dc.creatorPardo, Ángel
dc.date.accessioned2021-08-09T15:27:23Z
dc.date.available2021-08-09T15:27:23Z
dc.date.created2021-08-09T15:27:23Z
dc.date.issued2020
dc.identifierAnnali Della Scuola Normale Superiore di Pisa-Classe di Scienze (2020) volumen 21 Págs. 495-534
dc.identifier0391-173X
dc.identifierhttps://repositorio.uchile.cl/handle/2250/181160
dc.description.abstractWe study periodic wind-tree models, billiards in the plane endowed with Z2-periodically located identical connected symmetric right-angled obstacles. We exhibit e ective asymptotic formulas for the number of periodic billiard trajectories (up to isotopy and Z2-translations) on Veech wind-tree billiards, that is, wind-tree billiards whose underlying compact translation surfaces are Veech surfaces. This is the case, for example, when the side-lengths of the obstacles are rational. We show that the error term depends on spectral properties of the Veech group and give explicit estimates in the case when obstacles are squares of side length 1=2.
dc.languageen
dc.publisherScuola Normale Superiore
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceAnnali Della Scuola Normale Superiore di Pisa-Classe di Scienze
dc.subjectInterval exchange transformations
dc.subjectTeichmuller-curves
dc.subjectTranslation surfaces
dc.subjectModuli spaces
dc.subjectBilliards
dc.subjectDifferentials
dc.subjectDiffusion
dc.titleQuantitative error term in the counting problem on Veech wind-tree models
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución