dc.creatorMuñoz Rivera, Jaime E.
dc.creatorPoblete Oviedo, Verónica
dc.creatorPozo, Juan C.
dc.creatorVera, Octavio
dc.date.accessioned2020-06-22T22:53:10Z
dc.date.available2020-06-22T22:53:10Z
dc.date.created2020-06-22T22:53:10Z
dc.date.issued2020
dc.identifierReviews in Mathematical Physics Volumen: 32 Número: 5 Jun 2020
dc.identifier10.1142/S0129055X20500142
dc.identifierhttps://repositorio.uchile.cl/handle/2250/175634
dc.description.abstractWe study the existence and the asymptotic behavior of the solution of an abstract viscoelastic system submitted to non-local initial data. u(tt )+ Au - integral(t)(0) g(t - s)Bu(s)ds = 0 u(0) = xi(u) in V, u(t) (0) = eta(u) in H, where A and B are differential operators satisfying B approximate to A(alpha) for 0 <= alpha <= 1. We prove that the model is well-posed. Concerning the asymptotic behavior, we show that the exponential decay holds if and only if alpha = 1 and g goes to zero exponentially. Otherwise if 0 <= a < 1 or the kernel goes to zero polynomially, then the solution only decays polynomially. We show the optimality of our result. Finally, we consider the non-dissipative case.
dc.languageen
dc.publisherWorld Scientific Publishing
dc.sourceReviews in Mathematical Physics
dc.subjectMaterials with memory
dc.subjectAsymptotic stability
dc.subjectIndefinite dissipation
dc.titleAsymptotic to systems with memory and non-local initial data
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución