dc.creator | Pardo, Ángel | |
dc.date.accessioned | 2021-08-09T15:27:23Z | |
dc.date.available | 2021-08-09T15:27:23Z | |
dc.date.created | 2021-08-09T15:27:23Z | |
dc.date.issued | 2020 | |
dc.identifier | Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze (2020) volumen 21 Págs. 495-534 | |
dc.identifier | 0391-173X | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/181160 | |
dc.description.abstract | We study periodic wind-tree models, billiards in the plane endowed
with Z2-periodically located identical connected symmetric right-angled
obstacles. We exhibit e ective asymptotic formulas for the number of periodic
billiard trajectories (up to isotopy and Z2-translations) on Veech wind-tree
billiards, that is, wind-tree billiards whose underlying compact translation surfaces
are Veech surfaces. This is the case, for example, when the side-lengths
of the obstacles are rational. We show that the error term depends on spectral
properties of the Veech group and give explicit estimates in the case when
obstacles are squares of side length 1=2. | |
dc.language | en | |
dc.publisher | Scuola Normale Superiore | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.source | Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze | |
dc.subject | Interval exchange transformations | |
dc.subject | Teichmuller-curves | |
dc.subject | Translation surfaces | |
dc.subject | Moduli spaces | |
dc.subject | Billiards | |
dc.subject | Differentials | |
dc.subject | Diffusion | |
dc.title | Quantitative error term in the counting problem on Veech wind-tree models | |
dc.type | Artículo de revista | |