.org/10.1016/J.JMMM.2021.168090
dc.relationShahrokhi-Shahraki, R., Benally, C., El-Din, M. G., & Park, J. (2021a). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128455
dc.relationShahrokhi-Shahraki, R., Benally, C., El-Din, M. G., & Park, J. (2021b). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128455
dc.relationShahrokhi-Shahraki, R., Benally, C., El-Din, M. G., & Park, J. (2021c). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128455
dc.relationShao, Q., Li, Y., Wang, Q., Niu, T., Li, S., & Shen, W. (2021). Preparation of copper doped walnut shell-based biochar for efficiently removal of organic dyes from aqueous solutions. Journal of Molecular Liquids, 336, 116314. https://doi.org/10.1016/J.MOLLIQ.2021.116314
dc.relationShin, J., Bae, S., & Chon, K. (2021). Fenton oxidation of synthetic food dyes by Feembedded coffee biochar catalysts prepared at different pyrolysis temperatures: A mechanism study. Chemical Engineering Journal, 421, 129943. https://doi.org/10.1016/J.CEJ.2021.129943
dc.relationShu, J., Cheng, S., Xia, H., Zhang, L., Peng, J., Li, C., & Zhang, S. (2017). Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Advances, 7(24), 14395–14405. https://doi.org/10.1039/C7RA00287D
dc.relationSilva, L. A. da, Borges, S. M. S., Paulino, P. N., Fraga, M. A., Oliva, S. T. de, Marchetti, S. G., & Rangel, M. do C. (2017). Methylene blue oxidation over iron oxide supported on activated carbon derived from peanut hulls. Catalysis Today, 289, 237–248. https://doi.org/10.1016/j.cattod.2016.11.036
dc.relationSkodras, G., Diamantopoulou, Ir., Zabaniotou, A., Stavropoulos, G., & Sakellaropoulos, G. P. (2007). Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Processing Technology, 88(8), 749–758. https://doi.org/10.1016/j.fuproc.2007.03.008
dc.relationSmith, J. M. (1991). Ingeniería Cinética Química (McGraw-Hill, Ed.; 6th ed.). CECSA.
dc.relationSreekumar, G., Louie Frobel, P. G., Sreeja, S., Suresh, S. R., Mayadevi, S., Muneera, C. I., Suchand Sandeep, C. S., Philip, R., & Mukharjee, C. (2011). Nonlinear absorption and photoluminescence emission in nanocomposite films of Fuchsine Basic dyepolymer system. Chemical Physics Letters, 506(1–3), 61–65. https://doi.org/10.1016/j.cplett.2011.02.048
dc.relationStüber, F., Font, J., Fortuny, A., Bengoa, C., Eftaxias, A., & Fabregat, A. (2005). Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. In Topics in Catalysis (Vol. 33, Issues 1–4). https://doi.org/10.1007/s11244-005-2497-1
dc.relationSultana, S., Islam, K., Asif Hasan, Md., Jawad Khan, H. M., Azizur R. Khan, M., Deb, A., al Raihan, Md., & Wasikur Rahman, Md. (2022). Adsorption of Crystal Violet Dye by Coconut Husk Powder: Isotherm, Kinetics and Thermodynamics Perspectives. Environmental Nanotechnology, Monitoring & Management, 100651. https://doi.org/10.1016/J.ENMM.2022.100651
dc.relationSun, Z., Yao, G., Liu, M., & Zheng, S. (2017). In situ synthesis of magnetic MnFe2O4/diatomite nanocomposite adsorbent and its efficient removal of cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 71, 501–509. https://doi.org/10.1016/j.jtice.2016.12.013
dc.relationSushma, Kumari, M., & Saroha, A. K. (2018a). Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. Journal of Environmental Management, 228, 169–188. https://doi.org/10.1016/J.JENVMAN.2018.09.003
dc.relationSushma, Kumari, M., & Saroha, A. K. (2018b). Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. Journal of Environmental Management, 228, 169–188. https://doi.org/10.1016/J.JENVMAN.2018.09.003
dc.relationTakabi, A. S., Shirani, M., & Semnani, A. (2021). Apple stem as a high performance cellulose based biosorbent for low cost and eco-friendly adsorption of crystal violet from aqueous solutions using experimental design: Mechanism, kinetic and thermodynamics. Environmental Technology & Innovation, 24, 101947. https://doi.org/10.1016/J.ETI.2021.101947
dc.relationTamburini, D., Shimada, C. M., & McCarthy, B. (2021). The molecular characterization of early synthetic dyes in E. Knecht et al’s textile sample book “A Manual of Dyeing” (1893) by high performance liquid chromatography - Diode array detector - Mass spectrometry (HPLC-DAD-MS). Dyes and Pigments, 190, 109286. https://doi.org/10.1016/J.DYEPIG.2021.109286
dc.relationThakar, M. A., Saurabh Jha, S., Phasinam, K., Manne, R., Qureshi, Y., & Hari Babu, V. V. (2021). X ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissus vitiginea. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.05.410
dc.relationTodea, M., Simon, V., Muresan-Pop, M., Vulpoi, A., Rusu, M. M., Simion, A., Vasilescu, M., Damian, G., Petrisor, D. M., & Simon, S. (2021). Silica-based microspheres with aluminum-iron oxide shell for diagnosis and cancer treatment. Journal of Molecular Structure, 1246, 131149. https://doi.org/10.1016/J.MOLSTRUC.2021.131149
dc.relationTran, T. H., Le, A. H., Pham, T. H., Nguyen, D. T., Chang, S. W., Chung, W. J., & Nguyen, D. D. (2020). Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of The Total Environment, 725, 138325. https://doi.org/10.1016/J.SCITOTENV.2020.138325
dc.relationUN WATER. (2016). Annual report 2015. In UN Water. https://doi.org/10.5962/bhl.title.42736
dc.relationUPME. (2016). Normatividad Ambiental. UPME. http://www.upme.gov.co/guia_ambiental/carbon/gestion/politica/normativ/normativ.ht m#BM2__NORMATIVIDAD_TEMATICA
dc.relationVallet, A., Besson, M., Ovejero, G., & García, J. (2012). Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor. Journal of Hazardous Materials, 227–228, 410–417. https://doi.org/10.1016/j.jhazmat.2012.05.081
dc.relationVásquez Vargas, D. A. (2019). Evaluación de la disminución en la carga contaminante de los colorantes asociados a la tinción de Gram mediante carbón activado encapsulado en alginato de sodio [Fundación Universidad de América]. https://repository.uamerica.edu.co/handle/20.500.11839/7592
dc.relationVerma, A., Anand, P., Kumar, S., & Fu, Y. P. (2022). Cu-cuprous/cupric oxide nanoparticles towards dual application for nitrophenol conversion and electrochemical hydrogen evolution. Applied Surface Science, 578, 151795. https://doi.org/10.1016/J.APSUSC.2021.151795
dc.relationVidal, G., Jarpa, M., Plaza de los Reyes, C., Belmonte, M., & Mariangel, L. (2005). Manual de tecnologías sostenibles en tratamiento de aguas (G. Peñuela & J. Morató, Eds.; TECSPAR). Alfa EuropeAid.
dc.relationWang, L., Wang, J., Pan, H., Zhao, M., & Chen, J. (2021a). Kinetics and removal pathwayof basic fuchsin by electrochemical oxidization. Journal of Electroanalytical Chemistry, 880, 114792. https://doi.org/10.1016/j.jelechem.2020.114792
dc.relationWang, L., Wang, J., Pan, H., Zhao, M., & Chen, J. (2021b). Kinetics and removal pathwayof basic fuchsin by electrochemical oxidization. Journal of Electroanalytical Chemistry, 880, 114792. https://doi.org/10.1016/J.JELECHEM.2020.114792
dc.relationWang, P., Liang, Y. N., Zhong, Z., & Hu, X. (2020a). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233, 115960. https://doi.org/10.1016/j.seppur.2019.115960
dc.relationWang, P., Liang, Y. N., Zhong, Z., & Hu, X. (2020b). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233, 115960. https://doi.org/10.1016/j.seppur.2019.115960
dc.relationWang, P., Liang, Y. N., Zhong, Z., & Hu, X. (2020c). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233, 115960. https://doi.org/10.1016/J.SEPPUR.2019.115960
dc.relationWang, Y., Wang, J., Du, B., Wang, Y., Xiong, Y., Yang, Y., & Zhang, X. (2018). Synthesis of hierarchically porous perovskite-carbon aerogel composite catalysts for the rapid degradation of fuchsin basic under microwave irradiation and an insight into probable catalytic mechanism. Applied Surface Science, 439, 475–487. https://doi.org/10.1016/J.APSUSC.2017.12.196
dc.relationWBCSD. (2010). End-of-Life Tires A framework for effective management systems Managing End-of-Life Tires End-of-Life Tires: A Framework for Effective Management Systems Prepared by the WBCSD Tire Industry Project Contents. http://docs.wbcsd.org/2018/02/TIP/A_Framework_For_Effective_Management_Syste ms.pdf
dc.relationWu, Q., Wang, H., & Yi, C. (2018). Preparation of photo-Fenton heterogeneous catalyst (Fe-TS-1 zeolite) and its application in typical azo dye decoloration. Journal of Photochemistry and Photobiology A: Chemistry, 356, 138–149. https://doi.org/10.1016/J.JPHOTOCHEM.2017.12.041
dc.relationWu, Z., Deng, W., Tang, S., Ruiz-Hitzky, E., Luo, J., & Wang, X. (2021). Pod-inspired MXene/porous carbon microspheres with ultrahigh adsorption capacity towards crystal violet. Chemical Engineering Journal, 426, 130776. https://doi.org/10.1016/J.CEJ.2021.130776
dc.relationXu, Y., Shao, H., Ge, F., & Liu, Y. (2017). Novel-structured Mo-Cu-Fe-O composite for catalytic air oxidation of dye-containing wastewater under ambient temperature and pressure. Chinese Journal of Catalysis, 38(10), 1719–1725. https://doi.org/10.1016/S1872-2067(17)62884-5
dc.relationXu, Z., Li, Y., Lin, Y., Wang, Y., Wang, Q., & Zhu, T. (2021). Loading mechanism and double-site reaction mechanism of Cu on activated carbon for enhanced oxidation of CO from flue gas. Chemical Engineering Journal, 419, 129994. https://doi.org/10.1016/J.CEJ.2021.129994
dc.relationYadav, A., & Verma, N. (2018). Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor. Journal of Industrial and Engineering Chemistry, 67, 448–460. https://doi.org/10.1016/j.jiec.2018.07.019
dc.relationYakout, S. M., Hassan, M. R., Abdeltawab, A. A., & Aly, M. I. (2019). Sono-sorption efficiencies and equilibrium removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal. Journal of Cleaner Production, 234, 124–131. https://doi.org/10.1016/j.jclepro.2019.06.164
dc.relationYang, X., Li, Y., Du, Q., Sun, J., Chen, L., Hu, S., Wang, Z., Xia, Y., & Xia, L. (2015). Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. Journal of Colloid and Interface Science, 453, 107–114. https://doi.org/10.1016/J.JCIS.2015.04.042
dc.relationYang, Y., Ding, X., Chang, K., Zeng, Z., Hou, Y., & Huang, Z. (2022). In situ DRIFTS combined with GC–MS to identify the catalytic oxidation process of dibenzofuran over activated carbon-supported transition metals oxide catalysts. Fuel, 312, 122492. https://doi.org/10.1016/J.FUEL.2021.122492
dc.relationYin, J., Cai, J., Yin, C., Gao, L., & Zhou, J. (2016). Degradation performance of crystal violet over CuO@AC and CeO 2 -CuO@AC catalysts using microwave catalytic oxidation degradation method. Journal of Environmental Chemical Engineering, 4(1), 958–964. https://doi.org/10.1016/j.jece.2016.01.001
dc.relationZhang, G., Hou, P., Sun, Y., Xu, Y., Cheng, H., & Zhang, Y. (2019). Three Different Types of Activated Carbon and Manganese-Modified Activated Carbons as Deoxidizers for the Low-Concentration Coalbed Methane Deoxidation. Journal of the Brazilian Chemical Society, 30(9), 1789–1800. https://doi.org/10.21577/0103-5053.20190085
dc.relationZhang, N., Zhang, G., Chong, S., Zhao, H., Huang, T., & Zhu, J. (2018). Ultrasonic impregnation of MnO2/CeO2 and its application in catalytic sono-degradation of methyl orange. Journal of Environmental Management, 205, 134–141. https://doi.org/10.1016/j.jenvman.2017.09.073
dc.relationZhang, X., Li, H., Cao, Q., Jin, L., & Wang, F. (2018). Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Management and Research, 36(5), 436–444. https://doi.org/10.1177/0734242X18764292
dc.relationZhao, J., Wei, Y., Liu, Z., Zhang, L., Cui, Q., & Wang, H. (2022). Study on heterogeneous catalytic wet air oxidation process of high concentration MDEA-containing wastewater. Chemical Engineering and Processing - Process Intensification, 171, 108744. https://doi.org/10.1016/J.CEP.2021.108744
dc.relationZhu, L., Zhang, L., Qu, H., & Zhong, Q. (2015). A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for lowtemperature NH3-SCR. Journal of Molecular Catalysis A: Chemical, 409, 207–215. https://doi.org/10.1016/j.molcata.2015.08.029
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleRemoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución