dc.creatorDeride, Julio
dc.creatorJofré Cáceres, René
dc.creatorWets, Roger J-B
dc.date.accessioned2019-12-18T19:15:34Z
dc.date.available2019-12-18T19:15:34Z
dc.date.created2019-12-18T19:15:34Z
dc.date.issued2019
dc.identifierComput Econ (2019) 53:315–342
dc.identifier10.1007/s10614-017-9733-1
dc.identifierhttps://repositorio.uchile.cl/handle/2250/172950
dc.description.abstractWe described a method to solve deterministic and stochastic Walras equilibrium models based on associating with the given problem a bifunction whose maxinf-points turn out to be equilibrium points. The numerical procedure relies on an augmentation of this bifunction. Convergence of the proposed procedure is proved by relying on the relevant lopsided convergence. In the two-stage versions of our models, deterministic and stochastic, we are mostly concerned with models that equip the agents with a mechanism to transfer goods from one time period to the next, possibly simply savings, but also allows for the transformation of goods via production.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceComputational Economics
dc.subjectWalras equilibrium
dc.subjectStochastic equilibrium
dc.subjectLopsided convergence
dc.subjectEpi-convergence
dc.subjectAugmented Walrasian
dc.subjectProgressive hedging algorithm
dc.titleSolving Deterministic and Stochastic Equilibrium Problems via Augmented Walrasian
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución