dc.creatorKhanh, Pham Duy
dc.creatorPhat, Vo Thanh
dc.date.accessioned2020-05-08T13:32:06Z
dc.date.available2020-05-08T13:32:06Z
dc.date.created2020-05-08T13:32:06Z
dc.date.issued2020
dc.identifierOptimization Letters Mar 2020
dc.identifier10.1007/s11590-020-01563-6
dc.identifierhttps://repositorio.uchile.cl/handle/2250/174566
dc.description.abstractFor a C-2-smooth function on a finite-dimensional space, a necessary condition for its quasiconvexity is the positive semidefiniteness of its Hessian matrix on the subspace orthogonal to its gradient, whereas a sufficient condition for its strict pseudoconvexity is the positive definiteness of its Hessian matrix on the subspace orthogonal to its gradient. Our aim in this paper is to extend those conditions for C-1,C-1-smooth functions by using the Frechet and Mordukhovich second-order subdifferentials.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceOptimization Letters
dc.subjectSecond-order subdifferential
dc.subjectMean value theorem
dc.subjectC-1,C-1-smooth function
dc.subjectQuasiconvexity
dc.subjectPseudoconvexity
dc.titleSecond-order characterizations of quasiconvexity and pseudoconvexity for differentiable functions with Lipschitzian derivatives
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución