dc.contributor | Bolívar Vergara, Diana María | |
dc.contributor | Echeverri Zuluaga, José Julián | |
dc.contributor | Barahona Rosales, Rolando | |
dc.contributor | López Herrera, Albeiro | |
dc.contributor | Gómez Martínez, Juan Esteban | |
dc.contributor | Rodríguez Osorio, Nélida | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | Biodiversidad y Génetica Molecular \'BIOGEM\' | |
dc.creator | Barrientos Grajales, Sorany Milena | |
dc.date.accessioned | 2020-11-24T16:18:57Z | |
dc.date.accessioned | 2022-09-21T13:55:25Z | |
dc.date.available | 2020-11-24T16:18:57Z | |
dc.date.available | 2022-09-21T13:55:25Z | |
dc.date.created | 2020-11-24T16:18:57Z | |
dc.date.issued | 2020-11-11 | |
dc.identifier | Barrientos Grajales S.M. 2020. Efecto de la suplementación lipídica en vacas Holstein lactantes, sobre el perfil de ácidos grasos de la leche, perfil metabólico y su asociación con la expresión génica en tejido mamario | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78650 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3355434 | |
dc.description.abstract | La leche es un alimento de origen animal que desde hace muchos años ha formado parte de la dieta humana y representa para la población una fuente fundamental de nutrientes y energía en las distintas etapas de la vida. Desde el punto de vista nutricional, la leche es un alimento básico en el marco de una dieta equilibrada, ya que en su composición están presentes numerosos nutrientes esenciales para la salud y el bienestar humano en cantidades relativamente elevadas, y con una adecuada biodisponibilidad. Siendo la leche una fuente importante de ácidos grasos, principalmente saturados, su consumo se ha disminuido o ha sido reemplazado por otro tipo de productos, con el fin de reducir la ingesta de este tipo de nutrientes que en los últimos años se ha asociado con el incremento del colesterol sanguíneo y con un mayor riesgo de ateroesclerosis y enfermedades coronarias. Sin embargo, estudios recientes muestran que el consumo de productos lácteos tiene efectos benéficos para la salud, debido a la gran cantidad de nutrientes que conforman la matriz compleja de este alimento, a demás, se han encontrado beneficios adicionales si estos productos se encuentran enriquecidos con acidos grasos monoinsaturados (MUFA). La leche producida en los sistemas de lechería especializada en pastoreo, cuenta con un mayor contenido de ácidos grasos insaturados en comparación con otros sistemas, lo cual constituye una ventaja para el desarrollo de estrategias que permitan incrementar los contenidos de ácidos grasos insaturados (UFA). La suplementación con fuentes lipídicas es una de ellas, sin embargo, la síntesis de la grasa láctea depende de multiples factores ambientales, fisiológicos y nutricionales, los cuales interactúan entre si e influyen en el metabolismo del tejido mamario y en la expresión génica. Dentro del complejo enzimático que participa en la síntesis de ácidos grasos (AG), se encuentra la estearoil CoA desaturasa, encargada en insertar insaturaciones en el carbono 9 de los AG de 10 a 18 carbonos y es la responsable de la síntesis endógena del ácido linoleico conjugado (CLA). El gen que codifica para esta enzima tiene un polimorfismo que se ha asociado con mayores contenidos de UFA en leche, pero aun se desconoce su frecuencia en poblaciones bovinas del país. Como respuesta a esta problemática se plantea la presente investigación que tiene como objetivo evaluar la relación del polimorfismo A293V del gen SCD1 con la composición de la leche y la grasa láctea, así como el efecto de la suplementación lipídica, sobre el perfil de ácidos grasos de la leche, algunos parámetros metabólicos y su asociación con la expresión génica en tejido mamario de vacas Holstein lactantes. Para tal fin se planteó el desarrollo de esta investigación en tres fases: en la primera fase se determinó las frecuencias alélicas y genotípicas del polimorfismo A293V del gen SCD1, encontrando que el genotipo AA es el más abundante en la población Holstein de Antioquia, además los animales que presentaron dicho genotipo mostraron un mayor contenido de grasa en la leche en términos de porcentaje y kilogramos, respecto a los animales con genotipo VV. Adicionalmente, los animales con genotipos AA y AV presentan mejores contenidos de ácido miristoleico (C14:1 cis-9) y una mayor conversión del ácido saturado C14:0 a su forma monoinsaturada, aunque no hubo efecto significativo sobre la insaturación de los ácidos grasos C16:0, C18:0 y C18:1 tras-11. En la segunda fase, se realizó una técnica de gas in vitro como prueba preliminar para seleccionar el tratamiento que se implementaría en el ensayo in vivo, en ella se estudió el proceso de biohidrogenación ruminal de los aceites de girasol y linaza, solos o mezclados con aceite de pescado, identificando que todos los aceites evaluados, redujeron la digestibilidad in vitro de la materia seca (DIVMS) de manera significativa y la digestibilidad in vitro de la fibra en detergente neutro (DIVFDN) fue afectada por la inclusión de aceite de girasol. Así mismo, el aceite de pescado mostró tener un efecto protector durante las primeras 12 horas de incubación, sobre la biohidrogenación de los UFA de 18 carbonos y los ácidos grasos polinsaturados (PUFA), cuando se mezcla con aceite de linaza. En la tercera y última fase, teniendo en cuenta los resultados de la prueba in vitro, se desarrolló un experimento en el cual se evaluó el efecto de la inclusión de 700 gr/día de aceite de girasol en la dieta de vacas lactantes, sobre la expresión génica del tejido mamario. Se identificaron 13 genes expresados diferencialmente (DEGs), los cuales participan principalmente en procesos de respuesta inmune, diferenciación celular y trasporte de membrana, además, los genes más abundantes dentro del transcriptoma mamario correspondieron a las principales proteínas de la leche (CSN1S1, CSN2, PAEP (LGB), CSN3, CSN1S2 y LALBA). Finalmente, se analizó el efecto de la suplementación lipídica sobre el perfil de ácidos grasos de la leche y sobre algunos metabolitos sanguíneos. A partir de este análisis se estableció que el aceite de girasol tiene efectos significativos sobre el perfil lipídico de la leche, reduciendo el contenido de algunos de los SFA de cadena corta y media. Adicionalmente se indentificó que su inclusión a razón de 700 gr/día en dietas de vacas lactantes, no afectó el consumo de matería seca del forraje ni los niveles sanguíneos de los metabolitos evaluados.La presente investigación brinda nuevo conocimiento respecto al impacto que tiene la suplementación lipídica en la dinámica ruminal, el perfil metabólico y en los mecanismos moleculares que se desarrollan en la glándula mamaria de vacas lactantes, contribuyendo al desarrollo de estrategias desde un enfoque genético y nutricional para el mejoramiento de la calidad composicional de los productos lácteos. | |
dc.description.abstract | Milk is a food of animal origin that for several years has been part of the human diet and represents for the population a fundamental source of nutrients and energy in the different stages of life. From a nutritional point of view, milk is a basic food in the framework of a balanced diet, since its composition contains many nutrients essential for human health and well-being in relatively high quantities, and with adequate bioavailability. As milk is an important source of fatty acids, mainly saturated, its consumption has been reduced or has been replaced by other types of products, in order to reduce the intake of this type of nutrients that in recent years has been associated with increase in blood cholesterol and with an increased risk of atherosclerosis and coronary heart disease. However, recent studies show that the consumption of dairy products has beneficial effects on health, due to the large amount of nutrients that make up the complex matrix of this food, additional benefits have been found if these products are enriched with monounsaturated fatty acids (MUFA). Milk produced in specialized grazing dairy systems has a higher content of unsaturated fatty acids compared to other systems, which constitutes an advantage for the development of strategies that allow increasing the content of unsaturated fatty acids (UFA). Supplementation with lipid sources is one of them, however, the synthesis of milk fat depends on multiple environmental, physiological and nutritional factors, which interact with each other and influence the metabolism of breast tissue and gene expression. Within the enzymatic complex that participates in the synthesis of fatty acids (FA), is the stearoyl CoA desaturase, responsible for inserting unsaturations in carbon 9 of the FAs of 10 to 18 carbons and is responsible for the endogenous synthesis of linoleic acid conjugate (CLA). The gene that codes for this enzyme has a polymorphism that has been associated with higher UFA contents in milk, but its frequency in bovine populations of the country is still unknown. In response to this problem, the present investigation is proposed that aims to evaluate the relationship of the A293V polymorphism of the SCD1 gene with the composition of milk and milk fat, as well as the effect of lipid supplementation on the fatty acid profile of milk, some metabolic parameters and their association with gene expression in breast tissue of lactating Holstein cows. For this purpose, the development of this research in three phases was proposed: in the first phase, the allelic and genotypic frequencies of the A293V polymorphism of the SCD1 gene were determined, finding that the AA genotype is the most abundant in the Holstein population of Antioquia, in addition to Animals that presented this genotype showed a higher fat content in milk in terms of percentage and kilograms, compared to animals with VV genotype. Additionally, animals with AA and AV genotypes have better myristoleic acid contents (C14: 1 cis-9) and a higher conversion of C14: 0 saturated acid to its monounsaturated form, although there was no significant effect on the unsaturation of fatty acids. C16: 0, C18: 0 and C18: 1 after -11 In the second phase, an in vitro gas technique was performed as a preliminary test to select the treatment that would be implemented in the in vivo test, in it the ruminal biohydrogenation process of sunflower and linseed oils was studied, alone or mixed with fish oil, identifying that all the evaluated oils reduced the in vitro digestibility. of dry matter (DIVMS) significantly and in vitro fiber digestibility in neutral detergent (DIVFDN) was affected by the inclusion of sunflower oil. Likewise, fish oil was shown to have a protective effect during the first 12 hours of incubation, on the biohydrogenation of 18-carbon UFA and polyunsaturated fatty acids (PUFA), when mixed with linseed oil. In the third and last phase, taking into account the results of the in vitro test, an experiment was developed in which the effect of the inclusion of 700 gr / day of sunflower oil in the diet of lactating cows was evaluated, on the gene expression of breast tissue. Thirteen differentially expressed genes (DEGs) were identified, which mainly participate in immune response processes, cell differentiation and membrane transport, in addition, the most abundant genes within the mammary transcriptome corresponded to the main milk proteins (CSN1S1, CSN2, PAEP (LGB), CSN3, CSN1S2 and LALBA). Finally, the effect of lipid supplementation on the fatty acid profile of milk and on some blood metabolites was analyzed. From this analysis it was established that sunflower oil has significant effects on the lipid profile of milk, reducing the content of some of the short and medium chain SFAs. Additionally, it was identified that its inclusion at a rate of 700 gr / day in the diets of lactating cows did not affect the dry matter intake of the forage or the blood levels of the metabolites evaluated. The present research provides new knowledge regarding the impact of lipid supplementation on ruminal dynamics, metabolic profile and molecular mechanisms that develop in the mammary gland of lactating cows, contributing to the development of strategies from a genetic and nutritional approach to improving the compositional quality of dairy products. | |
dc.language | spa | |
dc.publisher | Medellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias | |
dc.publisher | Departamento de Producción Animal | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Angulo J, Mahecha L, Nuernberg K, Nuernberg G, Dannenberger D, Olivera M, Boutinaud M, Leroux C, Albrecht E, Bernard L (2012) Effects of polyunsaturated fatty acids from plant oils and algae on milk fat yield and composition are associated with mammary lipogenic and SREBF1 gene expression. Animal 6, 1961–1972. doi:10.1017/S1751731112000845. | |
dc.relation | Bernard L, Bonnet M, Delavaud C, Delosière M, Ferlay A, Fougère H, Graulet B (2018) Milk Fat Globule in Ruminant: Major and Minor Compounds, Nutritional Regulation and Differences Among Species. European Journal of Lipid Science and Technology 120,. doi:https://doi.org/10.1002/ejlt.201700039. | |
dc.relation | Bernard L, Leroux C, Chilliard Y (2013) Nutritional regulation of mammary lipogenesis and milk fat in ruminant : contribution to sustainable milk production. Revista Colombiana de Ciencias Pecuarias 26, 292–302. | |
dc.relation | Bruen R, Fitzsimons S, Belton O (2017) Atheroprotective effects of conjugated linoleic acid. British Journal of Clinical Pharmacology 83, 46–53. doi:10.1111/bcp.12948. | |
dc.relation | Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 109, 828–855. doi:10.1002/ejlt.200700080. | |
dc.relation | Corl BA, Baumgard LH, Dwyer DA, Griinari JM, Phillips BS, Bauman DE (2001) The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. The Journal of Nutritional Biochemistry 12, 622–630. doi:10.1016/S0955-2863(01)00180-2. | |
dc.relation | Doreau M, Ferlay A (2015) Digestion and utilisation of fatty acids by ruminants. Animal Feed Science and Technology 45, 379–396. doi:10.1016/0377-8401(94)90039-6. | |
dc.relation | Feeney EL, McKinley MC (2020) “The dairy food matrix: What it is and what it does.” (Elsevier Inc.) doi:10.1016/b978-0-12-815603-2.00008-5. | |
dc.relation | Forouzanfar MH, Alexander L, Bachman VF, Biryukov S, Brauer M, Casey D, Coates MM, Delwiche K, Estep K, Frostad JJ, Astha KC, Kyu HH, Moradi-Lakeh M, Ng M, Slepak E, Thomas BA, et al. (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet 386, 2287–2323. doi:10.1016/S0140-6736(15)00128-2. | |
dc.relation | Givens DI (2017) Saturated fats, dairy foods and health: A curious paradox? Nutrition Bulletin 42, 274–282. doi:10.1111/nbu.12283. | |
dc.relation | Hanus O, Samkova E, Křížova L, Hasoňova L, Kala R (2018) Role of fatty acids in milk fat and the influence of selected factors on their variability—a review. Molecules 23, 1–32. doi:10.3390/molecules23071636. | |
dc.relation | Kalač P, Samková E (2010) The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech Journal of Animal Science 55, 521–537. doi:10.17221/2485-cjas. | |
dc.relation | Kaput J, Rodriguez RL (2004) Nutritional genomics: the next frontier in the postgenomic era. Physiological genomics 16, 166–177. doi:10.1152/physiolgenomics.00107.2003. | |
dc.relation | Kouba JM, Burns TA, Webel SK (2019) Effect of dietary supplementation with long-chain n-3 fatty acids during late gestation and early lactation on mare and foal plasma fatty acid composition, milk fatty acid composition, and mare reproductive variables. Animal Reproduction Science 203, 33–44. doi:10.1016/j.anireprosci.2019.02.005. | |
dc.relation | Markey O, Vasilopoulou D, Kliem KE, Koulman A, Fagan CC, Summerhill K, Wang LY, Grandison AS, Humphries DJ, Todd S, Jackson KG, Givens DI, Lovegrove JA (2017) Plasma phospholipid fatty acid profile confirms compliance to a novel saturated fat-reduced, monounsaturated fat-enriched dairy product intervention in adults at moderate cardiovascular risk: a randomized controlled trial. Nutrition Journal 16,. doi:10.1186/s12937-017-0249-2. | |
dc.relation | Aguilar G. OX, Moreno M. BM, Pabón R. ML, Carulla F. JE (2009) Efecto del consumo de kikuyo (Pennisetum clandestinum) o raigrás (Lolium hibridum) sobre la concentración de ácido linoléico conjugado y el perfil de ácidos grasos de la grasa láctea. Livestock Research for Rural Development 21, 1–16. | |
dc.relation | Akraim F, Nicot MC, Juaneda P, Enjalbert F (2007) Conjugated linolenic acid (CLnA), conjugated linoleic acid (CLA) and other biohydrogenation intermediates in plasma and milk fat of cows fed raw or extruded linseed. Animal 1, 835. doi:10.1017/S175173110700002X. | |
dc.relation | Angulo J, Mahecha L, Olivera M (2009) Síntesis, composición y modificación de la grasa de la leche bovina: Un nutriente valioso para la salud humana. Revista MVZ Cordoba 14, 1856–1866. | |
dc.relation | Barber MC, Clegg RA, Travers MT, Vernon RG (1997) Lipid metabolism in the lactating mammary gland. Biochimica et Biophysica Acta - Lipids and Lipid Metabolism. doi:10.1016/S0005-2760(97)00079-9. | |
dc.relation | Barton L, Kott T, Bures D, Rehák D, Zahrádková R, Kottová B (2010) The polymorphisms of stearoyl-CoA desaturase (SCD1) and sterol regulatory element binding protein-1 (SREBP-1) genes and their association with the fatty acid profile of muscle and subcutaneous fat in Fleckvieh bulls. Meat science 85, 15–20. doi:10.1016/j.meatsci.2009.11.016. | |
dc.relation | Bauman D, McGuire MA, Harvatine KJ (2011) Mammary gland , milk biosynthesis and secretion. “Encycl. dairy Sci.” (Eds J Fuquay, P Fox, M PLH) pp. 352–358. (Elsevier: London, UK) | |
dc.relation | Bauman DE, Perfield JW, Harvatine KJ, Baumgard LH (2008) Regulation of fat synthesis by conjugated linoleic acid: lactation and the ruminant model. The Journal of nutrition 138, 403–409. | |
dc.relation | Bernard L, Bonnet M, Delavaud C, Delosière M, Ferlay A, Fougère H, Graulet B (2018) Milk Fat Globule in Ruminant: Major and Minor Compounds, Nutritional Regulation and Differences Among Species. European Journal of Lipid Science and Technology 120,. doi:https://doi.org/10.1002/ejlt.201700039. | |
dc.relation | Bernard L, Leroux C, Chilliard Y (2008) Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv. Exp. Med. Biol. 606, 67–108. doi:10.1007/978-0-387-74087-4-2. | |
dc.relation | Bernard L, Leroux C, Chilliard Y (2013) Nutritional regulation of mammary lipogenesis and milk fat in ruminant : contribution to sustainable milk production. Revista Colombiana de Ciencias Pecuarias 26, 292–302. | |
dc.relation | Bionaz M, Loor JJ (2008) Gene networks driving bovine milk fat synthesis during the lactation cycle. 21, 1–21. doi:10.1186/1471-2164-9-366. | |
dc.relation | Bonnet M, Leroux C, Faulconnier Y, Hocquette JF, Bocquier F, Martin P, Chilliard Y (2000) Lipoprotein lipase activity and mRNA are up-regulated by refeeding in adipose tissue and cardiac muscle of sheep. The Journal of nutrition 130, 749–756. | |
dc.relation | Brandt R, Pepperle M, Otto A, Kraft R, Boehmer FD, Grosse R (1988) A 13-kilodalton protein purified from milk fat globule membranes is closely related to a mammary-derived growth inhibitor. Biochemistry 27, 1420–5. http://www.ncbi.nlm.nih.gov/pubmed/3365397. | |
dc.relation | Bruen R, Fitzsimons S, Belton O (2017) Atheroprotective effects of conjugated linoleic acid. British Journal of Clinical Pharmacology 83, 46–53. doi:10.1111/bcp.12948. | |
dc.relation | Buccioni A, Decandia M, Minieri S, Molle G, Cabiddu A (2012) Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Animal Feed Science and Technology 174, 1–25. doi:10.1016/j.anifeedsci.2012.02.009. | |
dc.relation | Castillo Vargas JA (2012) Cinética de biohidrogenación in vitro de ácidos grasos poliinsaturados en fluido ruminal. 95. http://www.bdigital.unal.edu.co/7810/. | |
dc.relation | Chait A, Kim F (2010) Saturated fatty acids and inflammation: Who pays the toll? Arterioscler. Thromb. Vasc. Biol. 30, 692–693. doi:10.1161/ATVBAHA.110.203984. | |
dc.relation | Chilliard Y, Ferlay A, Mansbridge RM, Doreau M (2000) Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Annales de Zootechnie 181–205. doi:10.1051/animres:2000117. | |
dc.relation | Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 109, 828–855. doi:10.1002/ejlt.200700080. | |
dc.relation | Clegg RA (1981) Triacylglycerol hydrolysis by cells isolated from lactating rat mammary gland. Biochimica et biophysica acta 663, 598–612. http://www.ncbi.nlm.nih.gov/pubmed/7225400. | |
dc.relation | Clegg RA, Barber MC, Pooley L, Ernens I, Larondelle Y, Travers MT (2001) Milk fat synthesis and secretion: molecular and cellular aspects. Livestock Production Science 70, 3–14. doi:10.1016/S0301-6226(01)00194-4. | |
dc.relation | Cloonan N, Forrest ARR, Kolle G, Gardiner BBA, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Meth 5, 613–619. http://dx.doi.org/10.1038/nmeth.1223. | |
dc.relation | Conte G, Mele M, Chessa S, Castiglioni B, Serra A, Pagnacco G, Secchiari P (2010) Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. Journal of dairy science 93, 753–63. doi:10.3168/jds.2009-2581. | |
dc.relation | Corl BA, Baumgard LH, Dwyer DA, Griinari JM, Phillips BS, Bauman DE (2001) The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. The Journal of Nutritional Biochemistry 12, 622–630. doi:10.1016/S0955-2863(01)00180-2. | |
dc.relation | Cruz-Hernandez C, Kramer JKG, Kennelly JJ, Glimm DR, Sorensen BM, Okine EK, Goonewardene L a, Weselake RJ (2007) Evaluating the conjugated linoleic acid and trans 18:1 isomers in milk fat of dairy cows fed increasing amounts of sunflower oil and a constant level of fish oil. Journal of dairy science 90, 3786–3801. | |
dc.relation | Czerkawski JW (1984) Microbial fermentation in the rumen. The Proceedings of the Nutrition Society 43, 101–118. doi:10.1079/PNS19840035. | |
dc.relation | Debusk RM, Fogarty CP, Ordovas JM, Kornman KS (2005) Nutritional genomics in practice: Where do we begin? Journal of the American Dietetic Association 105, 589–598. doi:10.1016/j.jada.2005.01.002 | |
dc.relation | Destaillats F, Trottier JP, Galvez JMG, Angers P (2005) Analysis of alpha-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. Journal of dairy science 88, 3231–3239. doi:10.3168/jds.S0022-0302(05)73006-X. | |
dc.relation | Dias CB, Garg R, Wood LG, Garg ML (2014) Saturated fat consumption may not be the main cause of increased blood lipid levels. Medical Hypotheses 82, 187–195. doi:10.1016/j.mehy.2013.11.036. | |
dc.relation | Doreau M, Ferlay A (1994) Digestion and utilisation of fatty acids by ruminants. Animal Feed Science and Technology 45, 379–396. doi:10.1016/0377-8401(94)90039-6. | |
dc.relation | Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. American Journal of Botany 99, 175–185. doi:10.3732/ajb.1200020. | |
dc.relation | Espenshade PJ, Hughes AL (2007) Regulation of sterol synthesis in eukaryotes. Annual review of genetics 41, 401–427. doi:10.1146/annurev.genet.41.110306.130315. | |
dc.relation | Fay JP, Jakober KD, Cheng KJ, Costerton JW (1990) Esterase activity of pure cultures of rumen bacteria as expressed by the hydrolysis of p-nitrophenylpalmitate. Canadian journal of microbiology 36, 585–589. | |
dc.relation | Foltys V, Kirchnerová K (2012) Impact of lactation stage and milk production on milk fat fatty acids ratio. Slovak J Anim Sci 45, 30–35. | |
dc.relation | Fujino T, Kondo J, Ishikawa M, Morikawa K, Yamamoto TT (2001) Acetyl-CoA Synthetase 2, a Mitochondrial Matrix Enzyme Involved in the Oxidation of Acetate. Journal of Biological Chemistry 276, 11420–11426. doi:10.1074/jbc.M008782200. | |
dc.relation | Furlan LR, Ferraz ALJ, Bortolossi JC (2007) A genômica funcional no âmbito da produção animal: estado da arte e perspectivas. Revista Brasileira de Zootecnia 36, 331–341. doi:10.1590/S1516-35982007001000030. | |
dc.relation | Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nature methods 8, 469–477. doi:10.1038/nmeth.1613. | |
dc.relation | Gerson T, King ASD, Kelly KE, Kelly WJ (1988) Influence of particle size and surface area on in vitro rates of gas production, lipolysis of triacylglycerol and hydrogenation of linoleic acid by sheep rumen digesta or Ruminococcus flavefaciens. The Journal of Agricultural Science 110, 31–37. doi:10.1017/S002185960007965X. | |
dc.relation | Givens DI (2017) Saturated fats, dairy foods and health: A curious paradox? Nutrition Bulletin 42, 274–282. doi:10.1111/nbu.12283. | |
dc.relation | Hanus O, Samkova E, Křížova L, Hasoňova L, Kala R (2018) Role of fatty acids in milk fat and the influence of selected factors on their variability—a review. Molecules 23, 1–32. doi:10.3390/molecules23071636. | |
dc.relation | Harfoot CG, Noble RC, Moore JH (1975) The role of plant particles, bacteria and cell-free supernatant fractions of rumen contents in the hydrolysis of trilinolein and the subsequent hydrogenation of linoleic acid. Antonie van Leeuwenhoek 41, 533–542. doi:10.1007/BF02565095. | |
dc.relation | Henderson C (1971) A study of the lipase produced by Anaerovibrio lipolytica, a rumen bacterium. Journal of general microbiology 65, 81–89. doi:10.1099/00221287-65-1-81. | |
dc.relation | Hoashi S, Ashida N, Ohsaki H, Utsugi T, Sasazaki S, Taniguchi M, Oyama K, Mukai F, Mannen H (2007) Genotype of bovine sterol regulatory element binding protein-1 (SREBP-1) is associated with fatty acid composition in Japanese Black cattle. Mammalian Genome 18, 880–886. doi:10.1007/s00335-007-9072-y. | |
dc.relation | Hosseini-Esfahani F, Koochakpoor G, Tahmasebinejad Z, Khalili D, Mirmiran P, Azizi F (2020) The association of dietary macronutrients composition with incidence of cardiovascular disease, using iso-energetic substitution models: Tehran Lipid and Glucose Study. Nutrition, Metabolism and Cardiovascular Diseases. doi:10.1016/j.numecd.2020.07.017. | |
dc.relation | Jacobs AAA, van Baal J, Smits MA, Taweel HZH, Hendriks WH, van Vuuren AM, Dijkstra J (2011) Effects of feeding rapeseed oil, soybean oil, or linseed oil on stearoyl-CoA desaturase expression in the mammary gland of dairy cows. Journal of dairy science 94, 874–887. doi:10.3168/jds.2010-3511. | |
dc.relation | Jäkälä P, Vapaatalo H (2010) Antihypertensive peptides from milk proteins. Pharmaceuticals 3, 251–272. doi:10.3390/ph3010251. | |
dc.relation | Jenkins TC (1993a) Regulating Lipid Metabolism Productive Efficiency to Increase Regulation of Lipid Metabolism in the Rumen. Journal of Nutrition. | |
dc.relation | Jenkins TC (1993b) Lipid metabolism in the rumen. Journal of dairy science 76, 3851–3863. doi:10.1016/0079-6832(78)90004-6. | |
dc.relation | Jensen RG, Ferris AM, Lammi-Keefe CJ (1991) The composition of milk fat. Journal of dairy science 74, 3228–43. doi:10.3168/jds.S0022-0302(91)78509-3. | |
dc.relation | Joseph SJ, Robbins KR, Pavan E, Pratt SL, Duckett SK, Rekaya R (2010) Effect of diet supplementation on the expression of bovine genes associated with fatty acid synthesis and metabolism. Bioinformatics and Biology Insights 4, 19–31. | |
dc.relation | Kalač P, Samková E (2010) The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech Journal of Animal Science 55, 521–537. doi:10.17221/2485-cjas. | |
dc.relation | Kalscheur KF, Teter BB, Piperova LS, Erdman R a (1997) Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. Journal of dairy science 80, 2104–2114. doi:10.3168/jds.S0022-0302(97)76156-3. | |
dc.relation | Kaput J, Ordovas JM, Ferguson L, van Ommen B, Rodriguez RL, Allen L, Ames BN, Dawson K, German B, Krauss R, Malyj W, Archer MC, Barnes S, Bartholomew A, Birk R, van Bladeren P, Bradford KJ, (2005) The case for strategic international alliances to harness nutritional genomics for public and personal health. The British journal of nutrition 94, 623–632. doi:10.1079/BJN20051585. | |
dc.relation | Kaput J, Rodriguez RL (2004) Nutritional genomics: the next frontier in the postgenomic era. Physiological genomics 16, 166–177. doi:10.1152/physiolgenomics.00107.2003. | |
dc.relation | Kepler CR, Hirons KP, Tove SB (1966) Intermediates and Products of the Biohydrogenation of Linoleic Acid by Intermediates of Linoleic and Products of the Biohydrogenation Acid by Butyrivibrio fibrisolvens. Journal of Biological Chemistry 241, 1350–1354. | |
dc.relation | Kgwatalala PM, Ibeagha-Awemu EM, Mustafa AF, Zhao X (2009) Stearoyl-CoA desaturase 1 genotype and stage of lactation influences milk fatty acid composition of Canadian Holstein cows. Animal Genetics 40, 609–615. doi:10.1111/j.1365-2052.2009.01887.x. | |
dc.relation | Kim EJ, Huws S a, Lee MRF, Wood JD, Muetzel SM, Wallace RJ, Scollan ND (2008) Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. The Journal of nutrition 138, 889–896. | |
dc.relation | Kim Y, Je Y, Giovannucci EL (2020) Association between dietary fat intake and mortality from all-causes, cardiovascular disease , and cancer : A systematic review and meta- analysis of prospective cohort studies. Clinical Nutrition. doi:10.1016/j.clnu.2020.07.007. | |
dc.relation | Latham MJ, Storry JE, Sharpe ME (1972) Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Applied microbiology 24, 871–877. | |
dc.relation | Lengi AJ, Corl BA (2007) Identification and characterization of a novel bovine stearoyl-CoA desaturase isoform with homology to human SCD5. Lipids 42, 499–508. doi:10.1007/s11745-007-3056-2. | |
dc.relation | Livingstone KM, Lovegrove JA, Givens DI (2012) The impact of substituting SFA in dairy products with MUFA or PUFA on CVD risk: Evidence from human intervention studies. Nutr. Res. Rev. 25, 193–206. doi:10.1017/S095442241200011X. | |
dc.relation | Loor JJ, Ueda K, Ferlay a, Chilliard Y, Doreau M (2004) Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage:concentrate ratio and linseed oil in dairy cows. Journal of dairy science 87, 2472–2485. doi:10.3168/jds.S0022-0302(04)73372-X. | |
dc.relation | Mach N, Jacobs a. a. a., Kruijt L, van Baal J, Smits M a. (2011) Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids. Animal 5, 1217–1230. doi:10.1017/S1751731111000103. | |
dc.relation | Markey O, Kliem KE (2020) “Does modifying dairy fat composition by changing the diet of the dairy cow provide health benefits?” (Elsevier Inc.) doi:10.1016/b978-0-12-815603-2.00003-6. | |
dc.relation | Markey O, Vasilopoulou D, Givens DI, Lovegrove JA (2014) Dairy and cardiovascular health: Friend or foe? Nutrition Bulletin 39, 161–171. doi:10.1111/nbu.12086. | |
dc.relation | Markey O, Vasilopoulou D, Kliem KE, Koulman A, Fagan CC, Summerhill K, Wang LY, Grandison AS, Humphries DJ, Todd S, Jackson KG, Givens DI, Lovegrove JA (2017) Plasma phospholipid fatty acid profile confirms compliance to a novel saturated fat-reduced, monounsaturated fat-enriched dairy product intervention in adults at moderate cardiovascular risk: a randomized controlled trial. Nutrition Journal 16,. doi:10.1186/s12937-017-0249-2. | |
dc.relation | Mashek DG, Coleman RA (2006) Cellular fatty acid uptake: the contribution of metabolism. Current opinion in lipidology 17, 274–8. doi:10.1097/01.mol.0000226119.20307.2b. | |
dc.relation | Mazidi M, Mikhailidis DP, Sattar N, Toth PP, Judd S, Blaha MJ, Hernandez A V., Penson PE, Banach M (2020) Association of types of dietary fats and all-cause and cause-specific mortality: A prospective cohort study and meta-analysis of prospective studies with 1,148,117 participants. Clinical Nutrition 1–10. doi:10.1016/j.clnu.2020.03.028. | |
dc.relation | Mcarthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F (1999) Cellular uptake and intracellular trafficking of long chain fatty acids. 40, 1371–1383. | |
dc.relation | McKain N, Shingfield KJ, Wallace RJ (2010) Metabolism of conjugated linoleic acids and 18 : 1 fatty acids by ruminal bacteria: Products and mechanisms. Microbiology 156, 579–588. doi:10.1099/mic.0.036442-0. | |
dc.relation | Mendoza A, Cajarville C, Repetto JL (2016) Short communication: Intake, milk production, and milk fatty acid profile of dairy cows fed diets combining fresh forage with a total mixed ration. Journal of Dairy Science 99, 1938–1944. doi:10.3168/jds.2015-10257. | |
dc.relation | Meyers BC, Galbraith DW, Nelson T, Agrawal V (2004) Methods for transcriptional profiling in plants. Be fruitful and replicate. Plant physiology 135, 637–652. doi:10.1104/pp.104.040840. | |
dc.relation | Moon CD, Pacheco DM, Kelly WJ, Leahy SC, Li D, Kopečný J, Attwood GT (2008) Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. International Journal of Systematic and Evolutionary Microbiology 58, 2041–2045. doi:10.1099/ijs.0.65845-0. | |
dc.relation | Morganti S, Tarantino P, Ferraro E, D’Amico P, Viale G, Trapani D, Duso BA, Curigliano G (2019) Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Critical Reviews in Oncology/Hematology 133, 171–182. doi:10.1016/j.critrevonc.2018.11.008. | |
dc.relation | Morin RD, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh TJ, McDonald H, Varhol R, Jones SJM, Marra M a. (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 45, 81–94. doi:10.2144/000112900. | |
dc.relation | Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth 5, 621–628. http://dx.doi.org/10.1038/nmeth.1226. | |
dc.relation | Müller M, Kersten S (2003) Nutrigenomics: goals and strategies. Nature reviews Genetics 4, 315–322. doi:10.1038/nrg1047. | |
dc.relation | Mutch DM, Wahli W, Williamson G (2005) Nutrigenomics and nutrigenetics: the emerging faces of nutrition. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19, 1602–1616. doi:10.1096/fj.05-3911rev. | |
dc.relation | Nafikov R a, Schoonmaker JP, Korn KT, Noack K, Garrick DJ, Koehler KJ, Minick-Bormann J, Reecy JM, Spurlock DE, Beitz DC (2013) Sterol regulatory element binding transcription factor 1 (SREBF1) polymorphism and milk fatty acid composition. Journal of dairy science 96, 2605–16. doi:10.3168/jds.2012-6075. | |
dc.relation | Nagalakshmi U, Wang Z, Waren K, Shou C, Raha D, Marcjk G, Snyder M (2008) The transcrptional landscape oh the yeast genome defined by RNA sequensing. Science 320, 1344–1349. doi:10.1126/science.1158441. | |
dc.relation | Ordovas JM, Mooser V (2004) Nutrigenomics and nutrigenetics. Current Opinion in Lipidology 15,. http://journals.lww.com/co-lipidology/Fulltext/2004/04000/Nutrigenomics_and_nutrigenetics.2.aspx. | |
dc.relation | Palmquist DL (2009) Milk fat: Origin of fatty acids and influence of nutritional factors thereon. “Adv. Dairy Chem.” pp. 43–92. (Springer US: Boston, MA) doi:10.1007/0-387-28813-9_2. | |
dc.relation | Palmquist DL, Beaulieu a D, Barbano DM (1993) Feed and animal factors influencing milk fat composition. Journal of dairy science 76, 1753–1771. doi:10.3168/jds.S0022-0302(93)77508-6. | |
dc.relation | Palmquist DL, Griinari JM (2006) Milk fatty acid composition in response to reciprocal combinations of sunflower and fish oils in the diet. Animal Feed Science and Technology 131, 358–369. doi:10.1016/j.anifeedsci.2006.05.024. | |
dc.relation | Palmquist DL, Jenkins TC (1980) Fat in lactation rations: review. Journal of dairy science 63, 1–14. doi:10.3168/jds.S0022-0302(80)82881-5. | |
dc.relation | Prieto-Manrique E, Vargas-Sánchez JE, Angulo-Arizala J, Mahecha-Ledesma L (2016) Grasa y ácidos grasos en leche de vacas pastoreando, en cuatro sistemas de producción. Agronomía Mesoamericana 28, 19. doi:10.15517/am.v28i1.22816. | |
dc.relation | Robenek H, Hofnagel O, Buers I, Lorkowski S, Schnoor M, Robenek MJ, Heid H, Troyer D, Severs NJ, Sabatini DD (2006) Butyrophilin controls milk fat globule secretion. Proceedings of the National Academy of the Sciences of the United States of America 103, 10385–10390. doi:10.1073/pnas.0600795103 | |
dc.relation | Rodriguez-Cruz M, Tovar AR, Palacios-González B, Del Prado M, Torres N (2006) Synthesis of long-chain polyunsaturated fatty acids in lactating mammary gland: role of Delta5 and Delta6 desaturases, SREBP-1, PPARalpha, and PGC-1. Journal of lipid research 47, 553–560. doi:10.1194/jlr.M500407-JLR200. | |
dc.relation | Samková E, Koubová J, Hasoňová L, Hanuš O, Kala R, Kváč M, Pelikánová T, Špička J (2018) Joint effects of breed, parity, month of lactation, and cow individuality on the milk fatty acids composition. Mljekarstvo 68, 98–107. doi:10.15567/mljekarstvo.2018.0203. | |
dc.relation | Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: Biotechnology’s discovery platform for functional genomics. Trends Biotechnol. 16, 301–306. doi:10.1016/S0167-7799(98)01219-0. | |
dc.relation | Schennink a, Heck JML, Bovenhuis H, Visker MHPW, van Valenberg HJF, van Arendonk J a M (2008) Milk fatty acid unsaturation: genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1). Journal of dairy science 91, 2135–43. doi:10.3168/jds.2007-0825 | |
dc.relation | Sethi S, Tyagi SK, Anurag RK (2016) Plant-based milk alternatives an emerging segment of functional beverages: a review. Journal of Food Science and Technology 53, 3408–3423. doi:10.1007/s13197-016-2328-3. | |
dc.relation | Shalon D, Smith SJ, Brown PO (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome research 6, 639–645. doi:10.1101/gr.6.7.639. | |
dc.relation | Shingfield KJ, Bernard L, Leroux C, Chilliard Y (2010) Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal : an international journal of animal bioscience 4, 1140–66. doi:10.1017/S1751731110000510. | |
dc.relation | Singh S, Clement Hawke J (1979) The in vitro lipolysis and biohydrogenation of monogalactosyldiglyceride by whole rumen contents and its fractions. Journal of the Science of Food and Agriculture 30, 603–612. doi:10.1002/jsfa.2740300609. | |
dc.relation | Siri-Tarino P, Chiu S, Bergeron N, Krauss RM (2016) SFA vs PUFA vs CHO for CDV prevension and treatment. Annual Review of Nutrition 517–543. doi:10.1146/annurev-nutr-071714-034449.Saturated. | |
dc.relation | Smith LM, Lowry RR (1962) Fatty Acid Composition of the Phospholipids and Other Lipids in Milk. Journal of Dairy Science 45, 581–588. doi:10.3168/jds.S0022-0302(62)89454-5. | |
dc.relation | Soedamah-Muthu SS, Guo J (2020) “Dairy consumption and cardiometabolic diseases: Evidence from prospective studies.” (Elsevier Inc.) doi:10.1016/b978-0-12-815603-2.00001-2. | |
dc.relation | Soto J, Lopez C (2012) RNA-seq: herramienta transcriptómica útil para el estudio de interacciones planta-patógeno. Red de Revistas Cientificas de America Latina, el Caribe, España y Portugal 16, 101–113 | |
dc.relation | De Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J, Anand SS (2015) Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 351,. doi:10.1136/bmj.h3978. | |
dc.relation | Stover P (2004) Nutritional genomics. Physiological genomics 16, 161–165. doi:10.1152/physiolgenomics.00204.2003. | |
dc.relation | Taniguchi M, Mannen H, Oyama K, Shimakura Y, Oka a, Watanabe H, Kojima T, Komatsu M, Harper G., Tsuji S (2004) Differences in stearoyl-CoA desaturase mRNA levels between Japanese Black and Holstein cattle. Livestock Production Science 87, 215–220. doi:10.1016/j.livprodsci.2003.07.008. | |
dc.relation | Vafeiadou K, Weech M, Altowaijri H, Todd S, Yaqoob P, Jackson KG, Lovegrove JA (2015) Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood pressure: Results from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. American Journal of Clinical Nutrition 102, 40–48. doi:10.3945/ajcn.114.097089. | |
dc.relation | Vasilopoulou D, Markey O, Kliem KE, Fagan CC, Grandison AS, Humphries DJ, Todd S, Jackson KG, Givens DI, Lovegrove JA (2020) Reformulation initiative for partial replacement of saturated with unsaturated fats in dairy foods attenuates the increase in LDL cholesterol and improves flow-mediated dilatation compared with conventional dairy: The randomized, controlled REplacement of. American Journal of Clinical Nutrition 111, 739–748. doi:10.1093/ajcn/nqz344. | |
dc.relation | Vera JC, WHEAT CW, FESCEMYER HW, FRILANDER MJ, CRAWFORD DL, HANSKI I, MARDEN JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Molecular Ecology 17, 1636–1647. doi:10.1111/j.1365-294X.2008.03666.x. | |
dc.relation | Walsh MC, Gunn C (2020) “Non-dairy milk substitutes: Are they of adequate nutritional composition?” (Elsevier Inc.) doi:10.1016/b978-0-12-815603-2.00013-9. | |
dc.relation | Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews Genetics 10, 57–63. doi:10.1038/nrg2484. | |
dc.relation | Ward JA, Ponnala L, Weber CA (2012) Strategies for transcriptome analysis in nonmodel plants. Am. J. Bot. 99, 267–276. doi:10.3732/ajb.1100334. | |
dc.relation | Wittkopp PJ (2007) Variable gene expression in eukaryotes: a network perspective. The Journal of experimental biology 210, 1567–75. doi:10.1242/jeb.002592. | |
dc.relation | Wynn RJ, Daniel ZCTR, Flux CL, Craigon J, Salter AM, Buttery PJ (2006) Effect of feeding rumen-protected conjugated linoleic acid on carcass characteristics and fatty acid composition of sheep tissues. Journal of Animal Science 84, 3440–3450. doi:10.2527/jas.2006-159. | |
dc.relation | Yadav P, Kumar P, Mukesh M, Kataria RS, Yadav A, Mohanty AK, Mishra BP (2015) Kinetics of lipogenic genes expression in milk purified mammary epithelial cells (MEC) across lactation and their correlation with milk and fat yield in buffalo. Research in Veterinary Science 99, 129–136. doi:10.1016/j.rvsc.2015.01.003. | |
dc.relation | Zammit VA (1996) Role of insulin in hepatic fatty acid partitioning: emerging concepts. The Biochemical journal 314 ( Pt 1), 1–14. http://www.ncbi.nlm.nih.gov/pubmed/8660268. | |
dc.relation | Zeisel S (2009) Genetic polymorphisms in methyl-group metabolism and epigenetics: Lessons from humans and mouse models. Brain research 29, 997–1003. doi:10.1016/j.biotechadv.2011.08.021.Secreted. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Efecto de la suplementación lipídica en vacas Holstein lactantes, sobre el perfil de ácidos grasos de la leche, perfil metabólico y su asociación con la expresión génica en tejido mamario | |
dc.type | Otros | |